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the solution are as foliows:

S+x =2, given,
=5+ {5+ux)=-5+2, adding -5,
(~545)+x =-54+2, associative law,
O+x=-5+2, computing —5+3,
x =-=3+12, propertyof (0,
x=-3, computing — 5 + 2,

Strictly speaking, we have not shown here that —3 is asolution, but rather that it is the only
possibility for a solution. To show that —3 is a solution, one merely computes 5 + (—3).
A similar analysis could be made for the equation 2x = 3 in the ralional numbers with
the operation of muliplication:

2x = 3, given,
3(20) = 1(3), multiplying by 1, :
(3-20x =43, associative law,
1l x= %3. computing %2,
x =13, property of 1,
x = % computing 33.

We can now see what propertics a sct § and a binary operation * on § would have to
have to permit imitation of this procedure for an equation a = x = b fora, b € §. Basic
lo the procedure is the existence of an element e in § with the property that e « x = x
forall x € §. For our additive example, 0 played the role of ¢, and 1 played the role for
our multiplicative example. Then we need an element 4 in S that has the property that
a' *a = ¢. For our additive example with ¢ = 5, —5 played the role of ', and % played
the role for our multiplicative cxample with @ = 2. Finally we need the associative law.
The remainder is just computation, A similar analysis shows that in order to solve the
equation x # g = b (remember that a * x need not equal x * a), we would like to have an
element e in S such thatx % ¢ = x forallx € Sand ana’in S such thata * o’ = ¢. With
all of these properties of * on §, we could be sure of being able to solve linear cquations.
Thus we need an associative binary structure (S, %) with an tdentity element e such that
for each ¢ € §, there exists a’ € S such thal a % a’ = &’ + @ = . This is precisely the
notion of a group, which we now define.

Definition and Examples

Rather than describe a group using terms defined in Sections 2 and 3 as we did at the end
of the preceding paragraph, we give a self-contained definition. This enables a person
who picks up this text to discover what a group is without having to look up more terms.

A group (G, *) is a set G, closed under a binary operation #, such that the following
axioms are satisfied:
%:Foralla. b, c € G, we have

(@a#b)*¥c=a=*(bxc) associativity of %
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:%;: There is an element ¢ in G such that forall x € G,

exx =x*¢=2x. identity clement e for =

‘% Corresponding to each a € G, there is an element ¢’ in G such that

axa =a xa=-e inverses ofa [ ]

We easily see that {I/, -} and {l/,, -} are groups. Muitiplication of complex numbers is
associative and both U and U, contain 1, which is an identity for muliiplication. For
e'® € U, the computation

i . ei(Zr{--H) 2w =1

¢ =

shows that every element of {/ has an inverse. For z € U, the computation

n—1 — Zn =1

shows that every element of U, has an inverse. Thus (I/, ) and (U, -} are groups.
Because {R.. +.} is isomaorphic o {I/, -}, we see that (R, +.) isa group forall ¢ € R*.
Similarly, the fact that (Z,,, +,} is isomorphic to (I/,, -) shows that (Z,, +,) is a group
foraline Z*, A

We point out now that we will sometimes be sloppy in notation. Rather than use
the binary structure notation (G, #} constantly, we often refer to a group G, with the
understanding that there is of course a binary operation on the set G. In the event that
clarity demands that we specify an operation * on G, we use the phrase “the group G

# Hisroricar Nore

here are three historical rects of the develop-

ment of abstract group theory evident in the
mathematical literature of the nineteenth century:
the theory of algebraic eguations, number theory,
and geometry. All three of these arcas used group-
theorelic methods of reasoning, although the meth-
ods were considerably more explicitin the first area
than in the other two.

One of the central themes of geometry in the
ninefecnth century was the search for invariants
under various types of geometric transformations.
Gradually attention became focused on the trans-
formaticns themselves, which in many cases can be
thought of as elements of groups.

Innumber theory, already in the cightecnth cen-
tury Leenhard Euler had considered the remainders
on division of powers a” by a fixed prime p. These
remainders have “group” properties. Similarly,

Carl F. Gauss, in his Disquisitiones Arithmeri-
cae (1800), dealt extensively with quadratic forms
ax* + 2bxy + cy?, and in particular showed that
cquivalence classes of these forms under compo-
sition possessed what amounted to group proper-
ties.

Finally, the theory of algebraic equations pro-
vided the most explicit prefiguring of the group con-
cept. Joseph-Louis Lagrange (1736-1813) in fact
initiated the study of permutations of the roots of an
cquation as a tool for solving it. These permutations,
of course, were ultimately considered as elements
of a group.

It was Walter von Dyck (1856-{934) and
Heinrich Weber (1842-1913) who in 1882 were
able independently 1o combine the three historical
roots and give clear definitions of the notion of an
absiract group.




under =" For example, we may refer to the groups Z,Q, and R under addition rather
than write the more tedious (Z, +}, {Q, +-), and
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{R, +). However, we feel free to refer

to the group Zg without specifying the operation.

4.3 Definition

A group G is abelian if its binary operation is commutative,

# HistoricaL NOTE

Commutative groups are catled abelian in honor
of the Norwegian mathematician Nicls Henrik
Abel (1802-1829). Abel was interested in the ques-
tion of solvability of polynomial equations. In a pa-
per written in 1828, he proved that il all the roots
of such an equation can be cxpressed as rational
functions f, &,...,h of one of them, say x, and
if for any two of these routs, S(x) and g(x), the
relation f(g(x)) = g(f(x)) always holds, then the
equation is solvable by radicais. Abel showed that

each of these functions in fact permutes the roots of

the equation; hence, these functions are elements
of the group of permutations of the roots. It was
this property of commutativity in Lhese permuta-
tion groups associated with solvable equations that
led Camille Jordan in his 1870 treatise on alge-
bra to name such groups abefian; the name since

then has been applicd to commutative groups in
general,

Abel was attracted to mathematics as a teenager
and soon surpassed all hijs teachers in Norway. He
finally received a government travel grant to study
elsewhere in 1825 and proceeded to Berlin, where
he befriended August Crelle, the founder of the most
influential German mathematical journal. Abe] con-
tributed numerous papers to Crelle’s Journal during
the next several years, including many in the field
of elliptic functions, whose theory he created vir-
tually single-handedly. Abel returned 1o Norway in
1827 with no position and an abundance of debts.
He nevertheless continued to write brilliant papers,
but died of tuberculosis at the age of 26, two days
before Crelle succeeded in finding a university po-
sition for him in Berlin.

Let us give some examples of some sets with binary operations th

also of some that do not give groups.

4.4 Example

The set Z" under addition is nor a group. There is no identity element for + in Z*.

at give groups and

4.5 Example

4.6 Examplc

4.7 Example

4.8 Example

The set of all nonnegative integers (including 0) under addition is still not a group, There
is an identity clement 0, but no inverse for 2. A

The familiar additive properties of integers and of rational, real, and complex numbers
show that %, @, R, and C under addition are abelian groups. A

The set Z* under multiplication is nor a group, There is an identity 1, but no inverse
of 3. A

The familiar multiplicative properties of rational, real, and complex numbers show that
the sets O and B+ of positive numbers and the sets @*, B*, and C* of nonzero numbers
under multiplication are abelian groups, A
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4.9 Example

4.10 Example

4.11 Example

4.12 Example

4,13 Example

Soluiion

4.14 Example

Groups and Subgroups

The set of all real-valued functions with domain R under function addition is a group.
This group 1s abelian. A

(Lincar Algebra) Those who have studied vector spaces should note that the axioms
for a vector space V pertaining just to vector addition can be summarized by asserting
that V' under vector addition is an abelian group. A

The set M., (R) of all m x n matrices under matrix addition is a group. The m x n
matrix with all entries 0 is the identity matiix. This group is abelian. A

The set M,(R) of all # x n matrices under matrix multiplication is nor a group. The
n x n matrix with all entries 0 has no inverse. A

Show that the subset § of M, (R) consisting of all invertible n x n matrices under matrix
multiplication is a group.

