Chapter 5 Normalization

Chapter 5
Normalization

1. Introduction
2. First normal form 1NF
3. Second normal form 2NF
4. Third normal form 3NF

5.1 What is Normalization?
Normalization is a process in which we systematically examine relations for anomalies and, when detected, remove those anomalies by splitting up the relation into two new, related, relations.
Normalization is an important part of the database development process: Often during normalization, the database designers get their first real look into how the data are going to interact in the database.
Finding problems with the database structure at this stage is strongly preferred to finding problems further along in the development process because at this point it is fairly easy to cycle back to the conceptual model (Entity Relationship model) and make changes.
Normalization can also be thought of as a trade-off between data redundancy and performance. Normalizing a relation reduces data redundancy but introduces the need for joins when all of the data is required by an application such as a report query.
Recall, the Relational Model consists of the elements: relations, which are made up of attributes.
A relation is a set of attributes with values for each attribute such that:
a. Each attribute (column) value must be a single value only.
b. All values for a given attribute (column) must be of the same data type.
c. Each attribute (column) name must be unique.
d. The order of attributes (columns) is insignificant
e. No two tuples (rows) in a relation can be identical.
f. The order of the tuples (rows) is insignificant.
Normalization Benefits:

1. Facilitates data integration.
2. Reduces data redundancy.
3. Provides a robust architecture for retrieving and maintaining data.
4. Compliments data modeling.
5. Reduces the chances of data anomalies occurring.

5.2 Problem Without Normalization
Without Normalization, it becomes difficult to handle and update the database, without facing data loss. Insertion, Updating and Deletion Anomalies are very frequent if Database is not Normalized. To understand these anomalies let us take an example of Student table.

	S_id
	S_Name
	S_Address
	Subject_opted

	401
	Adam
	Noida
	Bio

	402
	Alex
	Panipat
	Maths

	403
	Stuart
	Jammu
	Maths

	404
	Adam
	Noida
	Physics

· Updating Anomaly : To update address of a student who occurs twice or more than twice in a table, we will have to update S_Address column in all the rows, else data will become inconsistent.
· Insertion Anomaly : Suppose for a new admission, we have a Student id(S_id), name and address of a student but if student has not opted for any subjects yet then we have to insert NULL there, leading to Insertion Anamoly.
· Deletion Anomaly : If (S_id) 401 has only one subject and temporarily he drops it, when we delete that row, entire student record will be deleted along with it.

5.3 Functional Dependencies
The single most important concept in relational schema design theory is that of a functional dependency.

A functional dependency is a constraint between two sets of attributes from the database. Suppose that our relational database schema has n attributes A1, A2, ..., An.
If we think of the whole database as being described by a single universal relation schema R = {A1, A2, ... , An}.

A functional dependency, denoted by X → Y, between two sets of attributes X and Y that are subsets of R, such that any two tuples t1 and t2 in r that have t1[X] = t2[X], they must also have t1[Y] = t2[Y].
This means that the values of the Y component of a tuple in r depend on, or are determined by, the values of the X component;
We say that the values of the X component of a tuple uniquely (or functionally) determine the values of the Y component.
We say that there is a functional dependency from X to Y, or that Y is functionally dependent on X.

Functional dependency is represented as FD or f.d. The set of attributes X is called the left-hand side of the FD, and Y is called the right-hand side.
X functionally determines Y in a relation schema R if, and only if, whenever two tuples of r(R) agree on their X-value, they must necessarily agree on their Y-value.
If a constraint on R states that there cannot be more than one tuple with a given X-value in any relation instance r(R)—that is, X is a candidate key of R— this implies that X →Y for any subset of attributes Y of R.
If X is a candidate key of R, then X →R.

If X→Y in R, this does not imply that Y→X in R.
A functional dependency is a property of the semantics or meaning of the attributes.
Whenever the semantics of two sets of attributes in R indicate that a functional dependency should hold, we specify the dependency as a constraint.

Example :
[image:]
The following FDs may hold because the four tuples in the
current extension have no violation of these constraints:
B C; C B; {A, B} C; {A, B} D; and {C, D} B
However, the following do not hold because we already have
violations of them in the given extension:
A B (tuples 1 and 2 violate this constraint);
B A (tuples 2 and 3 violate this constraint);
DC (tuples 3 and 4 violate it).
5.3.1 Fully functional dependency (composite key)
If attribute B is functionally dependent on a composite key A but not on any subset of that composite key, the attribute B is fully functionally dependent on A.

5.3.2 Partial Dependency:
When there is a functional dependence in which the determinant is only part of the primary key, then there is a partial dependency.
For example if (A, B)  (C, D) and B C and (A, B) is the primary key, then the functional dependence B C is a partial dependency.

