

Republic of Iraq Ministry of Higher
Education and Scientific Research
Mustansiriyah University College of
Dentistry

(Conventional and contemporary resin cements)

Fifth Year Students

Prepared By
Zahraa Hussein Naeem

Approved By
Dr. Alaa Safaa Aldeen Abdul Mahdi

2023-2024

Certification of the Supervisor

I certify that this project entitled "conventional and contemporary resin cements" was prepared by the fifth-year student **Zahraa Hussein Naeem** under my supervision at the College of Dentistry/University of Mustansiriyah in partial fulfilment of the graduation requirements for the Bachelor Degree in Dentistry.

Supervisor's name

Dr. Alaa Safaa Aldeen Abdul Mahdi

Dedication

This study is dedicated to our beloved fathers and mothers, who taught us the great works are done only with patience and determination.

To our brothers, sisters, friends, who continually provide their moral, emotional, and financial support, who shared their words of advice and encouragement to finish this study.

Before all that, we dedicated this report to the almighty God, thank you for the guidance, strength, power of mind, protection and skills and for giving us a healthy life. All of these, we offer to you.

Acknowledgments

We promise to express our gratitude and thanks to **Dr. Alaa Safaa Aldeen Abdul Mahdi** for her constant support , patience and insightful discussion that have significantly improve our ability to deep understanding and discussion of our research .

List Of Contents

Subject	Page
Certification Of The Supervisor	i
Dedication	ii
Acknowledgments	iii
List Of Contents	iv
List Of Figure	v
List Of Table	v
Introduction	1
Aim Of The Study	3
Chapter One: Review Of Literature	4
1. Meaning of dental cement	5
1.2.Selection of Luting Agents	5
1.3. Ideal Dental Cements	8
1.4. Long-Term Luting Cements	9
1.4.1.Zinc Phosphate Cement	10
1.4.2. Zinc Polycarboxylate Cement	11
1.4.3. Glass-Ionomer	12

1.4.4.Hybrid Ionomer Cements or Resin-Modified Glass Ionomer Cements	14
1.4.5.Resin cement	16
1.4.5.1.Resin composition	17
1.4.5.2. Properties Of Resin	17
1.4.5.3. Classification Of Resin	19
1.5.Provisional Luting Cements	21
Chapter Two: Discussion	24
Discussion	25
Chapter Three: Conclusions	27
Conclusions	28
References	29

List Of Figure

Figure number	Title	Page
1	Various luting cements in dentistry with common examples.	6

List Of Table

Table number	Title	Page
1	General characteristics of non-adhesive and adhesive cements.	7
2	shows the indications, retention, advantages, and precautions of various dental luting agents	9
3	Recommended types of dental cements for indirect restorations.	26

Introduction

In the past decade, there has been a substantial transformation in the available choices for indirect restorations (**Hill,2017**). Published research indicates that the primary functions of dental cement are to close the space between temporary or permanent restorative material and implant abutment or tooth preparation, and to enhance the restoration's stability during use (**Lott,2019**) .The selection and use of dental cements are vital for ensuring the long-term durability of a dental restoration. A common cause of restoration failure is the loss of retention (Walton,teal,2015) . Although the terms "cement," "luting," and "bond" have different definitions, they are occasionally used interchangeably in literature. Luting refers to a process in which the elements to be connected are securely locked together by micromechanical means. The term "bond" implies a connection, either chemical or physical, between two surfaces that are mutually attracted to each other. The term "joining substance" refers to a material that creates adhesion and/or micromechanical locking between two surfaces that need to be joined together (Simon ,etal2016). Generally, the phrase "dental cement" can be used to describe the substance that joins the restorative material to the tooth preparation or implant abutment.Dental cements can be classified into two categories based on the expected duration of the restoration: definitive and interim cements. All definitive cements can be further split into two subgroups: luting cements and bonding cements (Attar ,teal,2018).Zinc phosphate cement, zinc polycarboxylate cement, classic glass-ionomer cement, and resin-modified glass-ionomer cement are the four types of luting cements that are currently extensively used. Resin cement, available in several subtypes, is the exclusive type of bonding cement. Over time, dental cements have undergone improvements to enhance their strength and durability. Resilient materials have become possible due to breakthroughs in the field of material science

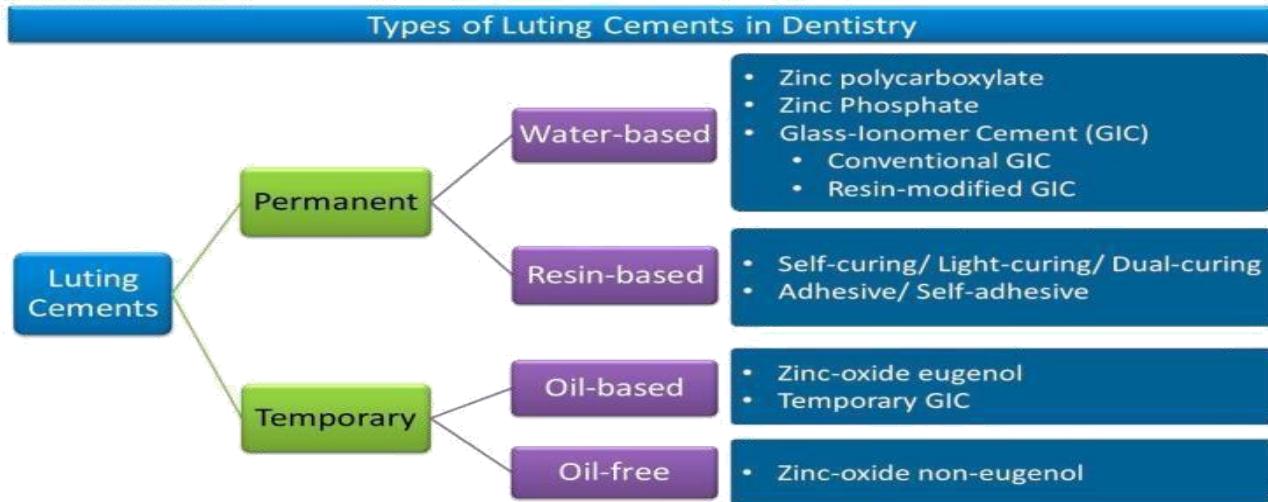
(de la Macorr, teal, 2022). Choosing dental cements has grown increasingly difficult due to the availability of new materials and adjustments in application procedures (Pegoraro, et al 2017). Optimal dental cements effectively protect and safeguard the tooth's hard structures, demonstrate minimal shrinkage and a robust connection to dental biomaterials and tooth tissues, possess exceptional resistance to both tensile and compression stresses, are highly durable, and prevent the development of caries at the adhesive interface. Ideal dental cements should possess low solubility, exhibit translucency and radiopacity, demonstrate biocompatibility, possess antibacterial properties, offer effective marginal sealing, achieve a minimal film thickness, be user-friendly in terms of application, and possess the optimal durations for both labor and healing (Ghodsi, et al, 2021) In addition, they should possess aesthetic qualities when mixed with a restorative material, possess a high resistance to breaking, have great wetting properties (with a small wetting angle), and have sufficient viscosity to spread fully. Moreover, it is imperative that it be uncomplicated (Radovic, et al, 2008).