We start by showing that § is closed under matrix multiplication, Let A and B be in §,
s0 that both A" and B~ existand AA™! = BB~ = [,. Then

(ABYB™'A™") = A(BB™HA™ = ALA " = I,

so that A B is invertible and consequently is also in S,

Since matrix multiplication is associative and I, acts as the identity element, and
since each element of § has an inversc by definition of S, we see that § is indecd a group.
This group is not commutative. It is our first example of a nonabelian group. A

The group of invertible n x n matrices described in the preceding example is of
fundamental jmportance in linear algebra. It is the general linear group of degree 7,
and is usually denoted by G L(n, R). Those of you who have studied linear algebra know
that a matrix A in GL(#, R) gives rise to an invertible linear transformation T ; B" —
R”, defined by 7'(x) = Ax, and that conversely, every invertible linear transformation
of R" into itsclf is defined in this fashion by some matrix in GL(n, R). Also, matrix
multiplication corresponds to composition of linear transformations. Thus all invertible
linear transformations of R” into itself form a group under function compesition; this
group is usually denoted by G L(R"). Of course, GL(n, R) == GL(RM.

Let # be defined on §F by @ * b = ab/2, Then

(@ +b) ab abc
Ak b)*Cc=— %= —,
2 4
and likewisc
b b
a*(b*c):a*—cza—(i.
2 4

Thus * is associative. Compuration shows that
2xa=ax2=ua

forall a € QF, so 2 is an identity element for #. Finally,

a% — =~ %g =2,
a a

$0 a’ = 4/a is an inverse for . Hence Q% with the operation s i§ a group. A
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4.15 Theorem

Proof

4.16 Theorem

Proof
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Elementary Properties of Groups -

As we proceed Lo praove our first thcorem about groups, we must vse Definition 4.1 , which
is the only thing we know about groups at the moment. The proof of a second theoremn
can employ both Definition 4.1 and the first theorem; the proof of a third theerem can
use the definition and the first two theorems, and so on.

Our first theorem will establish cancellation laws. In real arithmetic, we know that
2a = 2b implies that a = b. We need only divide both sides of the equation 2a = 2b
by 2, or equivalently, multiply both sides by % which is the multiplicative inverse of 2.
We parrot this proof to establish cancellaticn laws for any group. Note that we will also
use the associative law.

If G is a group with binary operation %, then the left and right cancellation laws
holdin G, thatis,axb =a #c implics b = ¢, and b s g = c % g implies b = ¢ for all
a, b, ce .

Suppose a % b = a * ¢. Then by %, there exists a’, and

a'#=(a*xb)=a *(axc).
By the associative law,

(@' xa)*xb=(a"*a)xc.
By the definition of &’ in %}, &' +a = ¢, 50

exb=cex%c.
By the definition of e in &,
b=c.

Similarly, from b x a = ¢ % a one can deduce that » = ¢ upon multiplication on the right
by @ and use of the axioms for a group. *

Our next prool can make use of Theorem 4.15. We show that a “linear equation” in
a group has a unigue solution. Recall that we chose our group properties to allow us to
find solutions of such equations.

If G is a group with binary operation #, and if a and b are any elements of G, then the
Hnear equations a * x = & and ¥ * a = b have unique solutions x and y in G.

First we show the existence of at least one solution by just computing that @’ * b is a
solution of ¢ » x = b, Note that

a* (@' «b)=(axa)xb, associative law,
=exh, definition of o',
= b, property of e.

Thus x = a’ % b is a solution of ¢ * x = b. In a similar fashion, y = b * a’ is a solution
of yxa = b
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4.17 Theorem

Proof

4.18 Corollary

Groups and Subgroups

To show uniqueness of y, we use the standard method of assuming that we have
two solutions, y; and y, so that y; * @ = b and y, * @ = b. Then Y1 #a =y +a,and
by Theorem 4.15, ¥; = y,. The uniqueness of x follows similarly, *

Of course, to prove the unigueness in the last theorem, we could have foliowed the
procedure we used in motivating the definition of a group, showing that if @ x x = b,
then x = a’ + b. However, we chose to illustrate the standard way to prove an object is
unique; namely, suppose you have two such objects, and then prove they must be the
same. Note that the solutions x = a’ * band y = b * @’ need not be the same unless * is
commutative,

Because a group is a speciai type of binary structure, we know from Theorem 3.13
that the identity ¢ in a group is unique, We state this again as part of the ncxt theorem
for easy reference.

In a group (7 with binary operation #, there is only one element e in G such that
EXX=X%k¢=x
forall x € G. Likewise for each a € G, there is only one element &’ in G such that
a'xa=agxa =e.
In summary, the identity element and inverse of each element arc unique in a group.

Theorem 3.13 shows that an identity element for any binary structure is unique. No use
of the group axioms was required to show this.

Turning to the unigueness of an inverse, suppose that @ € G has inverses o' and a”
sothata’«a =axa' =ecanda” *a = a+a" = e. Then

" ’
axa =4g*%a =e

and, by Theorem 4.15,
a’ =a',
so the inverse of & in a group is unique. +
Note that in a group G, we have

(axb)x (b *xay=axbxb)sxa =(axe)xad =axda = e,

‘This equation and Theorem 4.17 show that b x a’ is the unique inverse of a * b.
Thatis, (a * b)' = b’ + a'. We state this as a corollary.

Let G beagroup. Foralla, b € G, wehave (@ xh) = & % a'.

Foryour information, we remark that binary algebraic structures with weaker axioms
than those for a group have also been studied quite extensively. Of these weaker siructures,
the semigronp, a set with an associative binary operation, has perhaps had the most
attention. A monoid is a semigroup that has an identity element for the binary operation,
Note that every group is both a semigroup and a monoid.
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Finally, it is possiblc to give axioms for a group {G, *} that seem at first glance to
be weaker, namely:

1. The binary operalion # on G is associative.
2. There exists a left identity element ¢ in G such that e * x — x forall x € G.
3. Foreacha ¢ G, there exists a left inverse o’ in G such that ¢’ « a = ¢.

From this one-sided definition, one can prove that the left identity element is also 2 right
identity element, and a left inverse is also a right inverse for the same element. Thus
these axioms should not be called weaker, since they result in exactly the same structurcs
being called groups. It is conceivable that it might be easier in some cases to check these
left axioms than to check our two-sided axioms. Of course, by symumetry it is clear that
there are also right axioms for a group.

Finite Groups and Group Tables

All our examples after Example 4.2 have beer of infinite groups, (hal is, groups where
the set G has an infinite number of clements, We turn to finitc groups, starting with the
smallest fintte sets.

Since a group has to have at least one element, namely, the identity, a minimal set that
might give risc to a group is a onc-element set {e}. The only possible binary operation *
on {e} is defined by ¢ * ¢ = ¢. The three group axioms hold. The identity element is
always its own inverse in every group.

Letus try 1o put a group structure on a set of two elements. Since one of the clements
must play the role of identity element, we may as well let the set be {e, a}. Let us attempt
to find a table for a binary operation # on {e, a) that gives a group structure on {e, al.
When giving a table for a group operation, we shall always list the identity first, as in
the following tuble,

Since ¢ is (o be the identity, so
CEX =X %e =)

forall v € {e, a], we are forced to fill in the table as follows, if # is to give a group:

'\

# < 4]

& (4 a

a e
Also, « must have an inverse o' such that

a*a =a *a=e¢,
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In our case, @’ must be either e or a. Since a’ = ¢ obviously does not work, we must
have a’ = «, s0 we have to complete the table as follows:

* 4 a
e £ a
a €@ ¢

All the group axioms arc now satisfied, except possibly the associative property. Check-
ing associativity on a case-by-case basis from a table defining an operation can be a
very tedious process. However, we know that %, = {0, 1) under addition modulo 2 is
a group, and by our arguments, its table must be the one above with e replaced by 0
and @ by 1. Thus the associative property must be satisfied for our table containing e
and a.

