
Data:

 Facts, figures, statistics etc. having no particular meaning (e.g. 1, ABC, 19 etc).

Database :-

 is a collection of related data and data is a collection of facts and figures that can

be processed to produce information.

Mostly data represents recordable facts. Data aids in producing information, which is

based on facts. For example, if we have data about marks obtained by all students, we can

then conclude about toppers and average marks.

A database management system stores data in such a way that it becomes easier to

retrieve, manipulate, and produce information.

Database Management System or DBMS

 in short refers to the technology of storing and retrieving users’ data with utmost

efficiency along with appropriate security measures. This tutorial explains the basics of

DBMS such as its architecture, data models, data schemas, data independence, E-R

model, relation model, relational database design, and storage and file structure and much

more.

Characteristics

Traditionally, data was organized in file formats. DBMS was a new concept then, and all

the research was done to make it overcome the deficiencies in traditional style of data

management. A modern DBMS has the following characteristics

1. Real-world entity

 A modern DBMS is more realistic and uses real-world entities to

design its architecture. It uses the behavior and attributes too. For example, a

school database may use students as an entity and their age as an attribute.

2. Relation-based tables

 DBMS allows entities and relations among them to form tables. A user

can understand the architecture of a database just by looking at the table names.

3. Isolation of data and application

 A database system is entirely different than its data. A database is an

active entity, whereas data is said to be passive, on which the database works and

organizes. DBMS also stores metadata, which is data about data, to ease its own

process.

4. Less redundancy

 DBMS follows the rules of normalization, which splits a relation when

any of its attributes is having redundancy in values. Normalization is a

mathematically rich and scientific process that reduces data redundancy.

5. Consistency

 Consistency is a state where every relation in a database remains

consistent. There exist methods and techniques, which can detect attempt of

leaving database in inconsistent state. A DBMS can provide greater consistency

as compared to earlier forms of data storing applications like file-processing

systems.

6. Query Language

 DBMS is equipped with query language, which makes it more efficient to

retrieve and manipulate data. A user can apply as many and as different filtering

options as required to retrieve a set of data. Traditionally it was not possible where

file-processing system was used.

7. ACID Properties

 DBMS follows the concepts of Atomicity, Consistency, Isolation, and

Durability (normally shortened as ACID). These concepts are applied on transactions,

which manipulate data in a database. ACID properties help the database stay healthy

in multi-transactional environments and in case of failure.

8. Multiuser and Concurrent Access

 DBMS supports multi-user environment and allows them to access and

manipulate data in parallel. Though there are restrictions on transactions when users

attempt to handle the same data item, but users are always unaware of them.

9. Multiple views

 DBMS offers multiple views for different users. A user who is in the Sales

department will have a different view of database than a person working in the

Production department. This feature enables the users to have a concentrate view of

the database according to their requirements.

10. Security

 Features like multiple views offer security to some extent where users are

unable to access data of other users and departments. DBMS offers methods to impose

constraints while entering data into the database and retrieving the same at a later

stage. DBMS offers many different levels of security features, which enables multiple

users to have different views with different features. For example, a user in the Sales

department cannot see the data that belongs to the Purchase department. Additionally,

it can also be managed how much data of the Sales department should be displayed to

the user. Since a DBMS is not saved on the disk as traditional file systems, it is very

hard for miscreants to break the code.

ADVANTAGES OF A DBMS

1- Database Development:

 It allows organizations to place control of database development in the hands

of database administrators (DBAs) and other specialists.

2-Data independence:

 Application programs should be as independent as possible from details of data

representation and storage. The DBMS can provide an abstract view of the data to

insulate application code from such details.

3-Efficient data access:

 A DBMS utilizes a variety of sophisticated techniques to store and retrieve data

efficiently. It allows different user application programs to easily access the same

database. Instead of having to write computer programs to extract information, user

can ask simple questions in a query language.

4-Data integrity and security:

 If data is always accessed through the DBMS, the DBMS can enforce :

• integrity constraints on the data. For example, before inserting salary information for

an employee, the DBMS can check that the department budget is not exceeded.

• Also, the DBMS can enforce access controls that govern what data is visible to

different classes of users.

5-Crash recovery:

 the DBMS protects users from the effects of system failures.

6- Data administration and Concurrent access:

 When several users share the data(more than one user access the database at the

same time), DBMS schedules concurrent accesses to the data in such a manner that

users can think of the data as being accessed by only one user at a time

Users

 A typical DBMS has users with different rights and permissions who use it for

different purposes. Some users retrieve data and some back it up. The users of a

DBMS can be broadly categorized as follows

1. Administrators

 Administrators maintain the DBMS and are responsible for administrating

the database. They are responsible to look after its usage and by whom it

should be used. They create access profiles for users and apply limitations to

maintain isolation and force security. Administrators also look after DBMS

resources like system license, required tools, and other software and hardware

related maintenance.

2. Designers

 Designers are the group of people who actually work on the designing part

of the database. They keep a close watch on what data should be kept and in

what format. They identify and design the whole set of entities, relations,

constraints, and views.

3. End Users

 End users are those who actually reap the benefits of having a DBMS. End

users can range from simple viewers who pay attention to the logs or market

rates to sophisticated users such as business analysts.