Aim Of The Study

This article tries to provide an overview of current cements and discuss physical properties, biocompatibility and other properties that make particular cement the preferred choice for clinical indication

Chapter One

Review Of Literature


1. Meaning Of Dental Cement

The term "permanent cement" has been commonly employed in the past and remains in use today when discussing dental cements for final restorations.

Indeed, the word "definitive cement" could be more precisely employed to refer to cement that is utilized in a cementation procedure that is permanent and irreversible. The cements in this category consist of zinc phosphate cement, zinc polycarboxylate cement, conventional glass ionomer cement, resin-modified glass ionomer cement, and resin cement. (**Lott, 2019**)

1.2. Selection of Luting Agents

Figure 1 depicts various types of luting agents, along with typical examples (**Ladha and Verna, 2010**) The coordinates are . Water-based luting cements such as glass-ionomer, resin-modified glass-ionomer, zinc phosphate, and zinc polycarboxylate cements release fluoride (**Oilo , 2015**) .On the other hand, resin cements are similar in chemical composition to composite resins. (**Hattar,etal,2014**) When combined with dental adhesives, resin cements provide maximum strength to both the tooth and indirect restoration (**Dos,etal,2014**). Furthermore, the process of surface etching in the repair might create microscopically small irregularities that enhance the mechanical bonding when paired with resinous cement. Although they possess certain physical characteristics, these cements are often more susceptible to the cementation process (**Perdigão,etal,2021**). Water-based cements are frequently used to secure metal copings, frameworks, or partial restorations. On the other hand, composite cements are recommended when a stronger adhesive bond between the restorative material and tooth structure is required (**Rosenstiel,etal,2015**).

Figure 1: Various luting cements in dentistry with common examples.⁽¹¹⁾

Cements can be classified into two basic categories: adhesive and non-adhesive (Table 1). Non-adhesive cements employ mechanical retention and generally consist of water and reactive filler. However, adhesive cements form a strong bond with both the hard tissues of the tooth and the restoration. They are made up of non-reactive fillers that have been treated with anhydrous-silanization (**Zaniboni,etal,2019**).

Table 1 : General characteristics of non-adhesive and adhesive cements.

Non adhesive Cements	Adhesive Cements
<p>The preparation's long axial walls must have a small taper, about 6° .</p> <ul style="list-style-type: none"> ➤ The restoration fits precisely, ranging from 30 to 100 μ m. ➤ The stress during chewing should be less than the bond strength. ➤ The tooth is cleaned (a pumice stone and/or chlorhexidine are advised), dried completely, and then covered with dentin bonding resin or cavity varnish. 	<ul style="list-style-type: none"> ➤ Bond strength relies on the stable adhesive contact and the bondable materials such as the tooth surface, restoration, and cement. Adhesive attachment is influenced by environmental conditions, namely the lack of moisture. ➤ The bond strength should exceed the tension experienced during chewing. ➤ The substrate surface is cleaned and treated in accordance with the cement system protocol.

1.3. Ideal Dental Cements

An optimal dental cement should possess the following attributes: it should efficiently protect and safeguard the hard structures of the tooth, display high resistance to both tensile and compression stresses, be resilient to fatigue, maintain mechanical stability, have minimal shrinkage, exhibit strong bonding capabilities to tooth tissues and dental biomaterials, and effectively prevent the formation of cavities at the adhesive interface. In order to achieve the best possible performance, it is important that dental cements have both biocompatibility and antibacterial qualities. provide efficient edge sealing, include a thin film thickness, and be easy to apply These compounds exhibit low solubility, are transparent, and possess high radiopacity. Additionally, they offer superior performance. The duration of effort and time necessary for complete healing. Furthermore, it is important for them to possess a significant degree of fracture resistance. The desired characteristics of the chemical include high strength, excellent wetting capabilities (resulting in a low contact angle), and the right viscosity for optimal spreading. Additionally, the chemical should have a visually pleasing appearance when mixed with a healing and recovery-promoting agent. Furthermore, eliminating the surplus The information should be conveyed in a plain and straightforward manner. Conventional cements were frequently employed for adhering metal alloys. Remedied detachable dental prosthetics. Zinc phosphate luting cements have been used. Utilized for an extended period of time. For invasive medical procedures or individuals that need extensive intervention Considering a preexisting medical condition of pulp hypersensitivity, it is recommended to utilize a We require a cement with greater biocompatibility, such as polycarboxylate. Repairs necessitate the use of adhesive technologies that include intricate application methods. The toughness and lifespan of luting cements are typically The unpredictability stems

from the potential for little injury resulting from the disintegration of cement in dental cavities. Resin-based and glass-ionomer cements demonstrate exceptional adhesion characteristics. Improving the cohesion and durability of materials reduces the occurrence of these issues (**Campos and Kuga, 2021**). Resin cements are particularly favored when the tooth is treated following the principles of minimally invasive dentistry and all other preparations have been completed. The margins are achievable. Crowns that are attached using zinc phosphate cement, polycarboxylate cement, and glass-ionomer cement can be readily and accurately removed. It is necessary to minimize the risk of damaging the tooth that has been prepared. In order to separate an object that has been bonded with adhesive glue, it is vital. It is crucial to partition it into pieces (**Avetisyan,etal,2021**).

1.4. Long-Term Luting Cements

The category of long-term luting cements consists of zinc phosphate cement, zinc polycarboxylate cement, glass-ionomer cement (GIC), resin-modified glass-ionomer cements (RMGICs), and resin cement.

