
1. Natural Number

A natural number is a number that occurs commonly and obviously in nature.

Definition 1.1. The natural numbers, denoted as N, is the set of the positive
whole numbers. We denote it as follows:

N = {0, 1, 2, ...}

A possible second definition for N, that addresses the above criticism, is the
following:

N = |We can write x as the sum 1 + 1 + ... + 1, for some number of1′s.}

.

Example 1.1. Is 5 ∈ N? Since 5 = 1 + 1 + 1 + 1 + 1 then, 5 ∈ N .

Theorem 1.1. For all natural numbers m,n, and p we have

1. m + n ∈ N (closure +).

2. (m + n) + p = m + (n + p) (commutativity +).

3. m + n = n + m (associativity +).

4. n + 0 = 0 (identity +).

5. nm ∈ N (closure .).

6. (mn)p = m(np) (commutativity .).

7. mn = nm (associativity .).

8. m1 = m (identity .).

Example 1.2. Let n,m and b be natural numbers. Then

(mn)b = (mb)n.

Sol: Based on Theorem 1.1

(mn)b = m(nb)

then,
m(nb) = m(bn)

and,
m(bn) = (mb)n.

Then,
(mn)b = (mb)n.
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Remark 1.1. Each n ∈ N has a successor n + 1. For example, the successor
of 5 is 6.

Proposition 1.1. The set N satisfies the following properties:

N1 0 ∈ N ;

N2 if n ∈ N , then its successor n + 1 ∈ N;

N3 0 is not the successor of any element in N ;

N4 if n and m have the same successor, then n = m;

N5 suppose S is a subset of N satisfying: 1 ∈ N and if n ∈ S then n + 1 ∈ S,
then S = N.

Definition 1.2. Natural number is either the value zero or the successor of
some other natural numbers.

Theorem 1.2. Let m and n be natural numbers. There exactly one of the
following three statement is true:

1. m > n

2. n > m

3. m = n

1.1. Some result on Natural number (counting numbers)

1. Sum of all first n natural numbers is

1 + 2 + · · ·+ n =
n(n + 1)

2
.

2. Sum of square of all first n natural numbers is

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

3. Sum of all cube of all first n natural numbers is

13 + 23 + · · ·+ n3 =
n2(n + 1)2

4
.

4. Sum of first n odd natural numbers is

1 + 3 + 7 + · · · = n2.

5. Sum of first n even natural numbers is

2 + 4 + 6 + · · · = n(n + 1).
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2. Mathematical Induction

2.1. The Principle of Mathematical Induction

Suppose we have some statement P(n) and we want to demonstrate that P(n) is
true for all n ∈ N . Even if we can provide proofs for

P(1), P(2), · · ·P(k)

where kis some large number, we have accomplished very little. However, there
is a general method, the Principle of Mathematical Induction.
Induction is a defining difference between discrete and continuous mathematics.
Principle of Induction. In order to show that ∀n, P(n), holds, it suffices to
establish the following two properties:

1. Base case: Show that P(n) holds.

2. Induction step: Assume that P(n) holds, and show that P(n+1) also holds.

2.2. Induction Examples

Example 2.1. By using mathematical induction prove

3n − 1

a multiple of 2, ∀n ∈ N .

1. Step one: for n = 1
31 − 1 = 3− 1 = 2

Since 2 is multiple of 2 then, 31 − 1 is true

2. Assume it is true for n = k
3k − 1

is true.
Now, prove that 3k+1 − 1 is multiple of 2

3k+1 − 1 = 3k3− 1 = 3k(2 + 1)− 1 = 23k + (3k − 1)

Example 2.2. Prove for n ≥ 1

1× 1! + 2× 2! + 3× 3! + · · ·+ n× n

!= (n+1)!-1

Step one: for n = 1 The left hand side is 1 × 1! = 1. The right hand side is
2!− 1 + 1. They are equal.
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Assume it is true for n = k

