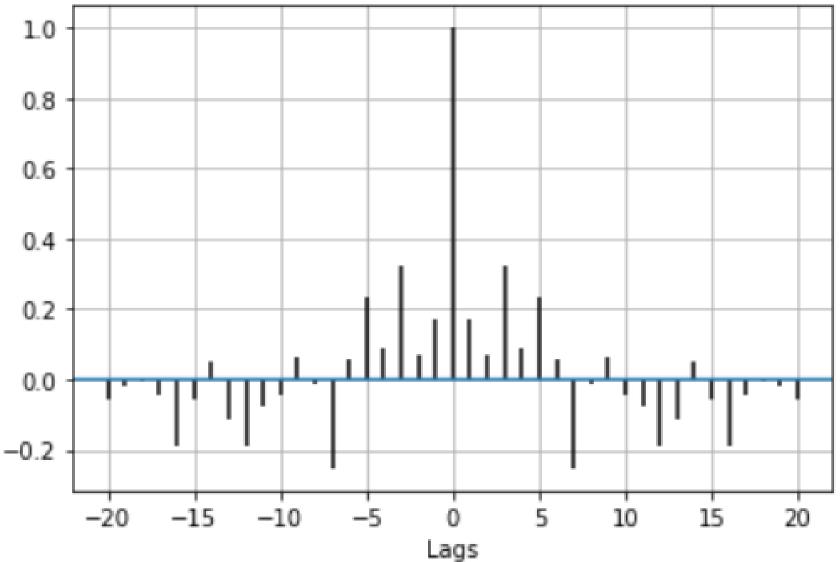
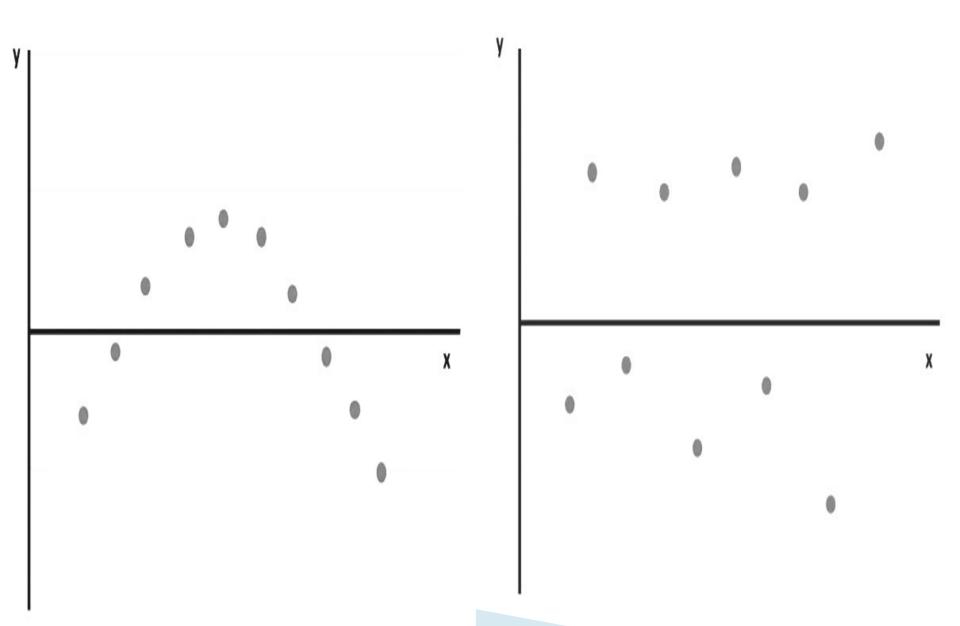

مشكلة الارتباط الذاتي Autocorrelation (Serial Correlation)

الاستاذ المساعد الدكتور احمد الحسيني


Reasons of the problem

The problem is caused by a violation of a random error limit, which said (There should be no correlation of any kind between random errors Sequential, that is, the covariance between Ui and Uj is equal to zero)


The Autocorreleation plot for the data is:

Autocorrelation Plot

Positive Autocorrelation

Negative Autocorrelation

Other reasons for the problem

- Characterization errors:
- Delete some illustrative variables from the model
- Mathematical characterization errors of the model
- Errors in characterizing the true error limit

The consequences of the problem

- Although estimates will remain unbiased, the existence of the problem will make the variation of parameters even greater.
- Predictions will be inefficient.
- F and t statistics will be very large in case of positive autocorrelation and vice versa in case of negative autocorrelation.
- The value of the determination coefficient (R²) will be biased upwards in the case of a positive autocorrelation and downward in the case of a negative autocorrelation.