With this example as background, we should be ablc to Hst some necessary conditions
that u table giving a binary operation on a finite set must satisfy for the operation to give
a group structure on the set. There must be ope element of the set, which we may as weli
denote by e, that acts as the identily clement. The condition e ¥ = & means that the row
of the tuble opposite e at the extreme left must contain exactly the elements appearing
across the very top of the table in the same order. Similarly, the condition x * e = x
means that the column of the table under ¢ at the very top must contain cxactly the
clements appearing at the extreme left in the same order. The fact that every element a
has a right and a left inverse means that in the row having a at the extreme left, the
element e must appear, and in the column under @ at the very top, the e must appear.
Thus e must appear in cach row and in each column. We can do even better than this,
however. By Theorem 4,16, not only the equations ¢ # x = e and y * @ = ¢ have unique
solutions, but also the equations a * x = b and y x @ = b. By a similar argument, this
means that each element b of the group must appear once and only once in each row and
each column of the table,

Supposc conversely that a table for a binary operation on a finite set is such that
there is an element acting as identity and that in cach row and each column, each element
of the set appeary exactly once. Then it can be seen that the structure is a group structure
if and only if the associative law holds. 1f a binary operation * is given by a table,
the associative law is usuaily messy (o check. If the operation * is defined by seme
characterizing property of @ x b, the associative law is often easy to check. Fortunggly,
this second case turns out to be the one usuafly encountered.

We saw that there was cssentially only one group of two clements in the sense that
if the elements are denoted by ¢ and a with the identity clement e appearing first, the
table must be shown in Table 4.19, Suppose that a set has three elements. As before, we
may as well lct the set be {e, a, b). For ¢ to be an identity element, a binary operation
= on this set has to have a table of the form shown in Table 4.20, This leaves four
ptaces to be filled in. You can guickly see that Table 4.20 must be completed as shown
in Table 4.21 il cach row and each column are to contain each element exactly once.
Becausc there was only one way to complete the table and Z; = {0, 1, 2} under addition
modulo 3 is 2 group, the associative property must hold for our table containing e, a,
and b.
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Now supposc that G is any other group of three elements and imagine a table for G/
with identity clement appearing first. Since our filling out of the table for G — {e.a, b)
could be done in only one way, we sce that if we take the table for G/ and rename the
identity e, the next element listed a, and the last element b, the resulting table for ¢
must be the same as the one we had for G. As explained in Section 3, this renaming
gives an isomorphism of the group G with the group G. Definition 3.7 defined the
notton of isomorphism and of isomorphic binary structures. Groups are just certain
types of binary structures, so the same defiition pertains to them. Thus our work above
can be summarized by saying that all groups with a single element are isomorphic, all
groups with just two clements are isomorphic, and all groups with just three elements are
isomorphic. We use the phrase up 1o isomorphism to express this identification using the
equivalence rclation ~. Thus we may say, “There is only one group of three elements,
up 1o isomorphisni.”

4.19 Table 4.20 Table 4.21 Table
* 1 e | a ® € 7 l b * € ! a ) b
¢ 4:_ ¢ e ’ a | b € € a | b
alale a a I a b | e
by b ] blblela

B EXERCISES 4

Computations
In Exercises 1 through 6, determine whether the binary operation x gives a group structure on the given set, If no
group results, give the first axiom in the order % %, % from Definition 4.1 that does not kold.
» Letx be defined on Z by lelting a = b = ab,
Let + be defined on 27 = {2nin € Z} by lelling g « b =0 + .
Let # be defined on R* by letiing « % b = ~/ap,
- Lel # be defined on Q@ by letting a * b = a4,

1
2.
3.
4
3. Let x be defined on the set B~ of nonzero real numbers by letting a b = a /b,
6. Let * be defined on by letling a % § = labl.

7. Give an example of an abelian group G where & has exactly 1000 elements,
8.

We can aiso consider muitiplication -, moduto n in Z,. For cxample, 5 3 6 = 2 in Z, because 5 . 6=30=
H7)+2. Theset {1, 3, 5, 7} with multiplicatior - modulo § is a group. Give the table for this group.

9. Show that the group (U, ) is not isomorphic to either (R, +)or {R*, 9. (Al] three groups have cardinality [I].)

16, Let n be a positive integer and let nZ = {mmlm e 2}

A Show thal {nZ, +) is a group,
b. Show that (»Z, +y = A{Z, +).
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: In Exercises 11 through 18, determine whether the given set of mabices under the specified operation, matrix

\ addition or multiplication, is a group. Recall that a diagonal matrix is a square matrix whose only nonzera entries
lie on the main diagonal, from the upper left to the Jower right corner. An upper-triangular matrix is a squarc
matrix with only zero eniries below the main diagonal. Associated with each 7 x n matrix A is a number called
the determinant of A, denoted by det{A). It A and B are both n x 1 matrices, then det{ A B) = det{A) det( B). Also,
del(f,) = 1 and A is inveriible if and only if det(A) £ 0.

11,
12
13.
14.
15.
16.
17,
18.
19.

20.

2L

All n x n diagonal malrices under matrix addition.

All n x nr diagonal matrices under matrix multiplication.

All r x n diagonal matrices with no zero diagenal entry under matrix multiplication.

All n x n diagenal matrices with all diagonal entries 1 or --1 under matrix multiplication,
All n % n upper-triangular matrices under matrix multiplication.

All n > n upper-triangnlar matrices under matrix addition.

Ail n > n upper-triangular matrices with determinant 1 under mauix multiplication.

All » > n matrices with determinant either 1 or —1 under matrix multiplication.

Let § be the sct of all real numbers except — 1. Define » on S by

axb=a-+b+ab,

a. Show that # gives a binary operation on §.
b. Show that (5. =) is a group.
c. Find the solution of the equation 2 x x ¥ 3 =7 in §,

This exercise shows thal there are two nonisomorphic group structures on a set of 4 elements.

Let the setbe {e. a, b, ¢}, with ¢ the identity element for the group operation. A group table would then have
to start in the manner shown in Table 4,22, The square indicated by the question mark cannot be filled in with
a. It must be filled in either with the idenlily element e or with an element different from both € and a. In this
lalter case, it is no loss of generality to assume that this elenient is b, If this square is filled in with e, the table
can then he completed in two ways to give a group. Find these two (ables. {You need not check the associative
law.) If this square is filled in with &, (hen the table can only be completed in one way to give a group. Find this
table. (Again, you need not check the associative law.) OFf the three tables you now have, two give isomorphic
groups. Determine which two tables these are, and give the one-to-one onto renaming function which is an
1somorphism,

a. Arc all groups of 4 clements commutative?

b. Which table gives a group isomorphic o the group Uy, so that we know the binary operation defined by the
table is associative?

¢. Show that the group given by one of the other tables is structurally the same as the group in Exercise 14 for
one particular value of n, so that we know that the operation defined by that table is associative also.

According to Excrcise 12 ol Section 2, there are 16 possible binary operations on a set of 2 elements. How
many of these give a structure of a group? How many of the 19,683 possible binary operations on a set of
3 elements give a group structure?

Concepts

22,

Consider our axioms &, %, and %, for a group. We gave them in the order %% %;. Conceivable other
orders to state the axioms are %) 9%, 55 %, G F (A9 %, and 56,4 Of these six possible
1273 [RST 3, I 3 P




Sectivn 4 Exercises 47

orders, exactly three are acceptable for 4 definition. Which orders are not acceptable, and why? (Remember
this. Most instructors ask the student to define a group on at least one test.)

4.22 Table

* e |al|b|c

e |lefalbic

alal?
b b
1

c ¢ [

23. The following “definitions” of a group are taken verbaltim, including spelling and punctuation, from papers of
students who wrole a bit lco quickly and carelessly. Criticize them.

a. A group G is a set of elements together with a binary operation * such that the following conditions are
satisficd
* 18 associative
There exists ¢ € (¢ such that
exx =x=xe=x = identily.
For every a € G there cxists an a” (inverse) such that
a-a =a - a=¢
b. A group is a set (7 such that
The operation on C is associative.
there is an identity element (¢) in .
forevery e € G, there is un o' (inverse for cach element)
A group is a sel with & binary operation such
the binary operation is defined

C

an inversc exists
an identity element cxists

2

A sel G is called a group over the binery operation # such that for all a, b € G
Binary operation = is associative under addition
there exist an element {e} such that
ake=c¢*xad=e
Fore every elemenl ar there exists an clement o such that
axa =a xa=c¢
24. Give a table for a binary operation on the set {e. a, b} of three clements satislying axioms &, and % fora
group but not axiom %,.
25, Mark each of the following true or false,

w—— @ A group may have more than one identity element.
b. Any two groups of three clements arc isomorphic.
¢. In a group, cach lincar equation has a solution.

e e i A S
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d. The proper attitude toward a definition js to memorize it so that you can reproduce it word for word
as in the text,

e. Any definition a persen gives for a group is correct provided that everything that is a group by that
person’s delinition is also a group by the definilion in the text.

f. Any definition a person gives for a group is correct provided he or she can show that everything
that satisfies the definition satislies the one in the text and conversely.

g. Every finilc group of at most three clements is abelian.

h. An equation of the form a % x % b = ¢ always has a unique solution in a group.

i. The empty sct car: be considered a group.

J- Every group is a binary algebraic structure.

Proof synopsis
We give an example of a proof synopsis. Here is a one-sentence synopsis of the proof that the inverse of an element
a inagroup ((7, *} 1s unique.

Assuiming that & « @’ = ¢ and @ * a” = e, apply the left cancellation Jaw to the equation a x ' = a * a”.

Note that we said “the jeft cancellation law"” and not “Theorem £.15. We always supposc thal our synopsis was
given as an explanation given during a conversation at lunch, with no reference to text numbering and as little

notation as is practical.

26. Give a one-sentence synopsis of the proof of the left cancellation law in Theorem 4.15.

27. Give at most a two-senlence synopsis ol the proof in Theorem 4.16 that an equation ¢x = b has a unique
solution in a group.

Theory
28. From our intuitive grasp of the notion of isomorphic groups, it should be clear that if ¢ : G — G isa group
isomorphism, then ¢(e} is the identily ¢’ of G'. Recall that Theorem 3.14 gave a proof of this for isomorphic
binary structures (S, *} and (S, ). Of course, this covers the case of groups.
It should also be intuitively clear that if @ and &' are inverse pairs in G, then ¢(a) and ¢(a’) are inverse pairs
in G/, that is, that ¢{aY = ¢(a’), Give a careful proof of this for a skeptic who can’t see the forest [or all the

trees.

29. Show thatif G is a finite group wilh identity ¢ and with an even number of elements, then there is @ # ¢ in G
suchthata xa = e.

30. Lel BR* be the set of all real numbers except 0. Deline * on R* by letting a + & = |a|b.
a. Show that = gives an associative binary operation on R*.
b. Show that there is a lelt identity for % und a right inverse for cach clement in R*.
¢. Is R* with this binary operation a group?
d, Explain the signiticance of this exercise.

31. If % is a binary opcration on a set $, an clement x of § is an idempotent for % if x + x = x. Prove that a group
has exactly one idempatent ¢lement. (You may use any theorems proved so far in the text.)

32. Show that every group G with idenlity e and such that x * x = e for all x € G is abelian. [Hin: Consider
{uxbyx(a=bh)]

:
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Let G be an abelian group and jet ¢ = cxcx .. ¢ for n factors ¢, where ¢ € G and 1 € ZF. Give a
mathematical induction proof that {a # 1Y = ("} * (b") for all a bed,

Let G be 4 group with a finite number of clements, Show that for any a € G, there exists an # ¢ Z* such that
a’ = e, Sce Exercise 33 for the meaning of a*. [Hint: Consider e, «, al a3, ... . a”, where m is the number
of clements in G, and use the cancellation laws.]

- Show that il (a # 5)* = a® x b* forc and b in a group G, then a + b = b % q. See Exercise 33 for the meaning

of a?.

Let Ghea group and let a, b € . Show that (axby =a xb ifandonlyifasb = b xa.

Let G be a group and suppose that a * b = ¢ = ¢ for a,b,c & G, Show that b * ¢ * ¢ = e also.

Prove that a sel G, logether with a binary operation + on G salisfying the lelt axioms 1, 2, and 3 given on
page 43, is a group.

Prove that a nonempty set G, together with an associative binary operation * on G such that
axx =hand y*+a = b have solutions in G for all a, bc,

ts a group. [Hint: Use Exercise 38]
Let (G, ) be a group. Consider the binary operation  on the set G defined by

axb="5b.q

fora, b € G. Show that {G, %) is a group and thal {G. *} is actually isomorphic to (G, -}, |/fint: Consider the
map ¢ with ¢la) = o' fora € G ]
Let G be a group and let g be one fixed element of G, Show that the map iy, such that {{x) = gxg’' forx € G,
is an tsomorphism of G with itseil.

SusGrours

Notation and Terminology

It is time to explain some conventional notation and terminology used in group theory.
Algebraists as a rule do not usc a speciat symbol * to denote a binary operation different
from the usual addition and multiptication. They stick with the conventional additive or
multiplicative notation and even call the operation addition or multiplication, depending
on the symbol used. The symbol for addition is, of course, +, and uswally multiplication
1s denoted by juxtaposition without a dot, if no confusion resalts. Thus in place of the
notation a * &, we shall be using either & + b to be read “the sum of ¢ and b or ab
to be read “the product of ¢ and b There is a sort of unwritten agreement that the
symbol + should be used only to designate conunutative operations. Algebraists feel
very uncomfortable when they sce a + b # b + a. For this reason, when developing our
theory in a general situation where the operation may or may not be commutative, we
shall always use multiplicative notation.

Algebraists frequently use the symbol 0 to denote an additive identity element and
the symbol 1 (o denote a multiplicative identity element, even though they may not be
actually denoting the integers O and 1. OFf course, if they are also talking about numbers
at she same time, so that confusion would result, symbols such as ¢ or u are used as
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identity clements. Thus a table for a group of three elements might be one like Tablc 5.1
or, since such a group is commutative, the table might look like Table 5.2, In general
situations we shall continue to use ¢ to denote the identity element of a group,

It is customary to denote the inverse of an element a in a group by a=% in multi-
plicative notation and by —a in additive notation. From now on, we shall be using these
notations in place of the symbol a’.

Let n be a positive integer. If a is an element of a group G, written multiplicatively,
we denolc the product aaa . . . a for n Factors a by a”. We fet a’ be the identity element
e, and denote the product e~ 'a~a=! .. a~! for n factors by a™". It is easy to see that
our usual law of exponents, a”a" = ™™ form, n € Z, holds. Form, n € Z%, it is clear.
We illustrate another type of casc by an example:

a”la =a'a”
1

"aaaaa = a M a " \duaaa = a eaaaa = aHea)aaa

acaa = (a"la)aaa = eaaa = (eq)aa = aaa = a’,

—=da
In additive notation, we denote @ +a +a + --- + a for n summands by nua, denote
(—a)+ (~a)+ (~a) + - -+ + (—a) for n summands by —na, and let Oa be the identity
element. Be careful: In the notation aa, the number # is in Z, not in G. One reason
we prefer to presenl group theory using multiplicative notation, even if G is abelian,
is the confusion caused by regarding n as being in G in this notation na. No one ever
misinterprets the # when it appears in an exponent.