5.3.3 Transitive Dependency:
When there are the following functional dependencies such that XY, Y Z and X is the primary key, then XZ is a transitive dependency because X determines the value of Z via Y.
Whenever a functional dependency is detected amongst nonprime,
there is a transitive dependency.
The advantage of removing transitive dependency is,
· Amount of data duplication is reduced.
· Data integrity achieved.
5.4 Normalization of Relations
The normalization process, as first proposed by Codd (1972a),takes a relation schema through a series of tests to certify whether it satisfies a certain normal form.
The process, which proceeds in a top-down fashion by evaluating each relation against the criteria for normal forms and decomposing relations as necessary, can thus be considered as relational design by analysis.
Initially, Codd proposed three normal forms, which he called first, second, and third normal form.

5.4.1 How do you divide your tables?

The basic rule is that each table should describe one type of things, each row in the table should contain about one such thing, and the data we stored for each thing should exist in only one row.
This can often be sufficient to know. If one follows this basic rule, ones databases will get a good design and one avoids problems with redundancy, things that will not be possible to store, and tables that is hard to understand.
However, sometimes it is difficult to actually know what kind of “things” it is that one would like to store and which data that is related to them. Then we can take use of the theory of normalization.
It helps us to see exactly how different columns within a table are related and shows us how to divide the table to avoid our problems. Therefore we will start looking at the different normal forms that the theory of normalization describes. Normal forms are conditions that tables should fulfill. The simplest form is the first normal form and by adding more conditions one can define the second normal form, third normal form and further on.

5.4.2 The First Normal Form (1NF)
A database is in first normal form if it satisfies the following conditions:
1. All the key attributes are defined.	
2. There are no repeating groups in the table.
3. The value of record must be atomic.
4. All attributes are dependent on the primary key.

Example1: Consider the following table stud :
stud
	STU-ID
	L-NAME
	F-NAME

	001
	Smith
	John

	002
	Smith
	Susan

	003
	Beal
	Fred

	004
	Thomoson
	Marie

	005
	Tom
	Jake

	002
	Smith
	Susan

	004
	Thomoson
	Marie

	003
	Beal
	Fred

To bring this table to first normal form, we delete the duplication row, and now we have the following table stud1:

Stud1
	STU-ID
	L-NAME
	F-NAME

	001
	Smith
	John

	002
	Smith
	Susan

	003
	Beal
	Fred

	004
	Thomoson
	Marie

	005
	Tom
	Jake

Example2: Consider the following table student:
Student
	STU-ID
	CNAME
	GRADE

	001
	English , Italian
	A

	002
	German , English
	B

	003
	Italian
	C

To bring this table to first normal form, we convert data to atomic value , and now we have the following table student1:
Student1
	STU-ID
	CNAME
	GRADE

	001
	English
	A

	001
	Italian
	A

	002
	German
	B

	002
	English
	B

	003	
	Italian
	C

5.4.3 Second Normal Form (2NF)
A database is in second normal form if it satisfies the following conditions:
· It is in first normal form
· All non-key attributes are fully functional dependent on the primary key
In a table, if attribute B is functionally dependent on A, but is not functionally dependent on a proper subset of A, then B is considered fully functional dependent on A. Hence, in a 2NF table, all non-key
 attributes cannot be dependent on a subset of the primary key. Note that if the primary key is not a composite key, all non-key attributes are always fully functional dependent on the primary key.
 A table that is in 1st normal form and contains only a single key as the primary key is automatically in 2nd normal form.
Example: Consider the following example:
[image: Example Not In Second Normal Form]

This table has a composite primary key [Customer ID, Store ID]. The non-key attribute is [Purchase Location]. In this case, [Purchase Location] only depends on [Store ID], which is only part of the primary key. Therefore, this table does not satisfy second normal form.
[image: 2nd Normal Form Example]To bring this table to second normal form, we break the table into two tables, and now we have the following:

What we have done is to remove the partial functional dependency that we initially had. Now, in the table [TABLE_STORE], the column [Purchase Location] is fully dependent on the primary key of that table, which is [Store ID].