Test of Autocorrelation

The most prominent test for detecting autocorrelation problem is the test (**Durbin-Watson**):

D.W.*=
$$\frac{\sum (et-et-1)^2}{\sum et^2}$$

we compare:

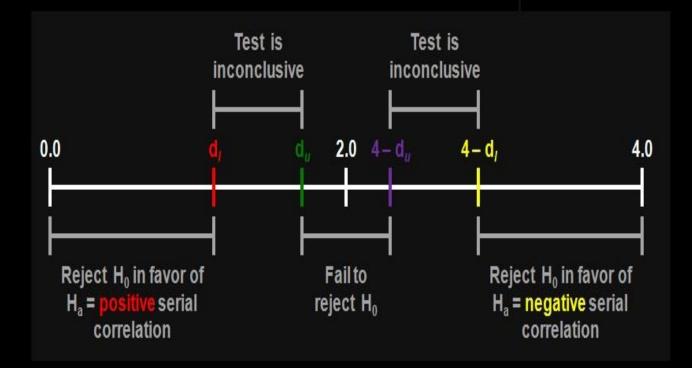
- If we accepted Null-Hypothesis
- H0:P=0
- The problem does not exist
- If we accepted Alternative-Hypothesis
- Hi:P≠0
- The problem exists and there is autocorrelation between random error limits

The value of D.W* falls between a minimum of zero and a maximum 4, So when (P) is equal to 0 the value of D.W. is equal to 2.

So the closer the value of D.W* to (2) the more this indicates that there is no problem that mean P equal 0

$$\mathsf{D}.\mathsf{W}^* = \frac{\sum_{t=2}^{n} (et - et - 1)^2}{\sum_{t=1}^{n} et^2}$$

$$= \frac{\sum_{t=2}^{n} (et^{2} + et^{2} - 1 - 2et.et - 1)}{\sum_{t=1}^{n} et^{2}}$$


$$= \frac{\sum_{t=2}^{n} et^{2} + \sum_{t=2}^{n} et^{2} - 1 - 2\sum_{t=2}^{n} et.et - 1}{\sum_{t=1}^{n} et^{2}}$$

In practical experience, it was observed that the values $\sum_{t=1}^{n} et^2$, $\sum_{t=2}^{n} et^2$, $\sum_{t=2}^{n} et^2 - 1$ They are almost equal to the increase in sample size, so these values can be replaced by each other as follows:

 $\mathsf{D}.\mathsf{W}^* \approx \frac{\sum et^2}{\sum et^2} - \frac{2\sum et.et-1}{\sum et^2-1}$ $\mathsf{D}.\mathsf{W}^* \approx 2(1 - \frac{\sum et.et-1}{\sum et^2-1})$ If you know : $\mathsf{P} = \frac{\sum et.et-1}{\sum et^2-1}$ $D.W^* \approx 2(1 - \hat{P})$

- When P is equal to 0, D.W* is equal to 2, and we accept the Null-Hypothesis (H0:P=0), So the problem doesn't exist.
- When P is equal to 1, D.W* equal to zero, that is mean, Autocorrelation is the maximum positive value and we accept the alternativehypothesis (Hi: $P \neq 1$), that is mean the problem exists.
- When P is equal to 1, D.W* equal to 4, that is mean, autocorrelation in its negative maximum value and the alternative hypothesis is also accepted, that is mean the problem exists.

