Chapter Three

Conditional Probability and Bayes Rule

3.1 Conditional Probability:

If E and F are two events associated (joint) with the same sample space of a random experiment, then the conditional probability of the event E under the condition that the event F has occurred, written as $P(E \mid F)$, is given by:
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}, P(F) \neq 0$
It is important to note that conditional probability itself is a probability measure, so it satisfies probability axioms. In particular,
Axiom1: For any events E, F, then $P(E \mid F) \geq 0$
Axiom2: $P(E \cap F)=P(F) P(E \mid F), P(F) \neq 0$
Axiom3: Conditional probability of $P(E \mid E)=1$
Axiom4: $P\left(E^{C} \mid F\right)=1-P(E \mid F)$
Axiom5: $P(F \cap G \mid E)=P(F \mid E) P(G \mid E, F)$
or $P(G \mid E, F)=\frac{P(F \cap G \mid E)}{P(F \mid E)}$
Axiom6: $P(E \cap F \cap G)=P(E) P(F \mid E) P(G \mid E, F)$

$$
\text { or } P(G \mid E, F)=\frac{P(E \cap F \cap G)}{P(E) P(F \mid E)}
$$

Axiom7: $P(E \mid F) \neq P(F \mid E)$
Axiom8: if the events E and F are independents, then

$$
P(E \mid F)=\frac{P(E) P(F)}{P(F)}=P(E), P(F \mid E)=\frac{P(F) P(E)}{P(E)}=P(F)
$$

Axiom9: Let E be an event and let $F_{1}, F_{2}, \ldots, F_{n}$ be a disjoint collection of events for which $P\left(F_{1}\right)>0$ for all i and such that $E \subset \bigcup_{i=1}^{n} F_{i}$. Suppose $P\left(F_{i}\right)$ and $P\left(E \mid F_{i}\right)$ are known. Then $P(E)$ may be computed as:
$P(E)=\sum_{i=1}^{n}\left(E \mid F_{i}\right) P\left(F_{i}\right)=\left(E \mid F_{1}\right) P\left(F_{1}\right)+\cdots+\left(E \mid F_{n}\right) P\left(F_{n}\right)$

Ex31: Find the probability that a single toss of a die will result in a number less than 4 given an odd number.

Sol:

$S=\{1,2,3,4,5,6\}, \quad n(S)=6$
Let E be the event of getting a number less than 4, then:
$E=\{1,2,3\}, \quad n(E)=3$
$P(E)=\frac{n(E)}{n(S)}=\frac{3}{6}$
Let F be the event of getting an odd number, then:
$F=\{1,3,5\}, \quad n(F)=3$, thus:
$P(F)=\frac{n(F)}{n(S)}=\frac{3}{6}$
$(E \cap F)=\{1,3\} \Rightarrow P(E \cap F)=\frac{2}{6}$
$P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{2 / 6}{3 / 6}=\frac{2}{3}$

Ex32: Suppose you roll two dice, find that probability the sum is 6 given the first die shows a 3.

Sol:

The elements number of the sample space is $n(S)=36$
Let A is the event that the sum is 6 , then:
$A=\{(1,5),(2,4),(3,3),(5,1),(4,2)\} \Rightarrow P(A)=\frac{5}{36}$
Let B is the event that the first die shows a 3, then:
$B=\{(3,1),(3,2),(3,3),(3,4)(3,5),(3,6)\} \Rightarrow P(B)=\frac{6}{36}$
$(A \cap B)=\{3,3\} \Rightarrow P(A \cap B)=\frac{1}{36}$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 36}{6 / 36}=\frac{1}{6}$

Ex33: A family has 2 children. Given that one of the children is a boy, what is the probability that the other child is also a boy?

Sol: Let:

B be the event that one child is a boy
A the event that both children are boys

$$
\begin{aligned}
& S=\{b b, b g, g b, g g\}, \quad n(S)=4 \\
& A=\{b b\} \Rightarrow P(A)=\frac{n(A)}{n(S)}=\frac{1}{4} \\
& B=\{b b, b g, g b\} \Rightarrow P(B)=\frac{n(B)}{n(S)}=\frac{3}{4} \\
& (A \cap B)=\{b b\} \Rightarrow P(A \cap B)=\frac{1}{4}
\end{aligned}
$$

$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{3 / 4}=\frac{1}{3}$
Ex34: Suppose a box contain 3 red marbles and 2 black ones. We select 2 marbles. Find the probability that second marble is red given that the first one is red.