1× 1! + 2× 2! + 3× 3! + · · ·+ k × k! = (k + 1)!− 1

is true.
Now, prove that for n = k + 1

1× 1! + · · ·+ k × k! + (k + 1)× (k + 1)! = (k + 1)!− 1 + (k + 1)× (k + 1)!
= [(k + 1)! + (k + 1)× (k + 1)!]− 1
= (k + 1)![1 + (k + 1)]− 1
= (k + 1)![k + 2]− 1
= (k + 2)!− 1

3. Integer number

For several reasons, it is convenient to extend the set N of natural numbers to
the group Z of integers by throwing in the identity element 0 and an inverse
n for each natural number n. One reason for doing this is to ensure that the
difference m n of any two integers is meaningful. Thus Z is a set on which
all three operations +, , and × are defined. (The notation Z comes from the
German “Zahlen”, meaning “numbers”.)

Definition 3.1. An integer numbers is a whole number that can be positive,
negative, or zero. The set of integers, denoted Z, is formally defined as follows:

...,−2,−1, 0, 1, 2, ...

Theorem 3.1. Let a ∈ Z then,

1. a + 0 = a

2. a− 0 = a

3. a.0 = 0.a = 0

4.
a

0
is not defined.

5. a + a = 2a

6. a− a = 0

7. a× a = a2

8.
a

a
= 1 (except for a = 0, which is not defined, see rule 4)

9. a + (−a) = 0

4



10. a− (−a) = 2a

11. a× (−a) = −a2

12.
a

−a
= −1 (except for a = 0, which is not defined, see rule 4)

Definition 3.2. Let a, b ∈ Z,

1. a < b if b− a ∈ Z.

2. a 6 b if a− b ∈ Z.

Theorem 3.2. Let a, b, c ∈ Z then,

1. If a < b and b < c then, a < c.

2. If a < b c > 0 then, ac < bc.

Example 3.1. By using the integers number’s properties prove if a < b and
b < c then, ac < bc.

Corollary 3.1. Let a and b be an integer numbers then,

1. if a + c = b + c → a = b

2. (−a)b = −(ab)

3. (−a)(−b) = ab

4. if a.b = a.c and c 6= 0 → a = b

Proof. 1.
a + c = b + c

a + c− c = b + c− c

Based on Theorem 3.1(6)
a + 0 = b + 0

Based on Theorem 3.1(1)
a = b

2. Based on Theorem 3.1(3)
a.0 = 0

Based on Theorem 3.1(6)
0.a = 0

Based on Theorem 3.1(9)

(b + (−b))a = −(ab) + (ab)

ba + (−b)a = (ab)− (ab)

Based on Corollary 3.1(1) then,

(−b)a = −(ab).
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3. Based on Corollary 3.1(2) then,

(−a)(−b) = −(−ab) = − · −(ab) = ab

4. if a.b = a.c and c 6= 0 → a = b

5. a · b = 0 → either a = 0 or b = 0

Theorem 3.3. Let a and b be an integer numbers then,

1. if a 6 b → −b 6 −a

2. if a 6 b c 6 0 bc 6 ac

3. 0 6 a and 0 6 b → 0 6 ab

4. 0 6 a2
∨
a.

Proof. 1. Based on Corollary 3.1(1)

a +−b 6 b +−b.

Based on Theorem 3.1(6)
a +−b 6 0.

−a + a +−b 6 −a + 0.

−b 6 −a.

2. Based on Theorem 3.3(1) 0 6 −c and based on Corollary 3.1(1) then,

a · (−c) 6 b · (−c)

−(ac) 6 −(bc)

Based on Theorem 3.1(1)
−a 6 −b

3. Homework.

4. Homework.
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3.1. Well-ordering principle

In mathematics, the well-ordering principle states that every non-empty set of
positive integers contains a least element. In other words, the set of positive
integers is well-ordered.

1. Every nonempty subset S of the positive integers has a least element.

2. The set of positive integers does not contain any infinite strictly decreasing
sequences.

Theorem 3.4. There are no positive integers strictly between 0 and 1.

Proof. Let S be the set of integers x such that 0 < x < 1 Suppose S is nonempty;
let n be its smallest element. Multiplying both sides of n < 1 by n gives n2 < n
The square of a positive integer is a positive integer, so n2 is an integer such
that 0 < n < n2 < 1. This is a contradiction of the minimality of n. Hence S
is empty.
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