DBMS – Architecture

 The design of a DBMS depends on its architecture. It can be centralized or

decentralized or hierarchical. The architecture of a DBMS can be seen as either single tier

or multi-tier. An n-tier architecture divides the whole system into related but independent

n modules, which can be independently modified, altered, changed, or replaced.

a) 1-tier architecture

 the DBMS is the only entity where the user directly sits on the

DBMS and uses it. Any changes done here will directly be done on the

DBMS itself. It does not provide handy tools for end-users. Database

designers and programmers normally prefer to use single-tier architecture.

b) 2-tier architecture

 If the architecture of DBMS is 2-tier, then it must have an

application through which the DBMS can be accessed. Programmers use

2-tier architecture where they access the DBMS by means of an

application. Here the application tier is entirely independent of the

database in terms of operation, design, and programming.

c) 3-tier Architecture

 A 3-tier architecture separates its tiers from each other based on

the complexity of the users and how they use the data present in the

database. It is the most widely used architecture to design a DBMS.

1. Database (Data) Tier

 At this tier, the database resides along with its query processing

languages. We also have the relations that define the data and their

constraints at this level.

2. Application (Middle) Tier

 At this tier reside the application server and the programs that access

the database. For a user, this application tier presents an abstracted view of

the database. End-users are unaware of any existence of the database beyond

the application. At the other end, the database tier is not aware of any other

user beyond the application tier. Hence, the application layer sits in the

middle and acts as a mediator between the end-user and the database.

3. User (Presentation) Tier

 End-users operate on this tier and they know nothing about any

existence of the database beyond this layer. At this layer, multiple views

of the database can be provided by the application. All views are

generated by applications that reside in the application tier.

Multiple-tier database architecture is highly modifiable, as almost all its

components are independent and can be changed independently.

Relational model:-

 The relational model (RM) for database management is an approach to managing

data using a structure and language consistent with first-order predicate logic, first

described in 1969 by Edgar F. Codd . In the relational model of a database, all data is

represented in terms of tuples, grouped into relations. A database organized in terms of

the relational model is a relational database.

 The purpose of the relational model is to provide a declarative method for specifying

data and queries: users directly state what information the database contains and what

information they want from it, and let the database management system software take

care of describing data structures for storing the data and retrieval procedures for

answering queries.

 Relational data model is the primary data model, which is used widely around

the world for data storage and processing .This model is simple and it has all the

properties and capabilities required to process data with storage efficiency.

Concepts -:

Tables :-

 In relational data model, relations are saved in the format of Tables. This format stores

the relation among entities. A table has rows and columns, where rows represents records

and columns represent the attributes.

Tuple :-

 A single row of a table, which contains a single record for that relation is called a

tuple.

Relation instance :-

 A finite set of tuples in the relational database system represents relation instance.

Relation instances do not have duplicate tuples.

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/First-order_logic
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Relation_(database)
https://en.wikipedia.org/wiki/Relational_database

Relation schema :-

 A relation schema describes the relation name (table name), attributes, and their

names.

Relation key :-

 Each row has one or more attributes, known as relation key, which can identify the

row in the relation (table) uniquely.

Attribute domain :-

 Every attribute has some pre-defined value scope, known as attribute domain.

Constraints

 Every relation has some conditions that must hold for it to be a valid relation. These

conditions are called Relational Integrity Constraints. There are three main integrity

constraints −

 Key constraints

 Domain constraints

 Referential integrity constraints

Key Constraints :-

 There must be at least one minimal subset of attributes in the relation, which can

identify a tuple uniquely. This minimal subset of attributes is called key for that relation.

If there are more than one such minimal subsets, these are called candidate keys.

Key constraints force that :-

 in a relation with a key attribute, no two tuples can have identical values for key

attributes.

 a key attribute can not have NULL values.

Key constraints are also referred to as Entity Constraints.

Domain Constraints

 Attributes have specific values in real-world scenario. For example, age can only be a

positive integer. The same constraints have been tried to employ on the attributes of a

relation. Every attribute is bound to have a specific range of values. For example, age

cannot be less than zero and telephone numbers cannot contain a digit outside 0-9.

Referential integrity Constraints

Referential integrity constraints work on the concept of Foreign Keys. A foreign key is a

key attribute of a relation that can be referred in other relation.

Referential integrity constraint states that if a relation refers to a key attribute of a

different or same relation, then that key element must exist.

Relational database systems are expected to be equipped with a query language that can

assist its users to query the database instances. There are two kinds of query languages −

relational algebra and relational calculus.

Relational Algebra

Relational algebra is a procedural query language, which takes instances of relations as

input and yields instances of relations as output. It uses operators to perform queries. An

operator can be either unary or binary. They accept relations as their input and yield

relations as their output. Relational algebra is performed recursively on a relation and

intermediate results are also considered relations.

The fundamental operations of relational algebra are as follows −

 Select

 Project

 Union

 Set different

 Cartesian product

 Rename

We will discuss all these operations in the following sections.

Select Operation (σ)

It selects tuples that satisfy the given predicate from a relation.

Notation − σp(r)

Where σ stands for selection predicate and r stands for relation. p is prepositional logic

formula which may use connectors like and, or, and not. These terms may use relational

operators like − =, ≠, ≥, < , >, ≤.

For example −

σsubject = "database"(Books)

Output − Selects tuples from books where subject is 'database'.

σsubject = "database" and price = "450"(Books)

Output :- Selects tuples from books where subject is 'database' and 'price' is 450.