Sol: The sample space here represents selecting 2 marbles among 5 marbles, therefore:
$n(S)=\binom{5}{2}=\frac{5!}{2!3!}=10$
Let R_{1} be the event the second marble is red, and R_{2} the event that the first one is red therefore:
$P\left(R_{2}\right)=\frac{3}{5}$
while $P\left(R_{1} \mid R_{2}\right)$ is the probability both are red, or is the probability that we chose 2 red out of 3 and 0 black out of 2 , thus

$$
\begin{aligned}
& P\left(R_{1} \cap R_{2}\right)=\frac{\binom{3}{2}\binom{2}{0}}{\binom{5}{2}}=\frac{\frac{3!}{2!1!} \frac{2!}{0!2!}}{\frac{5!}{2!3!}}=\frac{3}{10} \\
& P\left(R_{1} \mid R_{2}\right)=\frac{P\left(R_{1} \cap R_{2}\right)}{P\left(R_{2}\right)}=\frac{3 / 10}{3 / 5}=\frac{1}{2}
\end{aligned}
$$

Ex35: The results of a survey of a group of 100 people who bought either a mobile phone or a tablet from any of the two brands Samsung and Nokia is shown in the table below

Brands	Phone	Tablet
Samsung	20	10
Nokia	30	40

If a person is selected at random from the group, what is the probability that

1. bought brand Nokia?
2. bought a mobile phone from brand Nokia?
3. bought a mobile phone given that bought brand Nokia?

Sol:

Let
event M: bought a mobile phone
event T: bought a tablet
event G: bought brand Samsung
event N : bought brand Nokia

1. A total of 70 people out of the total of 100 bought brand N, hence
$P(N)=\frac{n(N)}{n(S)}=\frac{70}{100}=0.7$
2. A total of 30 people out of 100 bought a mobile from brand N
$P(M$ and $N)=P(M \cap N)=\frac{n(M \cap N)}{n(S)}=\frac{30}{100}=0.3$
3. $P(M \mid N)=\frac{P(M \cap N)}{P(N)}=\frac{0.3}{0.7}=0.43$

Ex36: In a group of kids, if one is selected at random the probability that he/she likes oranges is 0.6 , the probability that he/she likes oranges AND apples is 0.3 . If a kid, who likes oranges, is selected at random, what is the probability that he/she also likes apples?

Sol: Let

O : kid likes oranges.
A : kid likes apples.
Given $P(O)=0.6, P(A$ and $O)=0.3$
the conditional probability $P(A \mid O)$ that the kid likes apples given that he likes oranges.

$$
P(A \mid O)=\frac{P(A \text { and } O)}{P(O)}=\frac{0.3}{0.6}=0.5
$$

Ex37: Suppose we draw a card from a pack of playing cards. Find the probability of drawing

1. A Queen, given that the card drawn is of Heart.
2. A Queen, given that the card drawn is a Face card.

Sol:

1. $P($ Queen \mid Heart $)=\frac{P(\text { Queen } \cap \text { Heart })}{P(\text { Heart })}$
$P($ Queen \cap Heart $)=\frac{\binom{1}{1}}{\binom{52}{1}}=\frac{1}{52}$
$P($ Heart $)=\frac{\binom{13}{1}}{\binom{52}{1}}=\frac{13}{52}$
$P($ Queen \mid Heart $)=\frac{1 / 52}{13 / 52}=\frac{1}{13}$
2. $P($ Queen \mid Face $)=\frac{P(\text { Queen } \cap F)}{P(F)}$
$P($ Queen \cap Face $)=\frac{\binom{4}{1}}{\binom{52}{1}}=\frac{4}{52}$
$P($ Face $)=\frac{\binom{12}{1}}{\binom{52}{1}}=\frac{12}{52}$
$P($ Queen \mid Face $)=\frac{4 / 52}{12 / 52}=\frac{1}{3}$