5.4.4 Third Normal Form (3NF)
A database is in third normal form if it satisfies the following conditions:
· It is in second normal form
· There is no transitive functional dependency
By transitive functional dependency, we mean we have the following relationships in the table: A is functionally dependent on B, and B is functionally dependent on C. In this case, C is transitively dependent on A via B.
Consider the following example:
[image: Example Not In Third Normal Form]
In the table able, [Book ID] determines [Genre ID], and [Genre ID] determines [Genre Type].
Therefore, [Book ID] determines [Genre Type] via [Genre ID] and we have transitive functional dependency, and this structure does not satisfy third normal form.
To bring this table to third normal form, we split the table into two as follows:
[image: 3rd Normal Form Example]
Now all non-key attributes are fully functional dependent only on the primary key. In [TABLE_BOOK], both [Genre ID] and [Price] are only dependent on [Book ID]. In [TABLE_GENRE], [Genre Type] is only dependent on [Genre ID].

Exercises:
	A
	B
	C

	a1
	b1
	c1

	a1
	b1
	c2

	a2
	b1
	c1

	a2
	b1
	c3

5.1 List all functional dependencies satisfied by the relation of the following Figure:

5.2 List all functional dependencies satisfied by the relation of the following Figure:

	Id
	Name
	Gender
	Age

	1
	Orlando
	Male
	35

	2
	John
	Male
	35

	3
	Jane
	Female
	31

	4
	Jane
	Female
	30

5.3 Using Normalization convert this table to 1NF,2NF,3NF.

	Student
	Age
	Subject

	Adam
	15
	Biology, Maths

	Alex
	14
	Maths

	Stuart
	17
	Maths

5.4 Using Normalization convert this table to 1NF,2NF,3NF.
[image:]

5.5 Using Normalization convert this table to 1NF,2NF,3NF.
	Street
	Zipcode
	City
	Length

	Rydsvagen
	58248
	Linkoping
	19km

	Mardtorpsgatan
	58248
	Linkoping
	0.7km

	Storgatan
	58223
	Linkoping
	1.5km

	Storgatan
	64631
	Gnesta
	0.014km

5.6 Using Normalization convert this table to 1NF,2NF,3NF.

	Student
	Course-id
	Grade
	Address

	Erik
	CIS331
	A
	80Ericsson Av.

	Sven
	CIS331
	B
	12Olafson ST.

	Inge
	CIS331
	C
	192Odin Blvd

	Hildur
	CIS362
	A
	212 Reyjavik ST.

[bookmark: _GoBack]
71

image2.jpeg
TABLE_PURCHASE_DETAIL

CustomerID | Store 1D Purchase Location
T T Los Angeles
T 3 San Francisce
2 1 Los Angeles
3 2 New York
4 3 San Francisco

image3.jpeg
TABLE_PURCHASE TABLE_STORE

——
——

image4.jpeg
TABLE_BOOK_DETAIL

BookD | GenelD | GeneTyne Price
T T Gardening 2599
2 2 Sports 489
3 1 Gardening 10,00
4 3 Travel 129
5 2 Sports 1759

image5.jpeg
TABLE_BOOK

TABLE_GENRE

BookiD | GemrelD | Frie GenreID Geme Tyne
T T 2588 1 Gardening
2 2 1488 2 Spars
3 1 10,00 B Travel
[3 1200
5 2 1799

image6.png
Clar 850 clpl By o sl e

Q|

G- v $el ~ee @B~

We assume we have an enterprise that buys products from different supplying companies, and
we would like to keep track of our data by means of a database.

+ We would like to keep track of what kind of products (<.g. cars) we buy, and from which
supplier (¢.g. Volvo) we buy them. We can buy cach product from several suppliers.
« Further, we want to know the price of the products. The price of a product is naturally
dependent on which supplier we bought it from.
+ We would also like to store the address of each supplier. i.c. the city where the supplier is
located. Here, we assume that cach supplier is only located at one place. o
« Perhaps we suddenly need to order a large number of cars from Volvo. It can then be good
to know how many people that live in the city where Volvo is located. Thus, we can know
if Volvo can employ a sufficient amount of people to produce the cars. Hence we also store
the population for each city.

q

Englsh (U.S.)
A first try to design the database

‘We will try to store the data in a table called PURCHASE.

Table 1:
PRODUCT | SUPPLIER | PRICE CITY POPULATION
Cars Volvo 100000 Torslanda 80000
Cars SAAB 150000 Sodertilje 50000
Trucks SAAB 400000 Sodertilje 50000
Aspirin Astra 10 Sodertilje 50000

The PRODUCT and SUPPLIER attributes provide the primary key.
‘This is not an especially good solution of designing the database schema.

+ Unnecessary redundancy. Certain information is stored in several places such as the data

image1.png
-8~ e

Data Structures Bartram

Data Management | Martin

Compilers Hoffman

Data Structures Horowitz

Example:

A

al

al
a2
a3

The following FDs may hold because the four tuples in the

current extension have no violation of these constraints:

