
1 Vector space

Definition 1.1. A vector space V over a field K is a set V with two operations

called addition + and multiplication · such that the following axioms are satisfied:

(1) (i) u+ v ∈ V for all u, v ∈ V . (Addition is closed)

(ii) u+ v = v + u for all u, v ∈ V . (Addition is commutative)

(iii) u+ (v +w) = (u+ v) +w for all u, v, w ∈ V . (Addition is associative)

(iv) There exists an element 0 ∈ V , called the zero vector, such that

u+ 0 = 0 + u = u for all u ∈ V .

(v) For all u ∈ V there exists an element −u ∈ V , called the additive

inverse of u, such that u+ (−u) = 0 = −u+ u.

(2) (i) α · u ∈ V for all u ∈ V and α ∈ K .

(ii) α · (u+ v) = α · u+ α · v for all u, v ∈ V and α ∈ K .

(iii) (α + β) · u = α · u+ β · u. for all u ∈ V and α, β ∈ K .

(iv) (αβ) · u = α · (β · u) for all u ∈ V and α, β ∈ K .

(v) For all u ∈ V there exists an element 1 ∈ K , called the multiplicative

identity of u, such that 1 · u = u · 1 = u.

Example 1.2. Let C be the set of complex numbers. Define addition in C by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i for all a, b, c, d ∈ R, (1)

and define scalar multiplication by

α · (a+ bi) = αa+ αbi for all scalars α ∈ R, and for all a, b ∈ R. (2)
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Show that (C,+, ·) is a vector space over R.

Solution : Let u = a+ bi, v = c+ di, w = e+ fi ∈ C, where a, b, c, d, e, f ∈ R,

we have

(1)

(i) The addition is closed :

u+ v = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i by (1).

Since (a+ c) and (b+ d) are real numbers then u+ v ∈ C.

(ii) The addition is commutative:

u+ v = (a+ bi) + (c+ di)

= (a+ c) + (b+ d)i by (1),

= (c+ a) + (d+ b)i because addition on R is commutative,

= (c+ di) + (a+ bi) by (1),

= v + u

(iii) The addition is associative: we have to prove that u+(v+w) = (u+v)+w

for all u, v, w ∈ C.

The left hand side (L.H.S):

u+ (v + w) = u+ [(c+ di) + (e+ fi)]

= (a+ bi) + [(c+ e) + (d+ f)i] by (1),

= [a+ (c+ e)] + [b+ (d+ f)]i by (1),

= [(a+ c) + e] + [(b+ d) + f ]i because addition on R is associative.
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The right hand side (R.H.S):

(u+ v) + w = [(a+ bi) + (c+ di)] + w

= [(a+ c) + (b+ d)i] + (e+ fi) by (1),

= [(a+ c) + e] + [(b+ d) + f)]i by (1).

Then L.H.S=R.H.S

(iv) The additive identity : For all u = a+ bi ∈ C, we have

(a+ bi) + (0 + 0i) = (a+ 0) + (b+ 0)i by (1),

= a+ bi because 0 is the additive identity in R.

Then the additive identity of C is (0 + 0i).

(v) The additive inverse : For all u = a+ bi ∈ C, we have

(a+ bi) +
(
− a+ (−b)i

)
=
(
a+ (−a)

)
+
(
b+ (−b)

)
i by (1),

= 0 + 0i because (−a) is the additive inverse of a in R.

Then the additive inverse of a+ bi ∈ C is −a+ (−b)i.

(2) Let u = a+ bi, v = c+ di ∈ C and α ∈ R.

(i) We have to prove that α · u ∈ C.

α · u = α · (a+ bi)

= αa+ αbi

Since αa, αb ∈ R, then α · u ∈ C.

(ii) We have to prove that α · (u+ v) = α · u+α · v for all u, v ∈ C and α ∈ R.
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The left hand side (L.H.S) :

α · (u+ v) = α · [(a+ bi) + (c+ di)]

= α · [(a+ c) + (b+ d)i] by (1)

= α(a+ c) + α(b+ d)i by (2)

= (αa+ αc) + (αb+ αd)i because multiplication distributes over addition in R.

The right hand side (R.H.S) :

α · u+ α · v = α · (a+ bi) + α · (c+ di)

= (αa+ αbi) + (αc+ αdi) by (2),

= (αa+ αc) + (αb+ αd)i by (1),

Then L.H.S=R.H.S

(iii) We have to prove that (α+β) ·u = α ·u+β ·u for all u ∈ C and α, β ∈ R.