Table 2 : shows the indications, retention, advantages, and precautions of various dental luting agents(**Sakaguchi,etal,2019**).

Luting Agents	Indications	Adhesion	Excess Removal (I *: Easy)	Retention (I *: High)	Advantages	Disadvantages
Zinc phosphate	1,3,6,9,10	Chemical	Easy	Moderate	History of use	Solubility, leakage
Zinc polycarboxylate	1,3,4,6	Chemical	Medium	Low/moderate	Biocompatibility	Low strength, solubility
Glass-ionomer F	1,3,6,9,10,12	Chemical	Medium	Moderate to high	Translucency	Solubility, leakage
RMGIC F	1,3,9,10	Micro-mechanical	Medium	High	Low solubility, low microleakage	Water sorption, history of use
Resin cement	1-3, 5-12	Mechanical	Medium to difficult	High	Adhesive, low solubility	Film thickness, history of use

1.4.1.Zinc Phosphate Cement

Zinc phosphate cements were first used in 1878. For a significant duration, it was extensively employed as the standard for fixing indirect restorations, and it persists in being utilized for that specific objective. The operational duration of the equipment is satisfactory. The compressive strength meets the desired standards. Furthermore, when the chemical is manipulated From a conservative standpoint, zinc phosphate cements can be regarded as having therapeutic characteristics. Prolonged clinical utilization has shown favorable results over an extended duration. Metal-ceramic crowns, partially fixed dental prostheses (FDP), metal-ceramic crowns with porcelain borders, and Alumina crowns produced by the slip-casting technique are frequently adhered utilizing zinc phosphate cements (**Leung et al., 2022**). Moreover, the use of varnish on prepared teeth diminishes mechanical impacts. Improving pulp retention capacity while reducing sensitivity. The numerical value is 20. When metal crowns are utilized, a luting agent with a thickness of around 25–40 microns is applied. Optimal thickness ensures the precise measurement of the cement-layer thickness, so improving The cement has excellent fluidity and offers a certain level of thermal insulation. In addition, Zinc phosphate cements have outstanding mechanical adhesion. Oral fluid exhibits a high degree of solubility, low viscosity, and limited tensile strength. The absence of a preventive effect against tooth decay and the possibility of causing allergic reactions The constraints of this aqueous solution arise from its originally low pH (**Fakiha, et al., 2015**). The pulp tissue can get inflamed due to the acidic pH of the cement, which is the same. Throughout the process of cementation, the pH level of the cement usually varies between 4.5 and 5.0 once it has fully hardened. The literature (**Shetty, et al., 2021**) presents conflicting viewpoints on this information.

1.4.2. Zinc Polycarboxylate Cement

The use of dental adhesive began in the late 1960s, coinciding with the development of polycarboxylate cements. The tensile strength of these luting cements is greater than that of zinc phosphate cements. After 24 hours, the compressive strength reduces to a range of 55-85 MPa. The dental prostheses are constructed entirely from metal, while the crowns are produced from a mixture of metal and ceramic materials. The metal-ceramic crowns have porcelain margins. Utilizing a post-cast approach to apply casts to patients who have previously exhibited sensitivity following treatment. The materials typically employed in postcore and core construction consist of metal for the core, as well as fiber and ceramic for the core. The common applications of zinc polycarboxylate. One of the advantages of these luting cements is their high biocompatibility, which is due to the large size of the polyacrylic acid molecules that prevent them from entering the dentine tubules. Zinc polycarboxylate luting cements have the ability to establish chelating bonds with calcium, hence conferring upon them a distinctive characteristic. Chemical adhesion to the tooth. Therefore, dentin and enamel are capable of being connected using these adhesives (Table 2). However, managing this material poses a challenge due to its elevated viscosity (Ali, et al., 2010). Despite the advantages, restorations sealed with polycarboxylate cements may experience longevity concerns. When the recommended powder-to-liquid ratio is followed, zinc polycarboxylate cement can exhibit a high level of viscosity. Nevertheless, these cements exhibit differences in their rheological characteristics, particularly in terms of their capacity to flow, which can lead to liquefaction under high pressures. This term denotes something that is being referenced or indicated. Indicates their capacity to form an exceptionally thin layer despite their outward appearance. Viscosity is the quantification of a fluid's

opposition to flow. The solubility of the luting agent may triple if the dentist makes unwarranted modifications to the powder-to-liquid ratio. An underlying factor contributing to a high number of unsuccessful outcomes in therapeutic settings (**Handa, et al., 2021**).

The time required to complete several cement repairs is 2.5 minutes. The duration of the procedure is comparatively shorter than that of zinc phosphate, which typically takes 5 minutes, potentially resulting in issues. Moreover, the remaining quantity is more challenging to eradicate compared to zinc. Phosphate. Therefore, the surplus must be eliminated either before or after the resin stage. If the surplus cement is removed during the elastic phase During the curing time, a substantial proportion may deviate from the repair border, resulting in a decrease in profit margin. These cements also have a reasonably high solubility. Zinc phosphate is a chemical compound consisting of zinc and phosphate ions. Cements have enhanced adhesion in comparison to zinc polycarboxylate luting cements. Based on in vitro laboratory experiments. Consequently, it is advisable to exclusively utilize arrangements that include This cement to achieve the best possible retention and stability (**Sathyanarayan et al., 2021**)