σsubject = "database" and price = "450" or year > "2010"(Books)

Output :- Selects tuples from books where subject is 'database' and 'price' is 450 or those

books published after 2010.

Project Operation (∏)

It projects column(s) that satisfy a given predicate.

Notation − ∏A1, A2, An (r)

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

example :-

∏subject, author (Books)

Selects and projects columns named as subject and author from the relation Books.

Union Operation (∪)

It performs binary union between two given relations and is defined as −

r ∪ s = { t | t ∈ r or t ∈ s}

Notion − r U s

Where r and s are either database relations or relation result set (temporary relation).

For a union operation to be valid, the following conditions must hold −

 r, and s must have the same number of attributes.

 Attribute domains must be compatible.

 Duplicate tuples are automatically eliminated.

∏ author (Books) ∪ ∏ author (Articles)

Output − Projects the names of the authors who have either written a book or an article

or both.

Set Difference (−)

The result of set difference operation is tuples, which are present in one relation but are

not in the second relation.

Notation − r − s

Finds all the tuples that are present in r but not in s.

∏ author (Books) − ∏ author (Articles)

Output − Provides the name of authors who have written books but not articles.

Cartesian Product (Χ)

Combines information of two different relations into one.

Notation − r Χ s

Where r and s are relations and their output will be defined as −

r Χ s = { q t | q ∈ r and t ∈ s}

σauthor = 'tutorialspoint'(Books Χ Articles)

Output − Yields a relation, which shows all the books and articles written by

tutorialspoint.

Rename Operation (ρ)

The results of relational algebra are also relations but without any name. The rename

operation allows us to rename the output relation. 'rename' operation is denoted with

small Greek letter rho ρ.

Notation − ρ x (E)

Where the result of expression E is saved with name of x.

Additional operations are −

 Set intersection

 Assignment

 Natural join

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural query

language, that is, it tells what to do but never explains how to do it.

Relational calculus exists in two forms −

Tuple Relational Calculus (TRC)

Filtering variable ranges over tuples

Notation − {T | Condition}

Returns all tuples T that satisfies a condition.

example :-

{ T.name | Author(T) AND T.article = 'database' }

Output − Returns tuples with 'name' from Author who has written article on 'database'.

TRC can be quantified. We can use Existential (∃) and Universal Quantifiers (∀).

example :-

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output − The above query will yield the same result as the previous one.

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of entire tuple values

(as done in TRC, mentioned above).

Notation −

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Where a1, a2 are attributes and P stands for formulae built by inner attributes.

example :-

{< article, page, subject > | ∈ TutorialsPoint ∧ subject = 'database'}

Output − Yields Article, Page, and Subject from the relation TutorialsPoint, where

subject is database.

Just like TRC, DRC can also be written using existential and universal quantifiers. DRC

also involves relational operators.

The expression power of Tuple Relation Calculus and Domain Relation Calculus is

equivalent to Relational Algebra.

Entity

An entity can be a real-world object, either animate or inanimate, that can be easily

identifiable. For example, in a school database, students, teachers, classes, and courses

offered can be considered as entities.

An entity set is a collection of similar types of entities. An entity set may contain entities

with attribute sharing similar values. For example, a Students set may contain all the

students of a school; likewise a Teachers set may contain all the teachers of a school from

all faculties. Entity sets need not be disjoint.

Entities are represented by means of rectangles. Rectangles are named with the entity set

they represent.

Attributes

Entities are represented by means of their properties, called attributes. All attributes

have values. For example, a student entity may have name, class, and age as attributes.

There exists a domain or range of values that can be assigned to attributes. For example, a

student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot

be negative, etc.

Attributes are the properties of entities. Attributes are represented by means of ellipses.

Every ellipse represents one attribute and is directly connected to its entity (rectangle).

Types of Attributes

 Simple attribute − Simple attributes are atomic values, which cannot be divided

further. For example, a student's phone number is an atomic value of 10 digits.

 Composite attribute − Composite attributes are made of more than one simple

attribute. For example, a student's complete name may have first_name and

last_name.

If the attributes are composite, they are further divided in a tree like structure.

Every node is then connected to its attribute. That is, composite attributes are

represented by ellipses that are connected with an ellipse.

 Derived attribute − Derived attributes are the attributes that do not exist in the

physical database, but their values are derived from other attributes present in the

database. For example, average_salary in a department should not be saved

directly in the database, instead it can be derived. For another example, age can be

derived from data_of_birth. Derived attributes are depicted by dashed ellipse.

 Single-value attribute − Single-value attributes contain single value. For

example − Social_Security_Number.

 Multi-value attribute − Multi-value attributes may contain more than one values.

For example, a person can have more than one phone number, email_address, etc.

Multivalued attributes are depicted by double ellipse.

These attribute types can come together in a way like −

 simple single-valued attributes

 simple multi-valued attributes

 composite single-valued attributes

 composite multi-valued attributes

Entity-Set and Keys

Key is an attribute or collection of attributes that uniquely identifies an entity among

entity set.

For example, the roll_number of a student makes him/her identifiable among students.

 Super Key − A set of attributes (one or more) that collectively identifies an entity

in an entity set.

 Candidate Key − A minimal super key is called a candidate key. An entity set

may have more than one candidate key.

 Primary Key − A primary key is one of the candidate keys chosen by the

database designer to uniquely identify the entity set.

Functional Dependency

Functional dependency (FD) is a set of constraints between two attributes in a relation.

Functional dependency says that if two tuples have same values for attributes A1, A2,...,

An, then those two tuples must have to have same values for attributes B1, B2, ..., Bn.

Functional dependency is represented by an arrow sign (→) that is, X→Y, where X

functionally determines Y. The left-hand side attributes determine the values of attributes

on the right-hand side.

Armstrong's Axioms

If F is a set of functional dependencies then the closure of F, denoted as F+, is the set of

all functional dependencies logically implied by F. Armstrong's Axioms are a set of rules,

that when applied repeatedly, generates a closure of functional dependencies.

 Reflexive rule : If alpha is a set of attributes and beta is_subset_of alpha, then

alpha holds beta.

 Augmentation rule : If a → b holds and y is attribute set, then ay → by also

holds. That is adding attributes in dependencies, does not change the basic

dependencies.

 Transitivity rule : Same as transitive rule in algebra, if a → b holds and b → c

holds, then a → c also holds. a → b is called as a functionally that determines b.

Trivial Functional Dependency

 Trivial : If a functional dependency (FD) X → Y holds, where Y is a subset of X, then it

is called a trivial FD. Trivial FDs always hold.

 Non-trivial : If an FD X → Y holds, where Y is not a subset of X, then it is called a non-

trivial FD.

 Completely non-trivial : If an FD X → Y holds, where x intersect Y = Φ, it is said to be a

completely non-trivial FD.

Entity-Relationship Model

Entity-Relationship (ER) Model is based on the notion of real-world entities and relationships

among them. While formulating real-world scenario into the database model, the ER Model

creates entity set, relationship set, general attributes and constraints.

ER Model is best used for the conceptual design of a database.

ER Model is based on :-

 Entities and their attributes.

 Relationships among entities.

These concepts are explained below.

 Entity − An entity in an ER Model is a real-world entity having properties called

attributes. Every attribute is defined by its set of values called domain. For

example, in a school database, a student is considered as an entity. Student has various

attributes like name, age, class, etc.

Relationship

Relationships are represented by diamond-shaped box. Name of the relationship is

written inside the diamond-box. All the entities (rectangles) participating in a

relationship, are connected to it by a line.

Binary Relationship and Cardinality

A relationship where two entities are participating is called a binary relationship.

Mapping Cardinalities

Cardinality defines the number of entities in one entity set, which can be associated with

the number of entities of other set via relationship set.

 One-to-one : One entity from entity set A can be associated with at most one

entity of entity set B and vice versa.

 One-to-many − One entity from entity set A can be associated with more than

one entities of entity set B however an entity from entity set B, can be associated

with at most one entity.

 Many-to-one − More than one entities from entity set A can be associated with at

most one entity of entity set B, however an entity from entity set B can be

associated with more than one entity from entity set A.

 Many-to-many − One entity from A can be associated with more than one entity

from B and vice versa.

Participation Constraints

 Total Participation − Each entity is involved in the relationship. Total

participation is represented by double lines.

 Partial participation − Not all entities are involved in the relationship. Partial

participation is represented by single lines.

Relational Model

The most popular data model in DBMS is the Relational Model. It is more scientific a

model than others. This model is based on first-order predicate logic and defines a table

as an n-ary relation.

The main highlights of this model are −

 Data is stored in tables called relations.

 Relations can be normalized.

 In normalized relations, values saved are atomic values.

 Each row in a relation contains a unique value.

 Each column in a relation contains values from a same domain.

Normalization

If a database design is not perfect, it may contain anomalies, which are like a bad dream

for any database administrator. Managing a database with anomalies is next to impossible.

 Update anomalies − If data items are scattered and are not linked to each other

properly, then it could lead to strange situations. For example, when we try to

update one data item having its copies scattered over several places, a few

instances get updated properly while a few others are left with old values. Such

instances leave the database in an inconsistent state.

 Deletion anomalies − We tried to delete a record, but parts of it was left

undeleted because of unawareness, the data is also saved somewhere else.

 Insert anomalies − We tried to insert data in a record that does not exist at all.

Normalization is a method to remove all these anomalies and bring the database to a

consistent state.

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself. This rule defines

that all the attributes in a relation must have atomic domains. The values in an atomic

domain are indivisible units.

We re-arrange the relation (table) as below, to convert it to First Normal Form.

Each attribute must contain only a single value from its pre-defined domain.

Second Normal Form

Before we learn about the second normal form, we need to understand the following −

 Prime attribute − An attribute, which is a part of the prime-key, is known as a

prime attribute.

 Non-prime attribute − An attribute, which is not a part of the prime-key, is said

to be a non-prime attribute.

If we follow second normal form, then every non-prime attribute should be fully

functionally dependent on prime key attribute. That is, if X → A holds, then there should

not be any proper subset Y of X, for which Y → A also holds true.

We see here in Student_Project relation that the prime key attributes are Stu_ID and

Proj_ID. According to the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be

dependent upon both and not on any of the prime key attribute individually. But we find

that Stu_Name can be identified by Stu_ID and Proj_Name can be identified by Proj_ID

independently. This is called partial dependency, which is not allowed in Second Normal

Form.

We broke the relation in two as depicted in the above picture. So there exists no partial

dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form and the

following must satisfy −

 No non-prime attribute is transitively dependent on prime key attribute.

 For any non-trivial functional dependency, X → A, then either −

o X is a superkey or,

o A is prime attribute.

We find that in the above Student_detail relation, Stu_ID is the key and only prime key

attribute. We find that City can be identified by Stu_ID as well as Zip itself. Neither Zip is

a superkey nor is City a prime attribute. Additionally, Stu_ID → Zip → City, so there

exists transitive dependency.

To bring this relation into third normal form, we break the relation into two relations as

follows −

Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict terms.

BCNF states that −

 For any non-trivial functional dependency, X → A, X must be a super-key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the

super-key in the relation ZipCodes. So,

Stu_ID → Stu_Name, Zip

and

Zip → City

Which confirms that both the relations are in BCNF.

We understand the benefits of taking a Cartesian product of two relations, which gives us

all the possible tuples that are paired together. But it might not be feasible for us in certain

cases to take a Cartesian product where we encounter huge relations with thousands of

tuples having a considerable large number of attributes.

Join is a combination of a Cartesian product followed by a selection process. A Join

operation pairs two tuples from different relations, if and only if a given join condition is

satisfied .

We will briefly describe various join types in the following sections.

Theta (θ) Join

Theta join combines tuples from different relations provided they satisfy the theta

condition. The join condition is denoted by the symbol θ.

Notation

R1 ⋈θ R2

R1 and R2 are relations having attributes (A1, A2, .., An) and (B1, B2,.. ,Bn) such that the

attributes don’t have anything in common, that is R1 ∩ R2 = Φ.

Theta join can use all kinds of comparison operators.

Student

SID Name Std

101 Alex 10

102 Maria 11

Subjects

Class Subject

10 Math

10 English

11 Music

11 Sports

Student_Detail −

STUDENT ⋈Student.Std = Subject.Class SUBJECT

Student_detail

SID Name Std Class Subject

101 Alex 10 10 Math

101 Alex 10 10 English

102 Maria 11 11 Music

102 Maria 11 11 Sports

Equijoin

When Theta join uses only equality comparison operator, it is said to be equijoin. The

above example corresponds to equijoin.

Natural Join (⋈)

Natural join does not use any comparison operator. It does not concatenate the way a

Cartesian product does. We can perform a Natural Join only if there is at least one

common attribute that exists between two relations. In addition, the attributes must have

the same name and domain.

Natural join acts on those matching attributes where the values of attributes in both the

relations are same.

Courses

CID Course Dept

CS01 Database CS

ME01 Mechanics ME

EE01 Electronics EE

HoD

Dept Head

CS Alex

ME Maya

EE Mira

Courses ⋈ HoD

Dept CID Course Head

CS CS01 Database Alex

ME ME01 Mechanics Maya

EE EE01 Electronics Mira

Outer Joins

Theta Join, Equijoin, and Natural Join are called inner joins. An inner join includes only

those tuples with matching attributes and the rest are discarded in the resulting relation.

Therefore, we need to use outer joins to include all the tuples from the participating

relations in the resulting relation. There are three kinds of outer joins − left outer join,

right outer join, and full outer join.

Left Outer Join(R S)

All the tuples from the Left relation, R, are included in the resulting relation. If there are

tuples in R without any matching tuple in the Right relation S, then the S-attributes of the

resulting relation are made NULL.

Left

A B

100 Database

101 Mechanics

102 Electronics

Right

A B

100 Alex

102 Maya

104 Mira

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

Right Outer Join: (R S)

All the tuples from the Right relation, S, are included in the resulting relation. If there are

tuples in S without any matching tuple in R, then the R-attributes of resulting relation are

made NULL.

Courses HoD

A B C D

100 Database 100 Alex

102 Electronics 102 Maya

--- --- 104 Mira

Full Outer Join: (R S)

All the tuples from both participating relations are included in the resulting relation. If

there are no matching tuples for both relations, their respective unmatched attributes are

made NULL.

Courses HoD

A B C D

100 Database 100 Alex

101 Mechanics --- ---

102 Electronics 102 Maya

--- --- 104 Mira

Natural join (⋈)

Employee

Name
EmpI

d

DeptNam

e

Harry 3415 Finance

Sally 2241 Sales

Georg

e
3401 Finance

Harriet 2202 Sales

Dept

DeptNam

e

Manage

r

Finance George

Sales Harriet

Productio

n
Charles

Employee Dept

Name
EmpI

d

DeptNam

e

Manage

r

Harry 3415 Finance George

Sally 2241 Sales Harriet

Georg

e
3401 Finance George

Harriet 2202 Sales Harriet

θ-join and equijoin

Car

CarModel CarPrice

CarA 20,000

CarB 30,000

CarC 50,000

Semijoin (⋉)(⋊)

Boat

BoatModel BoatPrice

Boat1 10,000

Boat2 40,000

Boat3 60,000

CarMo

del

CarPri

ce

BoatMo

del

BoatPr

ice

CarA 20,000 Boat1 10,000

CarB 30,000 Boat1 10,000

CarC 50,000 Boat1 10,000

CarC 50,000 Boat2 40,000

Employee

Nam

e

Emp

Id

DeptNa

me

Harr

y
3415 Finance

Sally 2241 Sales

Geor

ge
3401 Finance

Harri

et
2202

Product

ion

Dept

DeptNa

me

Mana

ger

Sales Bob

Sales
Thoma

s

Product

ion
Katie

Product

ion
Mark

Employee ⋉ Dept

Name
EmpI

d

DeptNam

e

Sally 2241 Sales

Harrie

t
2202 Production

Antijoin (▷)

