Computer Graphics

Forth Chapter

Circle Drawing

The circle is a special kind of curves. The circle is a closed curve with same starting and ending point. Circles are probably the most used curves in elementary graphics.

- A circle is specified by the coordinates of its center (xc,yc) and its radius (r).
- The circle equation is : $(x-x c)^{2}+(y-y c)^{2}=r^{2}$
- If the center of the circle is at the origin $(0,0)$ then the equation is :

$$
\begin{equation*}
x^{2}+y^{2}=r^{2} \tag{2}
\end{equation*}
$$

Solving equation (1) for y :

$$
y=y c \pm \sqrt{r^{2}-\sqrt{(x-x c)^{2}} \ldots \ldots \ldots}
$$

Note: To draw a circle increment the x values by one unit from -r to $+r$ and use the above equation to solve for the two y values at each .step

1. Direct (implicit) algorithm

In this method the first pixel of circle is at left side as equation

$$
\mathrm{x}=\mathrm{xc}-\mathrm{r}
$$

$y=y c$
to draw the circle we can increment x from $-r$ to $+r$ or from 0 to $2 r$ by one unit at each step and solving for y

$$
\begin{gathered}
y=y c \pm \sqrt{\left.r^{2}-\sqrt{(x-x c}\right)^{2}} \\
x=x+1
\end{gathered}
$$

This method of drawing a circle is inefficient because:

1. We are not taking advantages of the symmetry of the circle.
2. The amount of processing time required to perform the squaring and square root operations repeatedly.
3. X values are equally spaced (they differ by one unit) the y values are not. The circle is denes and flat near the y-axis and has large gaps and is steep near the x -axis.

Direct Algorithm

```
Input: xc,yc,r.
Output:Circle
{ x=xc-r;
    for i=0 to 2*r
        { y=yc+\sqrt{}{\mp@subsup{r}{}{2}-(x-xc)}
        plot (x, integer (y) ,color)
        y=yc-\sqrt{}{\mp@subsup{r}{}{2}-(x-xc)}
        plot (x, integer (y),color)
        x=x+1;
        }
        }
```

$\mathbf{H} \backslash \mathbf{W}$: Design implicit algorithm to draw circle if the first point is at right side.
$\mathbf{H} \backslash \mathbf{W}$: design implicit algorithm to draw circle if the first point is $x=x c, y=y c-r$
$\mathbf{H} \backslash \mathbf{W}$: Find the point of a circle where $\mathrm{xc}=20, \mathrm{yc}=10$ and $\mathrm{r}=8$?

Example :Find the point of a circle where $\mathrm{xc}=10, \mathrm{yc}=10$ and $\mathrm{r}=5$ using direct algorithm?
$\mathrm{xc}=10$
$y c=10$
$x=x c-r ; x=10-5=5$
For $\mathrm{i}=0: 2^{*} \mathrm{r}$
$y=y c+s q r t\left(\left(\wedge^{\wedge} 2\right)-(x-x c)^{\wedge} 2\right)$
Plot(x,round(y),'y')
$y=y c-s q r t\left(\left(r^{\wedge} 2\right)-(x-x c)^{\wedge} 2\right)$
Plot(x,round(y),'y')
$\mathrm{x}=\mathrm{x}+1$
End

\mathbf{X}	\mathbf{Y}	Round(y)	\mathbf{Y}	Round(y)	Plot(X,Y)
5	10	10	10	10	$(5,10),(5,10)$
6	13	13	7	7	$(6,13),(6,7)$
7	14	14	6	6	$(7,14),(7,6)$
8	14.5	15	5.4	5	$(8,15),(8,5)$
9	14.8	15	5.1	5	$(9,15),(9,5)$
10	15	15	5	5	$(10,15),(10,5)$
11	14.8	15	5.1	5	$(11,15),(11,5)$
12	14.5	15	5.4	5	$(12,15),(12,5)$
13	14	14	6	6	$(13,14),(13,6)$
14	13	13	7	7	$(14,13),(14,7)$
15	10	10	10	10	$(15,10),(15,10)$

2. parametric (polar) algorithm

One method of eliminating the problem of plotting points evenly spaced around the circle is to use polar representation of a circle:

$$
\begin{aligned}
& x=x_{c}+r \cos \theta \\
& y=y_{c}+r \sin \theta .
\end{aligned}
$$

Where: $\theta \rightarrow$ is measured in radians from 0 to 2π
arc length $=r \times \theta, r=$ radius (constant)
in this method we depend on angles to draw the circle, since it propose the first angle th=0, and end angle is two_pi (360).

The change in angle (dth) must be small value $d t h=1 / r$.

Polar algorithm

Note: the algorithm use cos \& sin operation and do not take the advantage of symmetric in circle
$\mathrm{H} \backslash \mathrm{W}$: write Matlab program to draw circle using polar algorithm?

Example :Find the point of a circle where $\mathrm{xc}=10, \mathrm{yc}=10$ and $\mathrm{r}=5$ using polar algorithm ?
th $=0$
dth=1/r=1/5
While th $<=2^{*}$ pi

$$
x=x c+r^{*} \cos (t h)
$$

$y=y c+r^{*} \sin (t h)$
plot(round(x), round(y), color)
th=th+dth
End

x	Round (x)	y	Round (y)	th	Plot (x, y)
15	15	10	10	0	$(15,10)$
14.9	15	10.9	11	0.2	$(15,11)$
14.6	15	11.9	12	0.4	$(15,12)$
14.1	14	12.8	13	0.6	$(14,13)$
13.4	13	13.5	14	0.8	$(13,14)$
12.7	13	14.2	14	1	$(13,14)$
11.8	12	14.6	15	1.2	$(12,15)$
$:$	$:$	$:$	$:$	$:$	$:$
$:$	$:$	$:$	$:$	$:$	$:$
14.9	15	9.5	10	6.4	$(15,10)$