1.4.3. Glass-Ionomer

Cement Glass-ionomer cements have been widely used as restorative materials since the 1970s. Over time, they have also been employed as luting agents. The dental material has satisfactory compressive and tensile strengths, as indicated in Table 2. (**Francisconi,etal,2009**) it has a similar amount of bonding to dental tissues as polycarboxylate cements, and it has a low rate of expansion with changes in temperature. Our dental services include the provision of full metallic and metal-ceramic crowns, partial fixed dental prostheses (FDP), and metal-ceramic crowns with metal coping. The specified products include of porcelain margins, slip-cast

alumina crowns, metal posts, inlays, and implants. Offered support for dental crowns and bridges, as well as aesthetic postcore and core operations including fiber and other materials. Glass ionomer cements (GICs) are commonly used for a variety of purposes, one of which being ceramics. A dentist is a healthcare practitioner who specializes in the diagnosis, treatment, and prevention of oral health conditions. One could get a sense of being overwhelmed when confronted with the vast array of adhesive options. Selecting the most suitable cement from the materials that are now accessible might occasionally be a difficult undertaking. Challenging. Nevertheless, by refining the repair technique with minor modifications Significant breakthroughs have been made in the realm of preparation, adhesive materials, and processes (**Abhay et al., 2021**). The cements are presented in a powder-liquid formulation that requires thorough mixing before being used orally. Calcium fluoroaluminosilicate glass is a glass composition of calcium, fluorine, aluminum, and silicon. The powder is predominantly composed of fluorine, making up 10-16% of its overall volume. The liquid component usually comprises an aqueous solution containing polyacrylic acid. Tartaric or itaconic acid and malic acid are components of copolymers (**Kakkad,etal,2022**) Some manufacturers opt to manually blend copolymer with polyacrylic acid. The powder is mixed with either a solution of tartaric acid or water (**Perera,etal,2020**) The solubility of fluoride ions released by GICs is comparatively lower than that of zinc. Phosphate cements. These ions infiltrate tooth tissues and aid in their remineralization, leading to an anti-caries action. GICs demonstrate bacteriostatic characteristics even post-curing. The retention rate of GIC was superior to that of zinc phosphate cements. Increased by 65%. It has a significant level of semi-opacity, which sets it apart from Zinc phosphate cements are advantageous for the restoration of ceramic materials (**Wan Jusoh,etal,2021**) Furthermore, it exhibits outstanding operating attributes. Nevertheless, GICs possess notable limitations

despite their alleged benefits. positive qualities their ph level, which is around 3.5, may lead to joining can lead to significant discomfort because to increased sensitivity. hypersensitivity has been linked to the state of dentin dryness or the presence of germs, rather than being induced by a postoperative reaction to the cement. environmental contamination. when the manufacturer's requirements are adhered to scrupulously pulpal hypersensitivity is not associated with zinc phosphate and gic. regarding mechanical qualities, gics often exhibit superior performance. zinc phosphate and zinc polycarboxylate cements are utilized nonetheless, they exhibit a short setting time. moisture weakens the material by inducing structural changes. characteristics of matter that can be observed or measured without changing its chemical composition. erosion is caused by the absorption and removal of positively charged ions that are involved in the creation of cement. moreover, there could be a significant decrease in the level of quality or performance. take place in gics during the initial setup phase. on the other hand, excessive drying leads to shrinkage, resulting in heightened sensitivity and the formation of fractures to protect the outer edges of the restoration from liquid exposure during the initial setting phase, it is recommended to apply varnish or materials that contain petroleum jelly (**Abhay, et al., 2021**).

1.4.4.Hybrid Ionomer Cements or Resin-Modified Glass Ionomer Cements

Glass-ionomer cements can be categorized into two groups: standard and resin-modified (RMGIC) varieties both forms of adhesion rely on comparable principles, which entail the formation of ionic bonds by chelation. The carboxyl groups present in the cements and calcium The cements adhere to the phosphorus found in the dentin and enamel apatite. Tooth enamel. Resin-modified glass ionomer cements (RMGICs) have a complicated structure that allows them to strongly adhere to dentin. However, it is important to note that their bioactive activities are rather

restricted (**Malhotra,etal,2022**). RMGICs have been employed since the early 1990s. Improve the bonding between enamel and dentin by leveraging their ideal physical and mechanical characteristics. We offer services for creating metal-ceramic crowns and bridges, zirconia frameworks, and restorations made from metal and ceramic materials. The specified items comprise metal posts, metal inlays, orthodontic appliances, and cosmetic postcore. RMGICs are frequently employed for restorations using core materials like fiber and ceramic. It is recommended to keep it in its existing place (**Brenes-Alvarado, etal,2021**). GIC and RMGICs share common objectives. However, in comparison to normal GIC, they exhibit higher durability against wear. Exceptional resistance to fractures. The fluoride-releasing and adhesive characteristics of GICs have been merged with the durability and insolubility of polymers. Throughout the entire process of formulating the drug. Because of the inherent characteristics of these materials.

The material is an aqueous solution that undergoes incomplete polymerization through a process utilizing polyacrylic acid. The particles are composed of polymer and calcium fluoroaluminosilicate glass, with variations in their composition in resin cements (**Malhotra,etal,2022**). These materials have a decreased solubility in comparison to traditional glass-ionomers and more impervious to moisture. They are more user-friendly and possess superior qualities. They have aesthetic qualities and exhibit a thinner layer. These compounds have low microfluidity and high adhesion, resulting in improved resistance to marginal detachment and permeability. However, it is not recommended to use RMGICs for further fixing purposes. Delicate all-ceramic constructions that experience expansion. The process of water absorption increases the probability of harm to the restoration (**Brenes-Alvarado,etal,2021**). It is recommended to remove any excess conventional GIC once it has completely hardened. The marginal zone of the

restoration can be eliminated while it is still present. Either in a gelatinous state or once it has completely solidified. These compounds can be purchased. Available in the form of capsules, pastes, and powder-liquid mixes. (**Heboyan et al., 2022**)

1.4.5.Resin Cement

Resin cements are a novel adhesive substance specifically formulated for use in dentistry. The initial failure of resin cements was mostly attributed to significant polymerization shrinkage and inadequate biocompatibility. Resin cements possess the capacity to establish a chemical bind with both dentin and enamel, leading to a robust link. Enhanced adhesion and reliability have been noted (**Tanweer,etal,2022**) Bonding is commonly achieved with the use of organophosphonates and hydroxyethyl methacrylate (HEMA), also known as 4-methacryloxyethyl trimellitate anhydride. The compound (4-META) is denoted by the chemical formula (**Gürdal,etal,2017**) . An adhesive monomer is a compound that is used to promote adhesion between two surfaces. During polymerization, exposed collagen fibrils become entangled and impregnated. The formation of the hybrid layer leads to the development of strong bonding between materials, characterized by high tensile strength. HEMA enhances the penetrability of dentin substrates, leading to improved capacity for penetration. HEMA forms a robust chemical connection when exposed to bond improvement the length of HEMA administration has an impact on strength. The procedure illustrates the formation of a hybrid layer within dentin that is Reinforced with resin following a 10% treatment. There are three solutions available, one containing 10% citric acid and another containing 3% ferric chloride. The adhesive resin infiltrates the collagen bundles and interlaces with them. In order to get a strong tensile bond strength, it is essential to build the hybrid layer. Strengths. Thus, the application of HEMA to

dentin surfaces enhances the depth of penetration. bonding of monomers with dentin components, aiding in the creation of hybrid layers.