Employee

Name EmpId DeptName

Harry 3415 Finance

Sally 2241 Sales

George 3401 Finance

Harriet 2202 Production

Dept

DeptName Manager

Sales Sally

Production Harriet

Employee Dept

Name EmpId DeptName

Harry 3415 Finance

George 3401 Finance

Division (÷)

Completed

Student Task

Fred Database1

Fred Database2

Fred Compiler1

Eugene Database1

Eugene Compiler1

Sarah Database1

Sarah Database2

DBProject

Task

Database1

Database2

Completed ÷ DBProject

Student

Fred

Sarah

Left outer join (⟕)

Employee

Name
EmpI

d

DeptNam

e

Harry 3415 Finance

Sally 2241 Sales

Georg

e
3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

Dept

DeptNam

e

Manage

r

Sales Harriet

Productio

n
Charles

Employee ⟕ Dept

Name
EmpI

d

DeptNam

e

Manage

r

Harry 3415 Finance ω

Sally 2241 Sales Harriet

Georg

e
3401 Finance ω

Harriet 2202 Sales Harriet

Tim 1123 Executive ω

Right outer join (⟖)

Employee

Name
EmpI

d

DeptNam

e

Harry 3415 Finance

Sally 2241 Sales

Georg

e
3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

Dept

DeptNam

e

Manage

r

Sales Harriet

Productio

n
Charles

Employee ⟕ Dept

Name
EmpI

d

DeptNam

e

Manage

r

Harry 3415 Finance ω

Sally 2241 Sales Harriet

Georg

e
3401 Finance ω

Harriet 2202 Sales Harriet

Tim 1123 Executive ω

Full outer join (⟗)

Employee

Name
EmpI

d

DeptNam

e

Harry 3415 Finance

Sally 2241 Sales

Georg

e
3401 Finance

Harriet 2202 Sales

Tim 1123 Executive

Dept

DeptNam

e

Manage

r

Sales Harriet

Productio

n
Charles

Employee ⟖ Dept

Name
EmpI

d

DeptNam

e

Manage

r

Sally 2241 Sales Harriet

Harrie

t
2202 Sales Harriet

ω ω
Productio

n
Charles

SQL :-

SQL is Structured Query Language, which is a computer language for storing,

manipulating and retrieving data stored in relational database. In 1974 the Structured

Query Language appeared.

SQL is the standard language for Relation Database System. All relational database

management systems like MySQL, MS Access, Oracle, Sybase, Informix, postgres and

SQL Server use SQL as standard database language.

Why SQL

 Allows users to access data in relational database management systems.

 Allows users to describe the data.

 Allows users to define the data in database and manipulate that data.

 Allows to embed within other languages using SQL modules, libraries & pre-

compilers.

 Allows users to create and drop databases and tables.

 Allows users to create view, stored procedure, functions in a database.

 Allows users to set permissions on tables, procedures, and views

SQL Process:

When you are executing an SQL command for any RDBMS, the system determines the

best way to carry out your request and SQL engine figures out how to interpret the task.

There are various components included in the process. These components are Query

Dispatcher, Optimization Engines, Classic Query Engine and SQL Query Engine, etc.

Classic query engine handles all non-SQL queries but SQL query engine won't handle

logical files.

Following is a simple diagram showing SQL Architecture:

SQL Components

SQL consists of three components:

1. Data Definition Language (DDL)

2. Data Manipulation Language (DML)

3. Data Control Language (DCL)

The Data Definition Language (DDL):-

 It is used to create and modify tables and other objects in the database. For tables there

are three main commands:

CREATE TABLE tablename to create a table in the database

DROP TABLE tablename to remove a table from the database

ALTER TABLE tablename to add or remove columns from a table in the database

The Data Manipulation Language (DML):-

 It is used to manipulate data within a table. There are four main commands:

SELECT to select rows of data from a table

INSERT to insert rows of data into a table

UPDATE to change rows of data in a table

DELETE to remove rows of data from a table

The Data Control Language (DCL):-

 It is used to create privileges to allow users access to, and manipulation of, the database.

There are two main commands:

GRANT to grant a privilege to a user

REVOKE to revoke (remove) a privilege from a user

Query optimization

it is a function of many relational database management systems. The query optimizer

attempts to determine the most efficient way to execute a given query by considering the

possible query plans.

Generally, the query optimizer cannot be accessed directly by users: once queries are

submitted to database server, and parsed by the parser, they are then passed to the query

optimizer where optimization occurs. However, some database engines allow guiding the

query optimizer with hints.

A query is a request for information from a database. It can be as simple as "finding the

address of a person with SS# 123-45-6789," or more complex like "finding the average

salary of all the employed married men in California between the ages 30 to 39, that earn

less than their wives." Queries results are generated by accessing relevant database data

and manipulating it in a way that yields the requested information. Since database

structures are complex, in most cases, and especially for not-very-simple queries, the

needed data for a query can be collected from a database by accessing it in different

ways, through different data-structures, and in different orders. Each different way

typically requires different processing time. Processing times of the same query may have

large variance, from a fraction of a second to hours, depending on the way selected.