Ex38: If $P(A)=0.8, P(B)=0.5$ and $P(B \mid A)=0.4$.
Find $P(A \cap B), P(A \mid B), P(A \cup B)$

Sol:

Since $P(A \cap B)=P(B \cap A)$, then:
$P(B \mid A)=\frac{P(B \cap A)}{P(A)} \Rightarrow P(A \cap B)=P(B \mid A) P(A)=0.4 * 0.8=0.32$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0.32}{0.5}=0.64$
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \cap B)=P(A)+P(B)-P(A \cup B)=0.8+0.5-0.32=0.98$

Ex39: If $P(A)=6 / 11, P(B)=5 / 11$ and $P(A \cup B)=7 / 11$.
Find $P(A \cap B), P(A \mid B), P(B \mid A)$

Sol:

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(A \cap B)=P(A)+P(B)-P(A \cup B) \\
& P(A \cap B)=\frac{6}{11}+\frac{5}{11}-\frac{7}{11}=\frac{4}{11} \\
& P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{4 / 11}{5 / 11}=\frac{4}{5}
\end{aligned}
$$

Since $P(A \cap B)=P(B \cap A)$, then:
$P(B \mid A)=\frac{P(B \cap A)}{P(A)}=\frac{4 / 11}{6 / 11}=\frac{2}{3}$

Ex40: A coin tossed three times, suppose that:
a) E: head on third toss, F: head on first two tosses.
b) E: at least two heads, F: at most two heads.
c) E : at most two tails, F : at least one tail.

Find $P(E \mid F)$ and $P(F \mid E)$ in each case.
Sol:
The sample space S is given as:
$S=\{H H H, H H T, H T H, H T T, T H H, T H T, T T H, T T T\}, n(s)=8$
a) $E=\{H H H, H T H, T H H, T T H\}, n(E)=4$

$$
\begin{aligned}
& \quad F=\{H H H, H H T\}, n(F)=2 \\
& \quad E \cap F=\{H H H\}, n(E \cap F)=1 \\
& P(E)=\frac{n(E)}{n(S)}=\frac{4}{8}, P(F)=\frac{n(F)}{n(S)}=\frac{2}{8}, P(E \cap F)=\frac{n(E \cap F)}{n(S)}=\frac{1}{8} \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{1 / 8}{2 / 8}=\frac{1}{2} \\
& P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{1 / 8}{4 / 8}=\frac{1}{4} \\
& \text { b) } E=\{H H H, H H T, H T H, T H H\}, n(E)=4 \\
& F=\{H H T, H T H, T H H, H T T, T H T, T T H, T T T\}, n(F)=7 \\
& E \cap F=\{H H T, H T H, T H H\}, n(E \cap F)=3 \\
& P(E)=\frac{n(E)}{n(S)}=\frac{4}{8}, P(F)=\frac{n(F)}{n(S)}=\frac{7}{8}, P(E \cap F)=\frac{n(E \cap F)}{n(S)}=\frac{3}{8} \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{3 / 8}{7 / 8}=\frac{3}{7} \\
& P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{3 / 8}{4 / 8}=\frac{3}{4} \\
& \text { c) } E=\{H H H, H H T, H T H, T H H, H T T, T H T, T T H\}, n(E)=7 \\
& \text { } \begin{aligned}
F & =\{H H T, H T H, T H H, H T T, T H T, T T H,\}, n(F)=6
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& E \cap F=\{H H T, H T H, T H H, H T T, T H T, T T H\}, n(E \cap F)=6 \\
& P(E)=\frac{n(E)}{n(S)}=\frac{7}{8}, P(F)=\frac{n(F)}{n(S)}=\frac{6}{8}, P(E \cap F)=\frac{n(E \cap F)}{n(S)}=\frac{6}{8} \\
& P(E \mid F)=\frac{P(E \cap F)}{P(F)}=\frac{6 / 8}{7 / 8}=\frac{6}{7} \\
& P(F \mid E)=\frac{P(F \cap E)}{P(E)}=\frac{6 / 8}{6 / 8}=1
\end{aligned}
$$