1.4.5.1.Resin composition

Resin cements are composite materials that have various chemical compositions. Composite materials are created through the amalgamation of a resin matrix, such as BisGMA (sometimes referred to as urethane dimethacrylate), with minute particles of inorganic fillers. They differentiate themselves from restorative composites based on their modulus. The filler component typically ranges from 50 to 70% and consists of either glass or silicon dioxide.

The viscosity of the substance is an additional factor that influences the outcome. There is a correlation between the amount of filler and the mechanical properties. A reduction in the quantity of fillers leads to a drop in the mechanical performance(**Nakabayashi,etal,2011**)

1.4.5.2. Properties Of Resin

Resin cements are highly durable and possess superior mechanical and physical characteristics as compared to earlier luting materials Table3 (**Heboyan,etal,2022**)

 Advantage of resin : Resin cements provide clinical advantages like exceptional resistance to compression, low coefficients of thermal expansion, high flexural strengths, and superior hardness as compared to other luting materials. Resin cements possess high fatigue resistance, exhibit excellent adhesion to a wide range of materials, have the capacity to modify hue and color, offer strong retention, demonstrate resistance to wear at the edge of the restoration, and have low permeability at the margins. Resin cements establish a robust adhesion with ceramic restorations and evenly distribute the

compressive force throughout all contact surfaces. Resin cements are primarily used to bond different types of dental restorations, including full cast metal crowns, ceramic crowns, zirconia constructions, indirect composite restorations, classic metal ceramic constructions, metal and glass fiber posts, implant supported crowns and bridges, and ceramic veneers.

Disadvantage of resin cements : Resin cements have a disadvantage in that they have a poorer ability to prevent secondary caries compared to RMGIC. This is because resin cements have fewer caries inhibitory effects than RMGIC. Certain products have short curing periods, inadequate anticorrosion characteristics, and can cause hypersensitivity as a result of polymerization shrinkage. Resin cements generally have lower biocompatibility compared to glass ionomer cements (GICs). RMGICs emit HEMA, which can lead to detrimental biological consequences, including pulpal inflammation, allergic contact dermatitis, and other immunological responses. A separate study revealed that the detrimental effects differ based on the substance utilized, and the different techniques of administering these dental materials to dentin could influence their level of toxicity. Hence, it is imperative to exercise caution as dental personnel are susceptible to adverse repercussions. Resin cements have lesser caries-inhibitory characteristics compared to RMGIC, making them less efficient at preventing secondary caries. Certain products exhibit short curing times, inadequate anticorrosive capabilities, and can induce hypersensitivity as a result of polymerization shrinkage (**Shinkai,etal,2018**).

1.4.5.3. Classification Of Resin

This item can be categorized into distinct sections:

- **Adhesive Or Self-Adhesive Cements**:- Before using adhesive cements, it is imperative to acid-etch the teeth using phosphoric acid and thereafter apply the adhesive system. Comprising a comprehensive quantity of acid Etching involves the removal of the smear layer and the demineralization of the surface. The dentin reaches a depth of 3–5 μm , exposing the collagen fibers. (**TamL.,etal,2014**) The glue in important teeth is known to infiltrate the dentin, creating a hybrid layer that extends approximately 10 μm (**Silva,etal,2022**). Dentin adhesives are thought to reduce the pulp reaction and decrease micropermeability at the edges. Adhesive resin cements have superior sealing capability compared to zinc phosphate cements. However, the problem of completely removing any excess cement from the hard-to-reach edges during the application of resin cements to bond restorations can be hindered. When using self-adhesive cements, it is important to perform acid treatment. The application of additional adhesives is not required, save for enamel preparation. Acid etching continues to be beneficial for improving bond strength values. The formulation of sticky or self-etching resin cements comprises these constituents(**Wiedenmann,etal,2021**). Components that have the capacity to improve both the binding strength to the substrate and the restoration process, such as the incorporation of the MDP compound. The compound is methacryloyloxydecyl dihydrogen phosphate. However, in the specific case of glass ceramics, the etching and silane layer remain undamaged. mandatory. Therefore, it is crucial to carefully scrutinize the instructions for proper utilization before use. In addition, these cements have outstanding mechanical and optical properties and demonstrate strong adhesion to the tooth's surface. Substitutes (The term self-etching is also applied to specific adhesive

systems, which eliminates the phosphoric acid etching step because an acidic component in the adhesive is responsible for this procedure. Most of the time, these adhesives are developed to be used only in association with the resin cements from the same manufacturer system. Therefore, this association promotes some benefits, such as faster polymerization and standardized procedures (**Eltoukhy,etal,2021**).

Resin cements are also classified according to the polymerization process:

1. chemical-cure
2. light-cure, or dual-cure

Chemical or self-curing cements undergo polymerization via a chemical process that is begun by peroxide. Self-curing resin cements have diminished color stability due to their chemical composition, rendering them inappropriate for specific applications. Intended to stick to translucent or fragile ceramic restorations. Light-cure resin cements are used in relation to this issue. Chemical polymerization materials experience a gradual and continuous solidification process, leading to a decrease in shrinkage stress. Light-cure cements undergo curing as a result of the activation of photoinitiators. A major drawback of these materials is their longer polymerization time in comparison to self-curing polymers (**Vasconcelos,etal,2020**)

Dual-cure cements consist of amine initiators and photoinitiators, which enable the initiation of the polymerization process using a light source. Subsequently, the light-curing response triggers the commencement of the chemical reaction, which will unfold over an extended duration. The catalyst in dual-cure cements facilitates the final solidification of the cements in regions that cannot be reached by light,

following the initial rapid polymerization caused by light exposure. Dual cements provide the advantage of being suitable for many clinical scenarios where the effectiveness of light is reduced due to the thickness or translucency of the restoration. Thus, the final polymerization will be achieved due to the chemical reaction. Light-curing cements are indicated to cement ceramic or indirect composite restorations that are less than 1.5 mm thick and provide sufficient light penetration. Light curing may not result in adequate resin polymerization under thick zirconia structures. LED light sources should be preferred over QTH for curing dual-cure resin cements, especially for those under thicker zirconia restorations. **(Aldhafyan,etal,2021)** . Dual-curing cements are recommended for ceramic and composite restorations with a thickness of 1.5–2.5 mm. The chemical cure of dual. resin cements is sufficient to allow their use under zirconia and thick ceramic restorations. Self-curing cements are used to cement the restorations that block light, such as zirconium oxide all-ceramic crowns and bridges, ceramic and composite inlays and onlays (>2.5 mm), adhesive fixed partial dentures, and metal constructions. Some resin cement systems can activate the chemical polymerization of the adhesive system to avoid the need to cure it before cementation. The use of dual adhesives is another important protocol during the cementation of prostheses. **(Mazzitelli,etal,2022)** .