The purpose of query optimization which is an automated process, is to find the way to

process a given query in minimum time. The large possible variance in time justifies

performing query optimization, though finding the exact optimal way to execute a query,

among all possibilities, is typically very complex, time consuming by itself, may be too

costly, and often practically impossible. Thus query optimization typically tries to

approximate the optimum by comparing several common-sense alternatives to provide in

a reasonable time a "good enough" plan which typically does not deviate much from the

best possible result.

https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Query_plan
https://en.wikipedia.org/wiki/Hint_(SQL)

Definition of a Query Optimizer

A query optimizer is an intricate software system that performs several transformations

on SQL queries. The following graphic is a very high-level representation of an SQL

query optimizer.

The input to the Optimizer, labelled as Input SQL Query in the graphic, is actually the

ResTree´ (sometimes called ResTree´ or Red Tree´ to differentiate it from the

ResTree/Red Tree as it is configured when it is input to Query Rewrite) output from

Query Rewrite, so by this point the original SQL query text has already been

reformulated as an annotated parse tree.

The Plan Exploration Space is a workspace where various query and join plans and

subplans are generated and costed.

The Costing Engine compares the costs of the various plans and subplans generated in the

Plan Exploration Space and returns the least costly plan from a given evaluation set .

The Costing Engine primarily uses cardinality estimates based on summary demographic

information, whether derived from collected statistics or from dynamic AMP sample

estimates, on the set of relations being evaluated to produce its choice of a given “best”

plan. The statistical data used to make these evaluations is contained within a set of

synoptic data structures called histograms that are maintained in the dictionary.

The Heuristics Engine is a set of rules and guidelines used to evaluate plans and subplans

in those situations where cost alone cannot determine the best plan.

Given this framework from which to work, Query Rewrite and the Optimizer perform the

following actions in, roughly, the following order.

1. Translate an SQL query into some internal representation.

2. Rewrite the translation into a canonical form. The conversion to canonical

form is often referred to as Query Rewrite. More accurately, Query

Rewrite is a processing step that precedes the query processing steps that

constitute the canonical process of query optimization.

3. Assess and evaluate candidate procedures for accessing, joining, and

aggregating database tables.

Join plans have 3 additional components.

• Selecting a join method.

There are often several possible methods that can be used to make the same join. For

example, it is usually, but not always, less expensive to use a Merge Join rather than a

Product Join. The choice of a method often has a major effect on the overall cost of

processing a query.

• Determining an optimal join geography.

Different methods of relocating rows to be joined can have very different costs. For

example, depending on the size of the tables in a join operation, it might be less costly to

duplicate one of the tables rather than redistributing it.

• Determining an optimal join order.

Only two tables can be joined at a time. The sequence in which table pairs are joined can

have a powerful impact on join cost. In this context, a table could be joined with a spool

file rather than another table. The term table is used in the most generic sense of the

word. Both tables and spool files are frequently categorized using the logical term

relations when discussing query optimization.

4. Generate several candidate query plans and select the least costly plan

from the generated set for execution. A query plan is a set of low-level

retrieval instructions called AMP steps that are generated by the Optimizer

to produce a query result in the least expensive .

SQL query optimizers are based on principles derived from compiler optimization and

from artificial intelligence.

Query tree :-

It is an internal representation of an SQL statement where the single parts that built it are

stored separately. These query trees are visible when starting the PostgreSQL backend

with debug level 4 and typing queries into the interactive backend interface. The rule

actions in the pg_rewrite system catalog are also stored as query trees. They are not

formatted like the debug output, but they contain exactly the same information.

Reading a query tree requires some experience and it was a hard time when I started to

work on the rule system. I can remember that I was standing at the coffee machine and I

saw the cup in a target list, water and coffee powder in a range table and all the buttons in

a qualification expression. Since SQL representations of query trees are sufficient to

understand the rule system, this document will not teach how to read them .

canonical form

a canonical, normal, or standard form of a mathematical object is a standard way of

presenting that object as a mathematical expression. The distinction between "canonical"

and "normal" forms varies by subfield. In most fields, a canonical form specifies a unique

representation for every object, while a normal form simply specifies its form, without

the requirement of uniqueness.

The canonical form of a positive integer in decimal representation is a finite sequence of

digits that does not begin with zero.

More generally, for a class of objects on which an equivalence relation is defined, a

canonical form consists in the choice of a specific object in each class. For example,

Jordan normal form is a canonical form for matrix similarity, and the row echelon form is

a canonical form, when one consider as equivalent a matrix and its left product by an

invertible matrix.

In computer science, and more specifically in computer algebra, when representing

mathematical objects in a computer, there are usually many different ways to represent

the same object. In this context, a canonical form is a representation such that every

object has a unique representation. Thus, the equality of two objects can easily be tested

by testing the equality of their canonical forms. However canonical forms frequently

depend on arbitrary choices (like ordering the variables), and this introduces difficulties

for testing the equality of two objects resulting on independent computations. Therefore,

in computer algebra, normal form is a weaker notion: A normal form is a representation

such that zero is uniquely represented. This allows testing for equality by putting the

difference of two objects in normal form.

Canonical form can also mean a differential form that is defined in a natural (canonical)

way.