Durbin-Watson Test

Note: P value can be calculated as follows :

$$\hat{\mathbf{P}} = \frac{\sum et.et-1}{\sqrt{\sum et^2} \sqrt{\sum et^2-1}}$$

Since in large samples n is equal to 30 or more value ($\sum et^2$) is an approach to value ($\sum et^2 - 1$), so the previous law can be reformulated as follows:

$$\widehat{P} = rac{\sum et.et-1}{\sum et^2-1}$$

Note : If one variable is slowing down, the h test is relied upon.

$$\widehat{h} = \widehat{P} \sqrt{\frac{n}{1 - n(VAR \propto)}}$$
If h*> h
We accepted Null-Hypothesis
H0:P=0
The problem does not exist

Home Work

The following table contains data on the number of theft incidents (Yt) and the number of anti-theft offices (Xt) in one State for the period 1990–1999, Using OLS method the following results were reached:

 $\widehat{Yt} = 1346.28 - 12.100 \text{ Xt}$ t*(α) = 5.31 t*(β) = 9.64 R² = 0.54 F* = 9.64

YEARS	Yt	Xt
1990	580	60
1991	890	59
1992	430	77
1993	690	52
1994	310	87
1995	750	50
1996	460	80
1997	630	52
1998	800	53
1999	215	67

Required: See if the previous relationship model has autocorrelation problem using D.W stats at 5% morale level if you knew that:

- dL = 1.08
- du = 1.36

D.W stat table

n\k	k 1		2	2		3		4		5		6		7		8		9		.0
6	0.390	1.142																		
7	0.435	1.036	0.294	1.676																
8	0.497	1.003	0.345	1.489	0.229	2.102														
9	0.554	0.998	0.408	1.389	0.279	1.875	0.183	2.433												
10	0.604	1.001	0.466	1.333	0.340	1.733	0.230	2.193	0.150	2.690										
11	0.653	1.010	0.519	1.297	0.396	1.640	0.286	2.030	0.193	2.453	0.124	2.892								
12	0.697	1.023	0.569	1.274	0.449	1.575	0.339	1.913	0.244	2.280	0.164	2.665	0.105	3.053						
13	0.738	1.038	0.616	1.261	0.499	1.526	0.391	1.826	0.294	2.150	0.211	2.490	0.140	2.838	0.090	3.182				
14	0.776	1.054	0.660	1.254	0.547	1.490	0.441	1.757	0.343	2.049	0.257	2.354	0.183	2.667	0.122	2.981	0.078	3.287		
15	0.811	1.070	0.700	1.252	0.591	1.465	0.487	1.705	0.390	1.967	0.303	2.244	0.226	2.530	0.161	2.817	0.107	3.101	0.068	3.374
16	0.844	1.086	0.738	1.253	0.633	1.447	0.532	1.664	0.437	1.901	0.349	2.153	0.269	2.416	0.200	2.681	0.142	2.944	0.094	3.201
17	0.873	1.102	0.773	1.255	0.672	1.432	0.574	1.631	0.481	1.847	0.393	2.078	0.313	2.319	0.241	2.566	0.179	2.811	0.127	3.053
18	0.902	1.118	0.805	1.259	0.708	1.422	0.614	1.604	0.522	1.803	0.435	2.015	0.355	2.238	0.282	2.467	0.216	2.697	0.160	2.925
19	0.928	1.133	0.835	1.264	0.742	1.416	0.650	1.583	0.561	1.767	0.476	1.963	0.396	2.169	0.322	2.381	0.255	2.597	0.196	2.813
20	0.952	1.147	0.862	1.270	0.774	1.410	0.684	1.567	0.598	1.736	0.515	1.918	0.436	2.110	0.362	2.308	0.294	2.510	0.232	2.174
21	0.975	1.161	0.889	1.276	0.803	1.408	0.718	1.554	0.634	1.712	0.552	1.881	0.474	2.059	0.400	2.244	0.331	2.434	0.268	2.625
22	0.997	1.174	0.915	1.284	0.832	1.407	0.748	1.543	0.666	1.691	0.587	1.849	0.510	2.015	0.437	2.188	0.368	2.367	0.304	2.548
23	1.017	1.186	0.938	1.290	0.858	1.407	0.777	1.535	0.699	1.674	0.620	1.821	0.545	1.977	0.473	2.140	0.404	2.308	0.340	2.479
24	1.037	1.199	0.959	1.298	0.881	1.407	0.805	1.527	0.728	1.659	0.652	1.797	0.578	1.944	0.507	2.097	0.439	2.255	0.375	2.417
25	1.055	1.210	0.981	1.305	0.906	1.408	0.832	1.521	0.756	1.645	0.682	1.776	0.610	1.915	0.540	2.059	0.473	2.209	0.409	2.362
26	1.072	1.222	1.000	1.311	0.928	1.410	0.855	1.517	0.782	1.635	0.711	1.759	0.640	1.889	0.572	2.026	0.505	2.168	0.441	2.313
27	1.088	1.232	1.019	1.318	0.948	1.413	0.878	1.514	0.808	1.625	0.738	1.743	0.669	1.867	0.602	1.997	0.536	2.131	0.473	2.269
28	1.104	1.244	1.036	1.325	0.969	1.414	0.901	1.512	0.832	1.618	0.764	1.729	0.696	1.847	0.630	1.970	0.566	2.098	0.504	2.229
29	1.119	1.254	1.053	1.332	0.988	1.418	0.921	1.511	0.855	1.611	0.788	1.718	0.723	1.830	0.658	1.947	0.595	2.068	0.533	2.193
30	1.134	1.264	1.070	1.339	1.006	1.421	0.941	1.510	0.877	1.606	0.812	1.707	0.748	1.814	0.684	1.925	0.622	2.041	0.562	2.160