1.5. Provisional Luting Cements

Temporary cements are utilized to preserve the structural integrity of the tooth pulp during the temporary restoration process. Occasionally, it may be required to apply a temporary final restoration to maintain the health of the tooth pulp and periodontium. Attached using a temporary adhesive. This allows the patient to assess

The physical characteristics and functional capacities of the restorative (**Abad-Coronel,etal,2019**).

The following characteristics should be present in the temporary cements :

- ✓ The material is highly suitable for distribution and handling, as well as being sufficiently robust to securely retain indirect restorations in place for a limited duration. Additionally, it is uncomplicated to remove and clean from both the substrate and restoration.
- ✓ able without endangering the prepared teeth or sensitive tissues.
- ✓ eliminated without causing subproducts to leak.
- ✓ indifferent to the long-term cement's adhesive qualities.
- ✓ Regardless of the objective, it is essential to engage in meticulous inspection while utilizing interim cementation.

After the repair is removed, there is a possibility of encountering long-term cementation problems. However, these issues can be avoided by employing an appropriate application approach. Apply a modest quantity of Vaseline onto the surface of the crown's intaglio. Furthermore, the luting element should only be applied to the edges of the restoration. To optimize the process of sealing and facilitate subsequent removal. However, the temporary fix frequently results in lasting cohesive and adhesive flaws. Patient discomfort and the development of tooth decay might be caused by the displacement of the dental repair. Visible or accessible damage to the dental tissue. After the patient has been given detailed information about the purpose, length, and importance of swiftly notifying the medical staff, If a separation occurs, a dentist may do interim cementation. Some types of cement contain chlorhexidine to protect the adhesive surface and fluoride to prevent hypersensitivity (**Heboyan,etal,2020**). Zinc-oxide-based temporary cements TempbondTM NE, TBNE, Kerr, Italy) and glass ionomer cements (KetacTM Cem, 3M ESPE, Seefeld, Germany) Here are a few examples of temporary cements that can potentially emit fluoride. The solubility of

cements increases to some extent with the addition of fluorides. Provisional cements should possess the following desired characteristics, in addition to not impeding the polymerization of the impression material: radiopacity, low solubility, natural look, and being tasteless and odorless (**Heboyan,etal,2020**).

Chapter Two

Discussion

Discussion

Careless choice of the dental cement or incorrect manipulation of the selected material significantly affects the durability of a restoration. It is serious that the clinicians select the dental cements considering their physical, mechanical, esthetic, and handling properties as well as the costs and technique required. Now resin cements have increased lots of popularity due to their adaptability, performance and favorable esthetic properties. However, if adequate tooth preparation and resistance form exists or where moisture control may be problems, more conventional dental cements (e.g., conventional glass-ionomer cement, resin-modified glass-ionomer cement) might be a better choice compared to resin cement. The high request for esthetically pretty restorations has resulted in the development and introduction of various ceramics. Among all the available ceramics, the polycrystalline ceramic (aluminum oxide and zirconia oxide) are the most common materials due to their greater performance. Although polycrystalline ceramics are often cemented conventionally using glass-ionomer cement or zinc phosphate cement, they can profit from adhesive cementation with resin cements. In those circumstances application of a primer containing 10-methacryloyloxydecyldihydrogen phosphate (MDP) (eg. DC Bond, Kuraray) before application of the resin cement has been recommended in instances where better retention is required. Concerning choice of dental cements for implant-supported restorations, the specialists have a wide-ranging choice of many different dental cements, each with advantages and disadvantages. Before making decision, the dentists should answer the questions how much and how long retention is needed for this particular restoration. As soon as the answers to these questions are explained, the decision-making process could be simplified. In general, if an implant is ideally placed and the occlusion is optimal, the implant-supported restoration should be cemented with definitive dental cements such as glass-ionomer cement and resin cement. Although some materials are contraindicated for certain circumstances, the best choice is not always clear. Table 2 lists the recommended indications for the mentioned dental cements, which may serve as a guide for the practitioner in the selection of contemporary dental cement. The recommendation is based on clinical observation, research, and the literature.

Table 3: Recommended types of dental cements for indirect restorations.

Restoration type	Indicated	Contraindicated
All-metal/PFM crowns	1,2,3	4,5
Short span fixed parital	1,2,3,4,5	-
Long span fixed parital	3,4,5	1,2
Traditional feldspathic or pressable all-ceramic restorations	4,5	1,2,3
Almuina/Zirconium- based all-ceramic restorations	1,2,3,4,5	-
Metal post and core	1,2,3	4,5
Fiber post	4,5	1,2,3
Maryland bridge	4,5	1,2,3
Composite/porcelain veneer	4,5	1,2,3

1. Zinc phosphate cement
2. Conventional glass-ionomer cement
3. Resin-modified glass-ionomer cement
4. Conventional resin cement
5. Self-adhesive resin cement

Chapter Three

Conclusions

Conclusions

The substrate must undergo an appropriate surface treatment method. The state of the periodontal tissues, the choice of prosthetic structure, and the manufacturing process all have an impact on the long-term results of prosthetic treatments. The selection of the luting agent should be based on the individual situations while choosing treatments. Chosen according to the material and nature of the repair. Moreover Key determinants of the bonding process encompass the composition of the material, the duration of the procedure, and the characteristics of the substrate. The durability of the repair cost in the long run depends on following the directions given by the manufacturer. I would like to question about the thickness of the cement layer. Presently, reduced Translucency and contrast ratio are characteristics displayed by all luting cements. To effectively choose the most appropriate solutions for each particular scenario, it is essential to distinguish between the general qualities and physical attributes of luting materials. Currently, glass-ionomer and resinous luting agents are the most frequently utilized cements. Before the process of cementing and restoring the surface. The restorative techniques improve the microtensile bond on the surface. The most efficient techniques for The technique of air abrasion, followed by the application of universal adhesive, is employed for glass ceramics. Initially, hydrofluoric acid (HF) is administered, followed by the application of silane. Sandblasting is a method that can be used to treat the surface of indirect composite restorations. Before applying metal primer to metallic surfaces, it is essential to perform sandblasting. Renovations Viable methods for surface treatment include tin plating, alumina blasting, or heat treatment. Used for the purpose of restoring gold.