Let us explain one more term thal is used so often il merits a special definition.

If G is a group, then the order {G] of G is the number of ¢lements in G. (Recall from
Section 0 that, for any set S. {81 1s the cardinalily of §.) |

Subsets and Subgroups

You may have noticed thal we sometimes have had groups contained within larger
groups. For example, the group Z under addition is contained within the group (¢ under
addition, which in turn is contained in the group R under addition. When we view the
group (£, +) as contained in the group (R, +}, it is very impaortant to notice that the
operatton + onintegers n and m as elements of (%, +) produces the same element n + m
as would result if you were o think of # and m as elements in {R, +). Thus we should
not regard the group {7, ) as contained in {R, -}, even though Q¥ is contained in R as
aset. [n this instance, 2- 3 = 6 in {(Q", ), while 2 + 3 = 5 in (R, +}. We are requiring
not only thal the set of one group be a subset of the set of the other, but also that the
group operation on the subset be the induced operation that assigns the same clement
to euch ordered pair from this subset as is assigned by the group operation on the whole
set.

If a subsct H ol a group G is closed under the binary operation of G and if H with the
induced operation from & is itself a group, then H is a subgroup of G. We shall let
H < Gor G > H denote that i is asubgroup of G, and H < G or G > H shall mean
H<GhuH#G. ]
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Thus {Z, +) < (R, +) but (Q*, .Y isnor a subgroup of {R, 4}, even though as sets,
Q™ < R.Every group G has as subgroups G itself and {e}, where ¢ is the identity element
of G.

IT'G is a group, then the subgroup consisting of G itself is the improper subgroup of G,
All other subgroups arc proper subgroups. The subgroup {e} is the trivial subgroup
of G. All other subgroups are nontrivial. ||

We turn to some illustrations.

Let R" be the additive group of all n-component row vectors with rcal number entrics.
The subset consisting of all of these vectors having O as entry in the first component is
a subgroup of R*. A

Q" under multiplication is a proper subgroup of R " under multiplication. A

The nth roots of unity in C form a subgroup U, of the group C* of nonzcero complex
numbers under multiplication. A

There are two diffcrent types of group structures of order 4 (see Exercisc 20 of Section 4).
We describe them by their group tables (Tables 5.10 and 5.11). The group V is the Klein
4-group, and the notation V comes from the German word Vier for four. The group
Z, 1s isomorphic to the group s = {1,1, —1, ~i} of fourth roots of unity under multi-
plication.

The only nontrivial proper subgroup of Z4 is {0, 2}. Note that {0, 3}isnotasubgroup
of Z4, since {0, 3} is nos closed under +. For example, 3+ 3 =2, and 2 ¢ {0, 3).
However, the group V has three nontrivial proper subgroups, {e, a}, {e, &), and {e, ¢}.
Here {e, a, &} is nor a subgroup, since {e, a, b) is not closed under the operation of V

because ab = ¢, and ¢ ¢ {e. a. b). A
5.10 Table 5.11 Table
24: + O I 2 e ‘ a b
grop1)2 ci{el|lalb
ST I

_717 J ! ‘j 3 2] a L4 f <
212310 btbhirc ‘ ¢

3|3 i 011 cle|b)a

[t is often useful to draw a subgroup diagram of the subgroups of a group. In such
a diagram, a line running downward from a group G to a group H means that H is a
subgroup of G. Thus the larger group is placed nearcr the top of the diagram. Figure 5,12
contains the subgroup diagrams for the groups Zy and V of Example 5.9.
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Note that if H < G and a € H, then by Theorem 4.16, the equation gx = a must
have a unique solution, namely the identity element of H. But this equation can also
be viewed as one in G, and we see that this unique solution must also be the identity
element e of G. A similar argument then applied to the cquation ax = e, viewed in both
H and G, shows that the inverse a~! of a in G is also the inverse of @ in the subgroup H.

{0, 23 {e, u]\{ﬁ, b} {e, ¢}
0 {e}
() (b)

5.12 Figure {a) Subgroup diagram for Z,. (b} Suhgroup diagram for V.

Let F be the group of all real-valued functions with domain R under addition. The
subset of F consisting of those Tunctions that are continuous is a subgroup of F, for
the sum of continuous functions is continueus, the function § where f(x) = 0 for all
X I8 continuous and is the additive identity element, and if f is continuous, then — f i3
continuous. A

It is convenient to have routine steps for determining whether a subset of a group G
is a subgroup of GG. Example 5.13 indicates such a routine, and in the next theorem, we
demonstrate carcfully its validity. While more compact criteria are available, involving
only one condition, we prefer this more transparent theorem for a first course.

A subset /1 of a group G is a subgroup of G if and only if

1. H is closed under the binary operation of G,
2. the identity element ¢ of G isin H,
3. foralia e Hitistruethate ! € K also.

The tuct that if # < G then Conditions 1, 2, and 3 must hold follows at once from the
definition of a subgroup and from the remarks preceding Example 5.13.

Conversely, suppose H is a subsct of a group G such that Conditions 1, 2, and 3 hold.
By 2 we have at once Lhat %] is satisfied. Also &3 is satisfied by 3. It remains to check
the associative axionm, &,. But surely for all @, b, ¢ € H it is true that (ab)c = a(bc) in
H, for we may actually view this as an equation in G, where the associative law holds,
Hence H < (7. *

Let F be as in Example 5.13. The subset of I consisting of those functions that are
differcntiable is a subgroup of F, for the sum of differentiable functions is differentiable,
the constant function 0 is differcntiable, and if [ is differentiable, then — f is dilferen-
tinble. A
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Recall from linear algebra that every square matrix A has associated with it a number
det(A}) catled its determinant, and that A is invertible if and only if det(A) £ 0.If A and B
arc square matrices of the same size, then it can be shown that det(A B) == det(A) - det(B).
Let & be the multiplicative group of all invertible n x # matrices with entries in C and
let 7 be the subset of G consisting of those matrices with determinant 1. The equation
det{AB) = det(A) - det(B) shows that T is closed under matrix multiplication. Recall
that the identity matrix 7, has determinant 1. From the equation det(A) - det(A™1) =
det{AA 1) = det(4,) = 1, we see that if det(A) = 1, then det(A~!}) = 1. Theorem 5.14
then shows that T s a subgroup of G, A

Cyclic Subgroups

Let us sce how large a subgroup H of 7> would have to be if it contains 3. It would have
to contain the identity element O and 3 4 3, which is 6. Then it has to contain 6 + 3,
which is 9. Note that the inverse of 3 is 9 and the inverse of 6 is 6. It is easily checked
that H = {0, 3, 6, 3} is a subgroup of Z,,, and it is the smallest subgroup containing 3.

Let us imitate this reasoning in a general situation. As we remarked before, for
a general argument we always usc multiplicative notation. Let G be a group and let
a € G. A subgroup of G containing @ must, by Theorem 5.14, contain ", the result
of computing products of ¢ and itself for  factors for every positive integer n. These
positive integral powers of @ do give a set closed under multiplication. It is possible,
nowever, that the inverse of ¢ Is not in this set. Of course, a subgroup containing a must
also contain ¢ !, and, in general, it must contain a™™ for all m € Z*. [t must contain the
identity clement e = a". Summarizing, a subgroup of G containing the element a must
contain all elements a” (or na for additive groups) for all n € 7. That is, a subgroup
containing a must contain {a”|n € Z}. Observe that these powers a” of a need not be

distinct. For example, in the group V of Example 5.9,
3 ! —
at=e¢. a*=a, a'=e a'=a, and so on.

We have almast proved the next theorem.