In computer science, data that has more than one possible representation can often be

canonicalized into a completely unique representation called its canonical form. Putting

something into canonical form is canonicalization.

https://en.wikipedia.org/wiki/Mathematical_object
https://en.wikipedia.org/wiki/Mathematical_expression
https://en.wikipedia.org/wiki/Positive_integer
https://en.wikipedia.org/wiki/Decimal_representation
https://en.wikipedia.org/wiki/Equivalence_relation
https://en.wikipedia.org/wiki/Jordan_normal_form
https://en.wikipedia.org/wiki/Matrix_similarity
https://en.wikipedia.org/wiki/Row_echelon_form
https://en.wikipedia.org/wiki/Invertible_matrix
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer_algebra
https://en.wikipedia.org/wiki/Differential_form
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Canonicalization

Database model :-

A database model is a type of data model that determines the logical structure of a

database and fundamentally determines in which manner data can be stored, organized,

and manipulated. The most popular example of a database model is the relational model

(or the SQL approximation of relational), which uses a table-based format.

Common logical data models for databases include:

1. Hierarchical database model :-

A hierarchical database model is a data model in which the data is organized into a

tree-like structure. The data is stored as records which are connected to one another

through links. A record is a collection of fields, with each field containing only one

value. The entity type of a record defines which fields the record contains.

Example of a hierarchical model

A record in the hierarchical database model corresponds to a row (or tuple) in the

relational database model and an entity type corresponds to a table (or relation).

The hierarchical database model mandates that each child record has only one parent,

whereas each parent record can have one or more child records. In order to retrieve data

from a hierarchical database the whole tree needs to be traversed starting from the root

node. This model is recognized as the first database model created by IBM in the 1960s

Examples of hierarchical data represented as relational tables

An organization could store employee information in a table that contains

attributes/columns such as employee number, first name, last name, and department

number. The organization provides each employee with computer hardware as needed,

but computer equipment may only be used by the employee to which it is assigned. The

organization could store the computer hardware information in a separate table that

includes each part's serial number, type, and the employee that uses it. The tables might

look like this:

https://en.wikipedia.org/wiki/Database_model
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Relational_database_model
https://en.wikipedia.org/wiki/File:Hierarchical_Model.svg

employee table

EmpNo First Name Last Name Dept. Num

100 Ram Prathap 10-L

101 Ravi Kumar 10-L

102 Ramesh Naidu 20-B

103 sarath yadav 20-B

computer table

Serial Num Type User EmpNo

3009734-4 Computer 100

3-23-283742 Monitor 100

2-22-723423 Monitor 100

232342 Printer 100

In this model, the employee data table represents the "parent" part of the hierarchy, while

the computer table represents the "child" part of the hierarchy. In contrast to tree

structures usually found in computer software algorithms, in this model the children point

to the parents. As shown, each employee may possess several pieces of computer

equipment, but each individual piece of computer equipment may have only one

employee owner.

Consider the following structure:

EmpNo Designation ReportsTo

10 Director

20 Senior Manager 10 10

30 Typist 20

40 Programmer 20

In this, the "child" is the same type as the "parent". The hierarchy stating EmpNo 10 is

boss of 20, and 30 and 40 each report to 20 is represented by the "ReportsTo" column. In

Relational database terms, the ReportsTo column is a foreign key referencing the EmpNo

column. If the "child" data type were different, it would be in a different table, but there

would still be a foreign key referencing the EmpNo column of the employees table.

This simple model is commonly known as the adjacency list model, and was introduced

by Dr. Edgar F. Codd after initial criticisms surfaced that the relational model could not

model hierarchical data.

2. The network model is a database model conceived as a flexible way of representing

objects and their relationships. Its distinguishing feature is that the schema, viewed as

a graph in which object types are nodes and relationship types are arcs, is not

restricted to being a hierarchy or lattice.

https://en.wikipedia.org/wiki/Foreign_key
https://en.wikipedia.org/wiki/Adjacency_list
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Database_model
https://en.wikipedia.org/wiki/Lattice_graph

While the hierarchical database model structures data as a tree of records, with each

record having one parent record and many children, the network model allows each

record to have multiple parent and child records, forming a generalized graph structure.

This property applies at two levels: the schema is a generalized graph of record types

connected by relationship types (called "set types" in CODASYL), and the database itself

is a generalized graph of record occurrences connected by relationships (CODASYL

"sets"). Cycles are permitted at both levels. The chief argument in favour of the network

model, in comparison to the hierarchic model, was that it allowed a more natural

modeling of relationships between entities. Although the model was widely implemented

and used, it failed to become dominant for two main reasons. Firstly, IBM chose to stick

to the hierarchical model with semi-network extensions in their established products such

as IMS and DL/I. Secondly, it was eventually displaced by the relational model, which

offered a higher-level, more declarative interface. Until the early 1980s the performance

benefits of the low-level navigational interfaces offered by hierarchical and network

databases were persuasive for many large-scale applications, but as hardware became

faster, the extra productivity and flexibility of the relational model led to the gradual

obsolescence of the network model in corporate enterprise usage.

https://en.wikipedia.org/wiki/Hierarchical_database_model
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/w/index.php?title=Semi-network&action=edit&redlink=1
https://en.wikipedia.org/wiki/Information_Management_System
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/File:Network_Model.svg

