2.1.2 Permutations and other counting:

Permutations are defined as the number of possible arrangements for k elements of event E taken from a population of size n, permutations are used in calculating the number of ways for a set of elements provided repetition is not allowed and the arrangement is taken into account. Permutations can be expressed mathematically according to the following law:

$$
P_{k}^{n}=\frac{n!}{(n-k)!}
$$

Ex20: If the arrangement is taken into account, what is the number of possible ways to choose three letters among the letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, provided that the same letter is not repeated in the same arrangement.
or
What is the number of possible arrangements to choose three letters from among the letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, provided that the same letter is not repeated in the same arrangement?

Sol:

$n(E)=P_{3}^{4}=\frac{4!}{(4-3)!}=4!=24$
$a b c, a c b, b a c, b c a, c a b, c b a$
$a b d, a d b, b a d, b d a, d a b, d b a$
$a c d, a d c, c a d, c d a, d a c, d c a$
$b c d, b d c, c b d, c d b, d b c, d c b$

Ex21: How many different three-letter words can be formed from the letters of the word Erbil?

Sol:

$n(E)=P_{3}^{5}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=60$
Ex22: In how many ways can five students sit in a row of eight chairs?

Sol:

$n(E)=P_{5}^{8}=\frac{8!}{(8-5)!}=\frac{8!}{3!}=6720$
Ex23: What is the number of possible arrangements to choose three letters from among the letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, note that repetition and arrangement are allowed?

Sol: $n(E)=n^{k}=4^{3}=64$
Ex24: How many different three-letter words can be formed from the letters of the word (Erbil) if repetition and arrangement are allowed?

Sol:

$n(E)=n^{k}=5^{3}=125$
Ex25: A box contains 12 red balls and 8 white balls, if 3 red balls and 2 black balls are drawn, in how many ways can those balls be drawn if repetition and arrangement are allowed?

Sol:

$n(E)=n^{r} m^{b}=12^{3} 8^{2}=101592$

Ex26: A box contains 12 red balls and 8 white balls, if 3 red balls and 2 black balls are drawn, in how many ways can those balls be drawn if repetition not allowed and arrangement is allowed?

Sol:

$n(E)=P_{r}^{n} P_{b}^{m}=P_{3}^{12} P_{2}^{8}=\frac{12!}{(12-3)!} \frac{8!}{(8-2)!}=73920$

Ex27: A box contains 12 red balls and 8 white balls, if 3 red balls and 2 black balls are drawn, in how many ways can those balls be drawn without repetition and arrangement?

Sol:

$n(E)=\binom{n}{r}\binom{m}{b}=\binom{12}{3}\binom{8}{2}=\frac{12!}{3!(12-3)!} \frac{8!}{2!(8-2)!}=6160$

Ex28: A box contains 6 red balls and 4 white balls, if 4 balls are drawn. Find the probability of getting 3 red balls and 1 black ball if repetition and arrangement are allowed

Sol:

$$
\begin{aligned}
& n(S)=n^{k}=10^{4}=10000 \\
& n(E)=n^{r} m^{b}=6^{3} 4^{1}=864 \\
& P(E)=\frac{n(E)}{n(S)}=\frac{846}{10000}=0.09
\end{aligned}
$$

Ex29: A box contains 6 red balls and 4 white balls, if 4 balls are drawn. Find the probability of getting 3 red balls and 1 black ball if repetition is not allowed and arrangement is allowed.

Sol:

$n(S)=P_{k}^{n}=P_{4}^{10}=\frac{10!}{(10-4)!}=5040$
$n(E)=P_{r}^{n} P_{b}^{m}=P_{3}^{6} P_{1}^{4}=\frac{6!}{(6-3)!} \frac{4!}{(4-2)!}=1440$
$P(E)=\frac{n(E)}{n(S)}=\frac{1440}{5040}=0.29$

Ex30: A box contains 6 red balls and 4 white balls, if 4 balls are drawn. Find the probability of getting 3 red balls and 1 black ball if repetition and arrangement are not allowed

Sol:

$$
\begin{aligned}
& n(S)=\binom{n}{k}=\binom{10}{4}=\frac{10!}{4!(10-4)!}=210 \\
& n(E)=\binom{n}{r}\binom{m}{b}=\binom{6}{3}\binom{4}{1}=\frac{6!}{3!(6-3)!} \frac{4!}{2!(4-2)!}=120 \\
& P(E)=\frac{n(E)}{n(S)}=\frac{120}{210}=0.57
\end{aligned}
$$