Let G be a group and leta ¢ G. Then
H=A{a"|nec %)

is a subgroup of G and is the smallest’ subgroup of G that contains a, that is, gvery
subgroup containing a conlains H.

" We may find oceasion to dislinguish between the terms minimal and smallest as applied o subsets ol a sel §
that have some properly. A subset /7 of S is minimal with respect 1o the property if I has the property, and
no subset K C H, K # H., has the property, If H has the property and H# < X for every subset X with the
property, then H is the smallest subset with the praperty. There may be many minimal subsets, but there can
be only onc smallest subset. To illusirate, fe, a}, {e, b}, and {e. ¢} are all minimal nontrivial subgroups of the
group V. (See Fig. 5.12.) However, ¥ contains no smallest nontrivial subgroup,
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We check the three conditions given in Theorem 5.14 for a subset of a group to give a
subgroup. Since ¢"a’ = o+ forr, 5 € Z, we see that the product in G of two cleiments
of 1 is againin H. Thus H is closed under the group operation of G. Also a® = e, so
ee H andfoera" € H a™ ¢ Handa 'a' = e. Hence all the conditions are satisfied,
and H < G,

Our arguments prior to the statement of the theorem showed that any subgroup of
& containing a must contain 4, so H is the smaliest subgroup of G containinga.  #

Let G be a group und let @ € G. Then the subgroup {a" | n € Z} of G, characterized
in Theorem 5.17, is called the cyclic subgroup of G generated by a, and denoted
by {a}. |

Anelement ¢ of a group G generates G and is a generator for 7 if (@) = G. A group
G is eyelic if there is some element g in G that generates G. =

Let Zy and W be the groups of Example 5.9. Then Zs is cyclic and both 1 and 3 are
generators, that is,

{1} ={3) =Z4.

However, V is nor cyclic, for {a), (b), and (¢} are proper subgroups of two clements. Of
course, (e} is the trivial subgroup of one element. A

The group Z under addition is a cyelic group. Both 1 and -1 are generators for this
group, and they are the only generators. Also, for n € Z?*, the group Z, under addition
modulo # is cyclic. If # > t, then both 1 and i — | are generators, but there may be
others. A

Consider the group Z under addition. Let us find {3). Here the notation is additive, and
{3) must contain

3, 3+3=0¢, 343+3=09, and so on,
0. =3 34 -3=_¢, =34 -3+ -3=-9  andsoon.

In other words, the cyclic subgroup generated by 3 consists of ail multiples of 3, positive,
negative, and zero. We denote this subgroup by 3Z as well as (3). In a similar way, we
shall let nZ he the cyclic subgroup (n} of Z. Note that 67 < 37. A

For cach positive integer n, let U, be the multiplicative group of the nth roots of unity
in C. These elements of ¢/, can be represenied geometrically by equally spaced points
on a circle about the origin, us illustrated in Fig. 5.24. The heavy point represents the
number

2 2m
{ =008 — + Jsin —,
n I
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The geometric interpretation of muitiplication of complex numbers, expiained in Sec-
tion 1, shows at once that as ¢ is raised to powers, it works its way counterclockwise
around the circle, landing on cach of the clements of U, in tarn. Thus ¥/, under multi-
plication is a cyclic group, and ¢ is a generator. The group U, is the cyclic subgroup (¢)
of the group If of all complex numbers z, where z| = 1, under multiplication. A

vi

. 2
!
f :
ele. &

5.24 Figure

B EXERCISES 5

Computations

In Exercises 1 through 6, determine whether the given subset of the complex numbers is a subgroup of the group
€ of complex numbers under addition,

. R 2.t 3. 7Z
4. The set iR of pure imaginary numbers including ¢
5. The set 7@ of rationai multiples of 7 6. Theset (" [n € Z)

7. Which of the sets in Exercises 1 through 6 are subgroups of the group €* of nenzero complex numbers under
multiplication?

In Exercises 8§ through 13, determine whether the given set of invertible n x 7 matrices with real number entries is
i subgroup of GL(n, R).

8. The n % 1 matrices with determinant 2
9

The diagonal # x n matrices with no zeros on the diagonal

10. The upper-tangular # x » matrices with no zeros on the diagonal
I1. The n % n matrices with determinant — 1

12. The n x n matrices with determinant —1 or |

13. The set of all n x n matrices A such thal (AT)A = I,. [These matrices are called orthogonal. Recall thar A7,
the rranspose of A, is the matrix whose Jth column is the jth row of A for | < J = n, and that the iranspose
operation has the property (A8)7 = (BT)(AT).]
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For sets H and K, we delinc the intersection H N K by

HNK ={x]xe Handx € K}.

Show thatif # < Gand K < G, then H N K < G.{Remember: < denotes “is a subgroup of," not “is a subset

of ™)

Prove that cvery cyclic group is abelian.

Let Gheagroupandlet G, = {g” | ¢ € G}. Under what hypothesis about (G can we show that G, is a subgroup

of G?

Show that a group with no proper nontrivial subgroups is cyclic.

6.1 Theorem
Proof

Cycric Grours
Recall the following facts and notations from Section 5. If G is a group and a € G, then
H=1{u"|ned}

is a subgroup of G (Theorem 5.17). This group is the cyclic subgroup (a} of G generated
by a. Also, given a group G and an element a in G, if

G={a"|nei}

then a is a generator of G and the group G = (a} is eyclic. We introduce one new bit of
terminology. Let @ be an element of a group G. If the cyclic subgroup {(a} of G is finite,
then the order of a is the order |{a}| of this cyclic subgroup. Otherwise, we say that a
is of infinite order. We will see in this section that if @ € €7 is of finite order m, then m
is the smallest positive integer such that o™ = e.

The first goal of this scction is to describe all cyclic groups and all subgroups of
cyclic groups. This is not an idle exercise. We will see later that cyclic groups serve
as building blocks for all sufficiently small abelian groups, in particular, for all finite
abelian groups. Cyclic groups are fundamental to the understanding of groups.

Elementary Properties of Cyclic Groups

We start with a demonstration that cyclic groups are abelian.

Every cyclic group Is abelian.
Let G be a cyclic group and let a be a generator of G sa that
G={a)=[d"|n e Z}.

If ¢, and g, arc any two elements of G, there exist integers r and s such that g, = a’
and g» = . Then

g =aa’ =a T =a"" =a'a" = gag,
s0 (5 is abelian. *

We shall continue to use multiplicative notation for our general work on cyclic
groups, even though they are abelian.
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3.1 Table 3.2 Table 3.3 Table

s |lal|lb|e # [ #|%1 & : ¥ x|yl z

aleclai b # | &1 # |3 x | x|ylz

blalb|c P #3% | & y [ ylzlax

c|lblc|a &% | & # z|x |y
3.4 Table 3.5 Table 3.6 Table

* Ly x|z *lalb|le *lalble

¥ 2y | x al|lb|blb alclalb

Ly lxlz bbbl b blb|cla

z xlzly clbib|b clal|blc

names (un, deux, trois, - - - versus ein, zwei, drej - - ) for the numbers, but they are learning
the same binary steucture. (In this case, they are also using the same symbols for the
numbers, so their addition tables would appear the same if they list the numbers in the
same order.)

We are interested in studying the different types of structures that binary operations
can provide on sets having the same number of elements, as typificd by Tables 3.4, 3.5,
and 3.6. Let us consider a binary algebraic structure! (8, %} to be a set S together with
a binary operation * on $. In order for two such binary structures {5, *) and (§', '} to
be structurally alike in the sense we have described, we would have to have a one-to-one
correspondence between the elements x of § and the elements x’ of § such that

if xeux and yoy, then xxy o x4y, (1)
A one-1o-one correspondence exists if the sets § and 5 have the same number of
elements. It is customary (o deseribe a one-to-one correspondence by giving a one-
{o-one function ¢ mapping S onto S’ (sec Definition (.12). For such a function ¢, we
regard the cquation ¢(x) = x” as reading the one-to-one pairing x <> x in left-to-right
order. In terms of ¢, the final « correspondence in (1), which asserts the algebraic
structure in §” is the same as in S, can be expressed as

Plx x y) = ¢(x) * p(y).