The L.H.S :

(α + β) · u = (α + β) · (a+ bi)

= (α + β)a+ (α + β)bi by (2),

= (αa+ βa) + (αb+ βb)i because multiplication distributes over addition in R.

The R.H.S :

α · u+ β · u = α · (a+ bi) + β · (a+ bi)

= (αa+ αbi) + (βa+ βbi) by (2),

= (αa+ βa) + (αb+ βb)i by (1).
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Then L.H.S=R.H.S

(iv) We have to prove that (α β) · u = α · (β · u) for all u ∈ C and α, β ∈ R.

The L.H.S :

(αβ) · u = (αβ) · (a+ bi)

= (αβ)a+ (αβ)b i by (2),

= αβa+ αβb i because multiplication is associative in R.

The R.H.S :

α · (β · u) = α · [β · (a+ bi)]

= α · [βa+ βb i] by (2),

= αβa+ αβb i by (2).

Then L.H.S=R.H.S

(v) The multiplicative identity : we have to show that 1 · u = u for all

u = a + bi ∈ C. (Note that, 1 represents scalar from the field R and NOT from

the set C).

1 · u = 1 · (a+ bi)

= 1a+ 1bi by (2),

= a+ bi

= u

We have proved that all axioms hold in C. Hence, (C,+, ·) is a vector space

over R.
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Example 1.3. Let M2×2(R) =
{(a b

c d

)
| a, b, c, d ∈ R

}
be the set of all two by

two matrices with entries in R. For A =
(a1 a2

a3 a4

)
, B =

(b1 b2

b3 b4

)
∈ M2×2 and

α ∈ R, addition and scalar multiplication of matrices defined by

A+B =
(a1 a2

a3 a4

)
+
(b1 b2

b3 b4

)
=
(a1 + b1 a2 + b2

a3 + b3 a4 + b4

)
(3)

α · A = α ·
(a1 a2

a3 a4

)
=
(αa1 αa2

αa3 αa4

)
. (4)

Prove that (M2×2,+, ·) is a vector space over R.

Solution: Let A =
(a1 a2

a3 a4

)
, B =

(b1 b2

b3 b4

)
, C =

(c1 c2

c3 c4

)
∈M2×2.

(1)

(i)

A+B =
(a1 a2

a3 a4

)
+
(b1 b2

b3 b4

)
=
(a1 + b1 a2 + b2

a3 + b3 a4 + b4

)
by (3).

Since a1, a2, a3, a4, b1, b2, b3, b4 are real numbers, then a1+b1, a2+b2, a3+b3, a4+b4 ∈

R. Hence, A+B ∈M2×2(R).
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(ii) We have to show that A+B = B + A for all A,B ∈M2×2.

A+B =
(a1 a2

a3 a4

)
+
(b1 b2

b3 b4

)

=
(a1 + b1 a2 + b2

a3 + b3 a4 + b4

)
by (3),

=
(b1 + a1 b2 + a2

b3 + a3 b4 + a4

)
because addition on R is commutative

=
(b1 b2

b3 b4

)
+
(a1 a2

a3 a4

)
by (3),

= B + A

(iii) We have to show that A+ (B + C) = (A+B) + C for all A,B,C ∈M2×2.

The L.H.S:

A+ (B + C) =
(a1 a2

a3 a4

)
+
[(b1 b2

b3 b4

)
+
(c1 c2

c3 c4

)]

=
(a1 a2

a3 a4

)
+
(b1 + c1 b2 + c2

b3 + c3 b4 + c4

)
by (3),

=
(a1 + (b1 + c1) a2 + (b2 + c2)

a3 + (b3 + c3) a4 + (b4 + c4)

)
by (3),

=
((a1 + b1) + c1 (a2 + b2) + c2

(a3 + b3) + c3 (a4 + b4) + c4

)
because addition on R is associative.
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The R.H.S:

(A+B) + C =
[(a1 a2

a3 a4

)
+
(b1 b2

b3 b4

)]
+
(c1 c2

c3 c4

)

=
(a1 + b1 a2 + b2

a3 + b3 a4 + b4

)
+
(c1 c2

c3 c4

)
by (3),

=
((a1 + b1) + c1 (a2 + b2) + c2

(a3 + b3) + c3 (a4 + b4) + c4

)
by (3).

