Lecturer: khalidah ali ahmed web designs Lecture seven
	

[bookmark: _GoBack]7.1 PHP MySQL Database
With PHP, you can connect to and manipulate databases. MySQL is the most popular database system used with PHP.

7.2 What is MySQL?

MySQL is a database system used on the web
MySQL is a database system that runs on a server
MySQL is ideal for both small and large applications
MySQL is very fast, reliable, and easy to use
MySQL uses standard SQL
MySQL compiles on a number of platforms
MySQL is free to download and use
MySQL is developed, distributed, and supported by Oracle Corporation
MySQL is named after co-founder Monty Widenius's daughter:

The data in a MySQL database are stored in tables. A table is a collection of related data, and it consists of columns and rows. Databases are useful for storing information categoically. A company may have a database with the following tables:
· Employees
· Products
· Customers
· Orders
7.3 PHP + MySQL Database System
PHP combined with MySQL are cross-platform (you can develop in Windows and serve on a Unix platform)
7.4 Database Queries
A query is a question or a request. We can query a database for specific information and have a recordset returned. Look at the following query (using standard SQL):

SELECT LastName FROM Employees
The query above selects all the data in the "LastName" column from the "Employees" table.
· Download MySQL Database
If you don't have a PHP server with a MySQL Database, you can download it for free here: http://www.mysql.com
· Facts About MySQL Database
MySQL is the de-facto standard database system for web sites with HUGE volumes of both data and end-users (like Facebook, Twitter, and Wikipedia). Another great thing about MySQL is that it can be scaled down to support embedded database applications.

PHP Connect to MySQL
PHP and later can work with a MySQL database using:
· MySQLi extension (the "i" stands for improved)
· PDO (PHP Data Objects)
Earlier versions of PHP used the MySQL extension. However, this extension was deprecated in 2012.
Should I Use MySQLi or PDO?
If you need a short answer, it would be "Whatever you like".
Both MySQLi and PDO have their advantages:
PDO will work on 12 different database systems, whereas MySQLi will only work with MySQL databases.
So, if you have to switch your project to use another database, PDO makes the process easy. You only have to change the connection string and a few queries. With MySQLi, you will need to rewrite the entire code - queries included.
Both are object-oriented, but MySQLi also offers a procedural API.
Both support Prepared Statements. Prepared Statements protect from SQL injection, and are very important for web application security.
MySQL Examples in Both MySQLi and PDO Syntax
In this, and in the following chapters we demonstrate three ways of working with PHP and MySQL:
· MySQLi (object-oriented)
· MySQLi (procedural)
· PDO
MySQLi Installation
For Linux and Windows: The MySQLi extension is automatically installed in most cases, when php5 mysql package is installed.
For installation details, go to: http://php.net/manual/en/mysqli.installation.php
PDO Installation
For installation details, go to: http://php.net/manual/en/pdo.installation.php

7.5 Open a Connection to MySQL
Before we can access data in the MySQL database, we need to be able to connect to the server:
1- Example (MySQLi Object-Oriented)
<?php
$server name = "local host";
$username = "username";
$password = "password";
// Create connection
$conn = new mysqli($server name, $username, $password);
// Check connection
if ($conn->connect error) {
 die("Connection failed: " . $conn->connect error); }
echo "Connected successfully";
?>
2- Example (MySQLi Procedural)
<?php
$servername = "localhost";
$username = "username";
$password = "password";

// Create connection
$conn = mysqli_connect($servername, $username, $password);

// Check connection
if (!$conn) {
 die("Connection failed: " . mysqli_connect_error());
}
echo "Connected successfully";
?>
3- Example (PDO)
<?php
$servername = "localhost";
$username = "username";
$password = "password";
try {
 $conn = new PDO("mysql:host=$servername;dbname=myDB", $username, $password);

 // set the PDO error mode to exception
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 echo "Connected successfully";
 }
catch(PDOException $e)
 {
 echo "Connection failed: " . $e->getMessage();
 }
?>
Note: In the PDO example above we have also specified a database (myDB). PDO require a valid database to connect to. If no database is specified, an exception is thrown.
Tip: A great benefit of PDO is that it has an exception class to handle any problems that may occur in our database queries. If an exception is thrown within the try{ } block, the script stops executing and flows directly to the first catch(){ } block.
7.6 Close the Connection
The connection will be closed automatically when the script ends. To close the connection before, use the following:
Example (MySQLi Object-Oriented)
$conn->close();
Example (MySQLi Procedural)
mysqli_close($conn);
Example (PDO)
$conn = null;
7.7 PHP Create a MySQL Database
A database consists of one or more tables. You will need special CREATE privileges to create or to delete a MySQL database.
· Create a MySQL Database Using MySQLi and PDO
The CREATE DATABASE statement is used to create a database in MySQL.
The following examples create a database named "myDB":

1- Example (MySQLi Object-oriented)
<?php
$servername = "localhost";
$username = "username";
$password = "password";

// Create connection
$conn = new mysqli($servername, $username, $password);

// Check connection
if ($conn->connect_error) {
 die("Connection failed: " . $conn->connect_error); }

// Create database
$sql = "CREATE DATABASE myDB";
if ($conn->query($sql) === TRUE) {
 echo "Database created successfully";
} else {
 echo "Error creating database: " . $conn->error; }
$conn->close();
?>
Note: When you create a new database, you must only specify the first three arguments to the mysqli object (servername, username and password).

Tip: If you have to use a specific port, add an empty string for the database-name argument, like this: new mysqli("localhost", "username", "password", "", port)
2- Example (MySQLi Procedural)
<?php
$servername = "localhost";
$username = "username";
$password = "password";

// Create connection
$conn = mysqli_connect($servername, $username, $password);

// Check connection
if (!$conn) {
 die("Connection failed: " . mysqli_connect_error());
}

// Create database
$sql = "CREATE DATABASE myDB";
if (mysqli_query($conn, $sql)) {
 echo "Database created successfully";
} else {
 echo "Error creating database: " . mysqli_error($conn); }
mysqli_close($conn);
?>
Note: The following PDO example create a database named "myDBPDO":
3- Example (PDO)
<?php
$servername = "localhost";
$username = "username";
$password = "password";
try {
 $conn = new PDO("mysql:host=$servername", $username, $password);
 // set the PDO error mode to exception
 $conn->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);
 $sql = "CREATE DATABASE myDBPDO";

 // use exec() because no results are returned
 $conn->exec($sql);
 echo "Database created successfully
";
 }
catch(PDOException $e)
 {
 echo $sql . "
" . $e->getMessage(); }
$conn = null;
?>
Tip: A great benefit of PDO is that it has exception class to handle any problems that may occur in our database queries. If an exception is thrown within the try{ } block, the script stops executing and flows directly to the first catch(){ } block. In the catch block above we echo the SQL statement and the generated error message.

8