Such, a function showing that two al gebraic systems are structurally alike is known as
an isomorphism, We give a formal definition.

Let (S, %) and {5, ) be binary algebraic structures. An isomorphism of § with §' is a
one-to-cne function ¢ mapping § onto §' such that
P(x * ¥} = @(yy+ ¢(y) forallx, y € §.
homomorphism property

@

T Remember that boldface type indicates that & term is being defined,
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The division algorithm that follows is a seemingly trivial, but very I undamental teol
for the study of cyclic groups.

I n
rizﬂ.q20-+——4—-—|'——f_
—nt 0 ni Un g (g4 Dm
’ n
n<ly<0 —-I—*oé——’ e e———f
gm (g4 him —m 0 m 2m

6.2 Figure

6.3 Division Algorithm for Z Ifmisa positive integer and it is any integer, then there exist unique integers ¢

and r such that
n=umg+r and 0<r <m

Proaf We give an intuitive diagrammatic explanation, using Fig. 6.2. On the real x-axis of
analytic geometry, mark off the multiples of m and the position of n. Now n falls either
on a multiple gm of m and r can be taken as 0, or 1 falls between two multiples of m.
If the latter is the case, let gm be the first multiple of m to the left of n. Then r is a8
shown in Fig. 6.2. Note that 0 < r < m. Uniqueness of g and r follows since if n is not
a multiple of m so thal we can take r = 0, then there is a unique multiple gm of m to the
lefi of n and at distance less than m {rom n, as illustrated in Fig. 6.2. +

In the potation of the division algorithm, we regard ¢ as the quotient and r as the
nonnegalive remainder when n is divided by m.

6.4 Example Find the quotient g and remainder » when 38 is divided by 7 according to the division

algorithm.

Solution The positive multiples of 7 are 7, 14,21, 28,33,42,---. Choosing the multiple to lcave

a nonnegative remainder less than 7, we writc
38=354+3=7(5)+3

so the quotient is ¢ = 5 and the remainder is ¥ = 3. A

6.5 Example Find the quotient ¢ and remainder » when —38 is divided by 7 according to the division

algonthn.

Solution  The negative multiples of 7 are —7, 14, -21, 28, =35, —42,- . Choosing the mul-

tiple to Jeave a nonnegative remainder less than 7, we write
38 = —42+4 =T(-0)+4
so the quotient is ¢ = —6 and the remainder is r = 4. A

We will use the division algorithm to show that a subgroup H of a cyclic group G
is also cyelic. Think for a moment what we will have to do to prove this. We will have to
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31. Function subtraction — on F is associative.
32, Function multipiication - on £ is commutative.
33, Function multiplicasion - on ¥ is associative,
34, Function composition o on F is commutative.

35, If % and +’ arc any two binary operations on a set S, then
ax{bx' ¢y = (axby* (a*c) forall a,b,ceS.

36. Suppose that % is an associative binary operation on a set §. let H=laeSlaxx=xx*aforall x ¢ S}
Show that H is closed under =. (We think of H as consisting of all elements of S that commute with every
element in S.)

37. Supposc that + is an associative and comimutative binary operationonaset S, Showthat H = {a € Sla*xa = al
is closed under *. (The elements of H are idempotents of the binary operation *.}

IsoMORPHIC BINARY STRUCTURES

Compare Table 3.1 for the binary operation * on the set § = {a, b, ¢} with Table 3.2 for
the binary operation *' on the set 7' = {#, 3, &}.

Notice that if, in Table 3.1, we replace all occurrences of a by #, every bby §, and
every ¢ by & using the one-to-one correspondence

a < i bo$ e &

we obiain precisely Table 3.2. The two tables differ only in the symbols (or names)
denoting the elements and the symbols * and +' for the operations. If we rewrite Table 3.3
with elements in the order y, x, z, we obtain Table 3.4. (Here we did not set up any cne-
one-correpondence; we just listed the same elements in different order outside the heavy
bars of the table.) Replacing, in Table 3.1, all occurrences of a by y, every b by x, and
every ¢ by z using the one-to-one correspondence

a<y bex c4rz

we obtain Table 3.4. We think of Tables 3.1,3.2,3.3,and 3.4 as being structurally alike.
These four tables differ only in the names (or symbols) for their elements and in the
arder that those clemends are listed as heads in the tables. However, Table 3.5 for binary
operation % and Table 3.6 for binary operation % on the sct S = {a, b, ) are structuratly
different from each other and from Table 3.1. In Table 3.1, each element appears three
times in the body of the table, while the body of Table 3.5 contains the single element b.
Tn Table 3.6, for all s € S we get the same valuc ¢ for s % s along the upper-left to lower-
right diagonal, while we get three different values in Table 3.1. Thus Tables 3.1 through
3.6 give just three structurally different binary operations on a set of three elements,
provided we disregard the names of the clements and the order in which they appear as
heads in the tabics.

The situation we have just discussed is somewhat akin to children in France and in
Germany learning the operation of addition on the set Z*. The children have different
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use the definition of a cyclic group since we have proved little about cyclic groups yet.
That is, we will have to use the [act that (G has a generating element . We must then
exhibit, in terms of this generator a, some generator ¢ = a”™ for H in order to show that
H is cyclic. There is really only one natural choeice for the power m of a to try. Can you
guess what it is before you read the proof of the theorem?

A subgroup of a cyclic group is cyclic.

Let G be a cyclic group generated by a and let A be a subgroup of G. If i = {e], then
H = (e} is cyclic. If H # (e}, then a" € H for some n € Z*. Let m be the smallest
integer in Z% such thata™ € 11,

We claim that ¢ = a™ gencrates H; that is,

H = {a™) = (c).

We must show that every b € H is a power of ¢. Since b € H und H < G, we have
b = a" for some n. Find g and r such that

n=mg+r for 0<r<m
in accord with the division algorithm. Then
a® = g™t = (a")d",
SO
a” = (") a".
Now since ¢” € H, ™ € H, and H is a group, both («™)™7 and a” are in H. Thus
(@™ a" e H, that is, a € H.

Since m was the smallest posilive integer such that o™ € H and 0 < r < m, we must
have r = 0. Thus # = ¢m and

b=a" = (@) =7,
so b is a power of ¢, A4

As noted in Examples 5.21 and 5,22, Z under addition is cyclic and for a positive
integer n, the set #Z of all multiples of # is a subgroup of Z under addition, the cyclic
subgroup generated by n. Theorem 6.6 shows that these cyclic subgroups are the only
subgroups of Z vnder addition. We state this as a corollary.

"The subgroups of Z under addition are precisely the groups nZ under addition orn € Z.

This corollary gives us an elegant way to definc the greatest common divisor of
(wo positive integers » and s. Excreise 45 shows that H = {nr +ms|n,m € Z} is a
subgroup of the group Z vnder addition. Thus H must be cyclic and have a gencrator d,
which we may choose to be posilive.
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On Z*, define * by lelting a % b = ¢, where ¢ is at least 5 more than a + b.

On Z*, define * by letting @ = b = ¢, where ¢ is the largest integer less than the product of @ and &.

Let H be the subset of M,(R) consisting of all matrices of the form [g _s] fora, b € R. Is H closed under
a matrix addition? b matrix multiplication?