Then L.H.S= R.H.S

(iv) For all A =
(a1 a2

a3 a4

)
∈M2×2, we have

(a1 a2

a3 a4

)
+
(0 0

0 0

)
=
(a1 a2

a3 a4

)

Then the zero matrix
(0 0

0 0

)
is the additive identity.

(v) For all A =
(a1 a2

a3 a4

)
∈ M2×2, we have (−A) =

(−a1 −a2
−a3 −a4

)
∈ M2×2,

where

A+ (−A) =
(a1 a2

a3 a4

)
+
(−a1 −a2
−a3 −a4

)
=
(0 0

0 0

)
.

Then the matrix (−A) is the additive inverse for the matrix A.

(2)

(i) We have to show that α · A ∈M2×2(R) for all A ∈M2×2 and α ∈ R.

α · A = α ·
(a1 a2

a3 a4

)
=
(αa1 αa2

αa3 αa4

)
by (4).

Since α, a1, a2, a3, a4 are real numbers then αa1, αa2, αa3, αa4 ∈ R.
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Hence, α · A ∈M2×2(R).

(ii) We have to show that α · (A+B) = α ·A+ α ·B for all A,B ∈M2×2 and

α ∈ R.

The L.H.S:

α · (A+B) = α ·
[(a1 a2

a3 a4

)
+
(b1 b2

b3 b4

)]

= α ·
(a1 + b1 a2 + b2

a3 + b3 a4 + b4

)
by (3),

=
(α(a1 + b1) α(a2 + b2)

α(a3 + b3) α(a4 + b4)

)
by (4),

=
(αa1 + αb1 αa2 + αb2

αa3 + αb3 αa4 + αb4

)
because multiplication distributes over addition in R.

The R.H.S:

α · A+ α ·B = α ·
(a1 a2

a3 a4

)
+ α ·

(b1 b2

b3 b4

)

=
(αa1 αa2

αa3 αa4

)
+
(αb1 αb2

αb3 αb4

)
by (4),

=
(αa1 + αb1 αa2 + αb2

αa3 + αb3 αa4 + αb4

)
by (3).

Then L.H.S= R.H.S

(iii) We have to show that (α + β) · A = α · A + β · A for all A ∈ M2×2 and

α, β ∈ R.
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The L.H.S:

(α + β) · A = (α + β) ·
(a1 a2

a3 a4

)

=
((α + β)a1 (α + β)a2

(α + β)a3 (α + β)a4

)
by (4),

=
(αa1 + βa1 αa2 + βa2

αa3 + βa3 αa4 + βa4

)
because multiplication distributes over addition in R.

The R.H.S:

α · A+ β · A = α ·
(a1 a2

a3 a4

)
+ β ·

(a1 a2

a3 a4

)

=
(αa1 αa2

αa3 αa4

)
+
(βa1 βa2

βa3 βa4

)
by (4),

=
(αa1 + βa1 αa2 + βa2

αa3 + βa3 αa4 + βa4

)
by (3).

Then L.H.S = R.H.S

(iv) We have to show that (αβ) ·A = α ·(β ·A) for all l A ∈M2×2 and α, β ∈ R.

The L.H.S:

(αβ) · A = (αβ) ·
(a1 a2

a3 a4

)

=
((αβ)a1 (αβ)a2

(αβ)a3 (αβ)a4

)
by (4),

=
(α(βa1) α(βa2)

α(βa3) α(βa4)

)
because multiplication on R is associative.
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The R.H.S:

α · (β · A) = α ·
[
β ·
(a1 a2

a3 a4

)]

= α ·
(βa1 βa2

βa3 βa4

)
by (4),

=
(α(βa1) α(βa2)

α(βa3) α(βa4)

)
by (4).

Then L.H.S= R.H.S

(v) For all A ∈M2×2, we have 1 ∈ R such that

1 · A = 1 ·
(a1 a2

a3 a4

)
=
(1a1 1a2

1a3 1a4

)
= A.

Then 1 ∈ R is the multiplicative identity .

Example 1.4. Let V = {x ∈ R | x > 0}. For x, y ∈ V and α ∈ R, we define

addition and scalar multiplication as following

x⊕ y = xy,

α⊗ x = xα.

Show that (V,⊕,⊗) is a vector space over R.