References

1. Hill EE. Dental cements for definitive luting: a review and practical clinical considerations. *Dental Clinics of North America*. 2017; 51: 643-658.
2. Lott J , Hill EE,. A clinically focused discussion of luting materials. *Australian Dental Journal*. 2019; 56 (Suppl 1): 67-76.
3. Walton JN, Gardner FM, Agar JR. A survey of crown and fixed partial denture failures: length of service and reasons for replacement. *Journal of Prosthetic Dentistry*. 2015; 56: 416-421.
4. Simon JF, de Rijk WG. Dental cements. *Inside Dentistry*. 2016; 2: 42-47.
5. Attar N, Tam LE, McComb D. Mechanical and physical properties of contemporary dental luting agents. *Journal of Prosthetic Dentistry*. 2018; 89: 127-134.
6. de la Macorra JC, Pradies G. Conventional and adhesive luting cements. *Clinical Oral Investigations*. 2022; 6: 198-204.
7. Pegoraro TA, da Silva NR, Carvalho RM. Cements for use in esthetic dentistry. *Dental Clinics of North America*. 2017; 51: 453-471.
8. Ghodsi S., Arzani S., Shekarian M., Aghamohseni M. Cement selection criteria for full coverage restorations: A comprehensive review of literature. *J. Clin. Exp. Dent.* 2021;13:e1154–e1161.
9. Radovic I., Monticelli F., Goracci C., Vulicevic Z.R., Ferrari M. Self-adhesive resin cements: A literature review. *J. Adhes. Dent.* 2008;10:251–258. .
10. Ladha K., Verma M. Conventional and contemporary luting cements: An overview. *J. Indian Prosthodont. Soc.* 2010;10:79–88.
11. Oilo G. Luting cements: A review and comparison. *Int. Dent. J.* 2015;41:81– 88.
12. Hattar S., Hatamleh M.M., Sawair F., Al-Rabab'ah M. Bond strength of self-adhesive resin cements to tooth structure. *Saudi Dent. J.* 2015;27:70–74. doi: 10.1016/j.sdentj.2014.11.006.
13. Dos Santos V.H., Griza S., de Moraes R.R., Faria E.S.A.L. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments. *Restor. Dent. Endod.* 2014;39:12–16. doi: 10.5395/rde.2014.39.1.12.
14. Perdigão J., Araujo E., Ramos R.Q., Gomes G., Pizzolotto L. Adhesive dentistry: Current concepts and clinical considerations. *J. Esthet. Restor. Dent.* 2021;33:51–68. doi: 10.1111/jerd.12692.
15. Rosenstiel S.F., Land M.F., Crispin B.J. Dental luting agents: A review of the current literature. *J. Prosthet. Dent.* 2015,:280–301.
16. Zaniboni J.F., Silva A.M., Fernández E., de Melo Alencar C., Morais J.M.P., de Heboyan A.G. Marginal and internal fit of fixed prosthodontic constructions: A literature review. *Int. J. Dent. Res. Rev.* 2019;2:19.
17. Campos E.A., Kuga M.C. Temporary cement residues affect the bond strength and dentin penetration of self-adhesive resin cement in fiberglass post cementation. *Microsc. Res. Tech.* 2021;84:2351–2360.doi: 10.1002/jemt.23789.
18. Avetisyan A., Markaryan M., Rokaya D., Tovani-Palone M.R., Zafar M.S., Khurshid Z., Vardanyan A., Heboyan A. Characteristics of periodontal tissues in prosthetic treatment with fixed dental prostheses. *Molecules*. 2021;26:1331.
19. Sakaguchi R., Ferracane J., Powers J. *Restorative Dental Materials*. 14th ed. Mosby; St. Louis, MO, USA: 2019.