t- table

t-test table

cum. prob	t.50	t.75	t.80	t.85	t.90	t.95	t .975	t .99	t.995	t.999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25 26	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485 2.479	2.787	3.450 3.435	3.725
20	0.000	0.684	0.855	1.058	1.314	1.703	2.056	2.479	2.779	3.435	3.690
27	0.000	0.683	0.855	1.057	1.314	1.703	2.052	2.473	2.763	3.408	3.690
20	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.043	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.042	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.043	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
~	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
F	0 76	50%	00%	1076		Jence Le		90 %	9970	39.0%	39.970
					Connic	Tence Le	1946				

F- table

_ _ _

	DF1	α = 0.05																	
DF2	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	Inf
1	161.45	199.5	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.1	251.14	252.2	253.25	254.31
2	18.513	19	19.164	19.247	19.296	19.33	19.353	19.371	19.385	19.396	19.413	19.429	19.446	19.454	19.462	19.471	19.479	19.487	19.496
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.572	8.5494	8.5264
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.041	5.9988	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.717	5.6877	5.6581	5.6281
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.365
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099	4.06	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.866	3.787	3.7257	3.6767	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3.2298
8	5.3177	4.459	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475	2.7067
10	4.9646	4.1028	3.7083	3.478	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.913	2.845	2.774	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.948	2.8962	2.8536	2.7876	2.7186	2.6464	2.609	2.5705	2.5309	2.4901	2.448	2.4045
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.341	2.2962
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.671	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.463	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	4.494	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	4.4513	3.5915	3.1968	2.9647	2.81	2.6987	2.6143	2.548	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.104	2.0584	2.0107	1.9604
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.308	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.878
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.599	2.514	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.366	2.321	2.2504	2.1757	2.096	2.054	2.0102	1.9645	1.9165	1.8657	1.8117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.938	1.8894	1.838	1.7831
23	4.2793	3.4221	3.028	2.7955	2.64	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.005	1.9605	1.9139	1.8648	1.8128	1.757
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.939	1.892	1.8424	1.7896	1.733
25	4.2417	3.3852	2.9912	2.7587	2.603	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.711
26	4.2252	3.369	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.901	1.8533	1.8027	1.7488	1.6906
27	4.21	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	4.196	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236	2.19	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	4.183	3.3277	2.934	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.7918	1.7396	1.6835	1.6223
40	4.0847	3.2317	2.8387	2.606	2.4495	2.3359	2.249	2.1802	2.124	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766	1.5089
60 120	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.097	2.0401	1.9926	1.9174	1.8364	1.748	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.175	2.0868	2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.429	1.3519	1.2539
Inf	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.394	1.318	1.2214	1