Mark cach of the following true or fxlsc.

a, I'* is any binary operation on any set §, thena x g = a foralle € S,

b. If * is any commutative binary operation on any set §, then a = (b * ¢} = (b*c)=*aforall a,b,
¢ eSS,

¢. If1s any associative binary operation on any set S, thena * (b * ¢) = (b % ¢) # a for alla, b,c e S.

d. The only binary operations of any importance are those defined on sets of numbers.

e. A binary operation = on a sct § is commulative if there exist @, b € S such thata b = b * a.

- I. Every binaty operation defined on a set having cxactly one element is hoth commutative and
associative.

2. A binary operation on a set .S assigns at least one clement of § to each ordered pair of elements
of S.

h. A binary operation on a set § assigns at most one element of S to cach ordered pair of elements of
S.

——— 1. A binary operation on a set § assigns exactly one element of S to each ordered pair of clements
of §.

J. A binary operation on a sct § may assign more than one element of S to some ordered pair of
elements of §.

Give a set different from any of those deseribed in the examples of the text and not a set of numbers. Define
two different binary operations * and %" on this set. Be sure that your set is well defined.

Theory

26. Prove that if  is an associative and commutative binary operation on a set S, then

(axb)yx(cxd)=[(dxc)xal*h
foralla, b, ¢, d € §. Assume the associative law only for tripics as in the definition, that is, assume only
(x*x3y)xz2=2x%(yx*z)

forallx, v,z € 8.

In Exercises 27 and 28, either prove the statement or give a countercxample,

27. Every binary operation on a sct consisting of a single element in both commutative and associative.

28, Every commutative binary operation on a set having Jjust Lwo elements is associative.

Let F be the set of all real-valued functions having as domain the set R of all real numbers. Example 2.7 defined
the binary operations 4, —, -, and o on F. In Exercises 29 through 35, either prove the given statement or give a
counterexample.

29. Function addition 4+ on F is ussociative,

30. Function subtraction — on F is commutative
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Let r and s be two positive integers. The positive generator d of the cyclic group
H={nr+ms|n melZ}

under addition is the greatest common divisor {abbreviated ged) of r and 5. We write
d = ged(r, 5). |

Note from the definition that d is a divisor of both r and s since both ¥ = 1r + Os
and s = 0r 4+ lsare in H. Since d € H, we can write

d =nr +ms

for some integers = and m. We sec that every integer dividing both r and 5 divides the
right-hand side of the equation, and hence must be a divisor of ¢ also. Thus d must
be the largest number dividing both r and s; this accounts for the name given to d in
Deiinition 6,8,

Find the ged of 42 and 72.

The positive divisors of 42 are 1, 2, 3, 6, 7, 14, 21, and 42. The positive divisors of 72
are 1,2,3,4.6,8,9, 12, 18, 24, 36, and 72. The greatest commoen divisor is 6. Note
that 6 = (3)(72) + (—5)(42). There is an algorithm for expressing the greatest common
divisor d of r and s in the form d = nr + ms, but we will not need to make use of it
here. A

Two positive integers are relatively prime if their ged is 1. For example, 12 and 25
are relatively prime, Note that they have no prime factors in common. In our discussion
of subgroups of cyclic groups, we will need to know the following:

~—~
—
N

if'r and s are relatively prime and if r divides s, then r must divide m.

Let’s prove this. If r and s are relatively prime, then we may write
1 =ar+ bs for some a bel?.
Multiplying by m, we obtain
m = arm + bsm.

Now r divides both arni and bsm since r divides sm. Thus r is a divisor of the right-hand
side of this equation, so r must divide m.

The Structure of Cyclic Groups

We can now describe all cyclic groups, up to an isomorphism.
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Let G be acyclic group with generator a. If the order of G is infinite, then G is isomorphic
to {Z, +). Il G has finite order n, then G is isomorphic to (Z,, +,).

Case I For all positive integers m, a™ # e. In this case we claim that no two
distinct exponents £ and k can give equal elements a” and a* of G.
Supposc that a® = a* and say 4 > k. Then

ata*=a"* =,
contrary 1o our Case [ assumption. Hence every element of G can be
expressed as ¢ for a unique m € Z. The map ¢ : G — Z given by
¢(a’) =i is thus well defined, one to one, and onto Z. Also,

$la'a’) = pla™) =i+ j = pla’) + dla)),
50 the homomorphism property is satisfied and ¢ is an isomorphism.
Case Il  a"™ = ¢ for yome positive integer m. Let n be the smallest positive
integer such thata” =e. If s e Zand s = ng + r for 0 < r < n, then
=g =(g"a" =¢%a" =g". AsinCase 1,il0 <k < h < nand
a" = a* then a"* = ¢ and 0 < h — k < n, contradicting our choice of
n. Thus the elements

= aad a, a"!

are all distinct and comprise all elements of G. The map ¥ : G — Z,
givenby y(a') =ifori=0,1,2,---,n— 1is thus well defined, one to
one, and onto Z,. Because a" = e, we see that a'a’ = a* where

k =1+, j Thus

vr(a'aly =i+, j = y(a) 4, vrial),

so (he homomorphism property is satisfied and v is an isomorphism.
*

0
6.11 Figure 6.12 Figure

Motivated by our work with U,,, it is nice to visualize the elements ¢ = a’, a!, 42, - . -,
'}

a"~!ofacyclic group of order n as being distributed evenly onacircle (see Fig.6.11). The
element o is located /i of these equal units counterclockwise along the circle, measared
from the bottom where ¢ = a” is located. To multiply a” and a* diagrammatically, we
start from a® and go & additicnal units around counterclockwise. To see arithmetically
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where we cnd up, find ¢ and r such that
h+k=ng+r for 0<r<n.
The ng takes us all the way around the circle ¢ times, and we then windup ata”™. &

Figure 6.12 is essentially the same as Fig. 6.11 but with the points labeled with the
exponents on the generator. The operation on these exponents is addition modulo n.

Subgroups of Finite Cyclic Groups

We have completed our description of cyclic groups and turn to their subgroups. Corollary
6.7 gives us complele information about subgroups of infinite cyclic groups. Let us give
the basic thcorem regarding generators of subgroups for the finite cyclic groups.

Let G be a cyctic group with n elements and generated by a. Letb € G and let b = a°
Then b generates a cyclic subgroup H of G containing n/d elements, where d is the
greatcst common divisorof n and s. Also, (a®) = {a') if and onlyif ged(s, n} = ged(z, n).

That b generates a cyclic subgroup H of G is known from Theorem 5.17. We need show
only that / has n/d elements. Following the argument of Casc II of Theorem 6.10, we
see that H has a8 many clements as the smallest positive power m of b that gives the
identity. Now b — o, and & = ¢ if and only if (a*Y" = e, or if and only if n divides
ms. What is the smallest positive integer m such that » divides ms? Let d be the ged of
n and 5. Then there exists integers u and v such that

d=un+vs.
Since d divides both n and 5, we may write
1 = ulnjdy+ vis/d)

where both #/d and s/d are integers, This last equation shows thal n/d and 5/d are
relatively prime, for any integer dividing both of them must also divide 1. We wish o
find the smallest positive m such that

ms  m(s/d)

n (n/d)

From the boxed division property (1), we conclude that n/d must divide m, so the
smallest such m is n/d. Thus the order of H is n/d.

Taking for the moment Z, as a model for a cyclic group of order n, we sec that if d is

a divisor of s, then the cyclic subgroup (d} of Z,, had n/d elements, and contains all the

positive integers m less than n such that ged(m, n) = 4. Thus there is only one subgroup

of Z, of order n/d. Taken with the preceding paragraph, this shows at once that if

a is a generator of the cyclic group G, then {(a®) = (@'} if and only if ged(s, n) =

ged(t, n). *

is an intcger.

For an examiple using additive notation, consider Z,,, with the generator & = 1. Since
the greatest common divisor of 3 and 12 1s 3, 3 = 3- 1 generates a subgroup of 1—33 =4
elements, namely

(3 =1{0,3,6,9}.