20. Leung G.K.-H., Wong A.W.-Y., Chu C.-H., Yu O.Y. Update on Dental Luting Materials. *Dent. J.* 2022;10:208. doi: 10.3390/dj10110208.
21. Fakiha Z., Al-Aujan A., Al-Shamrani S. Retention of cast posts cemented with zinc phosphate cement using different cementing techniques. *J. Prosthodont. Off. J. Am. Coll. Prosthodont.* 2015;10:37–41.
22. Shetty H., Shetty S., Kakade A., Shetty A., Karobari M.I., Pawar A.M., Marya A., Heboyan A., Venugopal A., Nguyen T.H., et al. Three-dimensional semi- automated volumetric assessment of the pulp space of teeth following regenerative dental procedures. *Sci. Rep.* 2021;11:21914. doi: 10.1038/s41598-021-01489-8.
23. Ali M.N., Edwards M., Nicholson J.W. Zinc polycarboxylate dental cement for the controlled release of an active organic substance: Proof of concept. *J. Mater.Sci. Mater. Med.* 2010;21:1249–1253.
24. Handa M., Marya P., Gupta V., Chopra S. Comparative evaluation of microleakage of metallic copings luted with three different commercially available luting cements: An in vitro study. *J. Indian Prosthodont Soc.* 2021;21:57–65.
25. Sathyanaarayanan S., Balavadivel T., Guru R.C., Sande A.R., Rajendran V., Sengottaiyan A.K. Retention of various luting agents used with implant- supported crowns. *J. Pharm. Bioallied Sci.* 2021;13:S1206–S1209.
26. Francisconi L.F., Scaffa P.M., de Barros V.R., Coutinho M., Francisconi P.A. Glass ionomer cements and their role in the restoration of non-carious cervical lesions. *J. Appl. Oral Sci.* 2009;17:364–369.
27. Krämer N., Schmidt M., Lücker S., Domann E., Frankenberger R. Glass ionomer cement inhibits secondary caries in an in vitro biofilm model. *Clin. Oral Investig.* 2018;22:1019–1031. doi: 10.1007/s00784-017-2184-1.
28. Abhay S.S., Ganapathy D., Veeraiyan D.N., Ariga P., Heboyan A., Amornvit P., Rokaya D., Srimaneepong V. Wear resistance, color stability and displacement resistance of milled peek crowns compared to zirconia crowns under stimulated chewing and high- performance aging. *Polymers.* 2021;13:3761.
29. Kakkad N., Yadav N.S., Hazari P., Narwani S., Somkuwar K., Basha S., Verma V., Arora S., Aldowah O., Heboyan A., et al. Comparative evaluation of tensile bond strength of poly ether ether ketone (peek) and zirconia copings using resin cement with or without adhesive: An in vitro study. *Materials.* 2022;15:4167. doi: 10.3390/ma15124167.
30. Perera D., Yu S.C.H., Zeng H., Meyers I.A., Walsh L.J. Acid resistance of glass ionomer cement restorative materials. *Bioengineering.* 2020;7:150.
31. Wan Jusoh W.N., Matori K.A., Mohd Zaid M.H., Zainuddin N., Ahmad Khiri M.Z., Abdul Rahman N.A., Abdul Jalil R., Kul E. Incorporation of hydroxyapatite into glass ionomer cement (gic) formulated based on alumino-silicate-fluoride glass ceramics from waste materials. *Materials.* 2021;14:954. doi: 10.3390/ma14040954.
32. Malhotra S., Bhullar K.K., Kaur S., Malhotra M., Kaur R., Handa A. Comparative evaluation of compressive strength and flexural strength of gc gold hybrid, gic conventional and resin-modified glass-ionomer cement. *J. Pharm. Bioallied. Sci.* 2022;14:S214–S216.
33. Yengopal V., Micknautsch S. Caries-preventive effect of resin-modified glass- ionomer cement (rm-gic) versus composite resin: A quantitative systematic review. *Eur. Arch Paediatr. Dent.* 2011;12:5–14.

34. Brenes-Alvarado A., Cury J.A. Fluoride release from glass ionomer cement and resin-modified glass ionomer cement materials under conditions mimicking the caries process. *Oper. Dent.* 2021;46:457–466. doi: 10.2341/19-296-L.

35. Heboyan A., Avetisyan A., Karobari M.I., Marya A., Khurshid Z., Rokaya D., Zafar M.S., Fernandes G.V.O. Tooth root resorption: A review. *Sci. Prog.* 2022;105:368504221109217.

36. Tanweer N., Qazi F.U., Das G., Bilgrami A., Basha S., Ahmed N., Bahammam H.A., Bahammam S.A., Basheer S.N., Assiry A.A., et al. Effect of erosive agents on surface characteristics of nano-fluorapatite ceramic: An in-vitro study. *Molecules.* 2022;27:4691.

37. Gürdal I., Atay A., Eichberger M., Cal E., Üsümez A., Stawarczyk B. Color change of cad-cam materials and composite resin cements after thermocycling. *J. Prosthet. Dent.* 2018;120:546–552. doi: 10.1016/j.jprosdent.2017.12.003.

38. Nakabayashi N., Takarada K. Effect of hema on bonding to dentin. *Dent. Mater.* 2011;8:125–130.

39. Heboyan A., Zafar M.S., Karobari M.I., Tribst J.P.M. Insights into polymeric materials for prosthodontics and dental implantology. *Materials.* 2022;15:5383.

40. Shinkai K., Taira Y., Suzuki S., Kawashima S., Suzuki M. Effect of filler size and filler loading on wear of experimental flowable resin composites. *J. Appl. Oral Sci.* 2018;26:e201060652.

41. Tam L.E., Chan G.P., Yim D. Invitro caries inhibition effects by conventional and resin-modified glass-ionomer restorations. *Oper. Dent.* 2014;22:4–14.

42. Silva D.C., Vaz L.G., Tavares W.L.F., Vieira L.Q., de Oliveira R.R., Sobrinho A.P.R. Cytotoxicity of two self-adhesive resin cements and their interference in the phagocytic activity of murine macrophages. *Restor. Dent. Endod.* 2022;47:e31.

43. Wiedenmann F., Becker F., Eichberger M., Stawarczyk B. Measuring the polymerization stress of self-adhesive resin composite cements by crack propagation. *Clin. Oral Investig.* 2021;25:1011–1018. doi: 10.1007/s00784-020-03391-5.

44. Eltoukhy R.I., Elkaffas A.A., Ali A.I., Mahmoud S.H. Indirect resin composite inlays cemented with a self-adhesive, self-etch or a conventional resin cement luting agent: A 5 years prospective clinical evaluation. *J. Dent.* 2021;112:103740.

45. Vasconcelos E.C.J., Polido M., Brito J., Gonçalves L.L. Dentin bonding and sem

46. analysis of a new experimental universal adhesive system containing a dendrimer. *Polymers.* 2020;12:461.

47. Aldhafyan M., Silikas N., Watts D.C. Influence of curing modes on thermal stability, hardness development and network integrity of dual-cure resin cements. *Dent. Mater.* 2021;37:1854–1864. doi: 10.1016/j.dental.2021.09.016.

48. Mazzitelli C., Maravic T., Mancuso E., Josic U., Generali L., Comba A., Mazzoni A., Breschi L. Influence of the activation mode on long-term bond strength and endogenous enzymatic activity of dual-cure resin cements. *Clin. Oral. Investig.* 2022;26:1683–1694. doi:10.1007/s00784-021-04141-x

49. Abad-Coronel C., Naranjo B., Valdiviezo P. Adhesive systems used in indirect restorations cementation: Review of the literature. *Dent. J.* 2019;7:71. . 88.

50. Heboyan A., Syed A.U.Y., Rokaya D., Cooper P.R., Manrikyan M., Markaryan M. Cytomorphometric analysis of inflammation dynamics in the periodontium following the use of fixed dental prostheses. *Molecules.* 2020;25:4650. doi: 10.3390/molecules25204650.

51. Heboyan A., Manrikyan M., Markaryan M., Vardanyan I. Changes in the parameters of gingival crevicular fluid in masticatory function restoration by various prosthodontic constructions. *Int. J. Pharm. Res.* 2020;12:2088– 2093.