Example 1.5. Is the set V =
{a

b

 | a, b > 0
}

with the usual addition and scalar

multiplication of matrices define a vector space over R ?

Solution: Let α = −2 ∈ R, then α

a
b

 = −2

a
b

 =

−2a

−2b

 /∈ V .

Since a, b > 0 then −2a,−2b < 0.

11



Proposition 1.6. Let V be a vector space over K , then we have

(1) The additive identity, 0 ∈ V , is unique.

(2) The additive inverse, (−u) ∈ V , for u ∈ V is unique.

(3) For all u ∈ V we have 0 · u = 0.

(4) For all u ∈ V we have (−1) · u = −u.

(5) For all u, v, w ∈ V , if u+ v = u+ w then v = w.

(6) For all u, v ∈ V , the equation u+x = v has a unique solution x = v−u ∈ V .

(7) For all u ∈ V , we have −(−u) = u.
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2 Subspace

In this section we suppose that (V,+, ·) is a vector space over K .

Definition 2.1. A non-empty subset U of V is called a subspace of V if (U,+, ·)

is a vector space over K .

Proposition 2.2. A non-empty subset U of a vector space V over K is a subspace

of V if and only if the following conditions are satisfied:

(1) 0 ∈ U .

(2) For all u, v ∈ U , we have u+ v ∈ U .

(3) For all u ∈ U and α ∈ K , we have α · u ∈ U .

Remark 2.3. Every vector space V has two subspaces namely V and {0}, which

are called trivial subspaces. Any other subspace of V is called a proper subspace

of V .

Example 2.4. Show that which of these sets are subspace of R3

(1) U = {(x, y, 0) | x, y ∈ R}.

(2) U = {(x, y, 1) | x, y ∈ R}.

.

Proposition 2.5. If W1 and W2 are subspaces of V , then W1 ∩W2 is a subspace

of V .

Proof. We have to satisfy the three conditions in Proposition 2.2.

(1) Since W1 and W2 are subspaces of V , then 0 ∈ W1 and 0 ∈ W2.

Hence,

0 ∈ W1 ∩W2.
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(2) Let u, v ∈ W1 ∩W2, then u, v ∈ W1 and u, v ∈ W2.

Since W1 and W2 are subspaces of V , then u+ v ∈ W1 and u+ v ∈ W2.

Hence,

u+ v ∈ W1 ∩W2.

(3) Let α ∈ K and u ∈ W1 ∩W2, then u ∈ W1 and u ∈ W2.

Since W1 and W2 are subspaces of V then α · u ∈ W1 and α · u ∈ W2.

Hence,

α · u ∈ W1 ∩W2.

Example 2.6. Show that if W1 and W2 are subspaces of a vector space V , then

W1 ∪W2 is NOT a subspace of V .

To prove this, we have W1 = {(a, 0) | a ∈ R} and W2 = {(0, b) | b ∈ R} are

both subspaces of R2. But W1∪W2 is not a subspace of R2 because (1, 0) ∈ W1∪W2

and (0, 1) ∈ W1 ∪W2 while (1, 0) + (0, 1) = (1, 1) /∈ W1 ∪W2.

Proposition 2.7. Let W1,W2, · · · ,Wn are subspaces of a vector space V over a

field K , then we have

(1) W1 ∩W2 ∩ · · · ∩Wn is a subspace of V .

(2) W1 + W2 + · · · + Wn = {w1 + w2 + · · · + wn | wi ∈ Wi, i = 1, 2, · · ·n} is a

subspace of V .

Proof.
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3 Linear Combinations and Span

Definition 3.1. Let v1, v2, · · · , vn be vectors in a vector space V over K . A

linear combination of these vectors is any expression of the form

α1v1 + α2v2 + · · ·+ αnvn

for some scalars α1, α2, · · · , αn ∈ K .

Example 3.2. Consider the vector space R2. The vector v = (−7,−13) is a linear

combination of v1 = (−2, 1) and v2 = (1, 5), where

v = 2v1 + (−3)v2.

Example 3.3. Consider the vector space R2. The vector v = (1,−3) is a linear

combination of v1 = (0, 1) , v2 = (2,−1), v3 = (1,−2) and v4 = (0, 3) where

v = (−2)v1 + (0)v2 + 1v3 + (
1

3
)v4.

Sometimes we cannot write a vector v in a vector space V as a linear combi-

nation of v1, v2, · · · , vn ∈ V , as explained in this example.

Example 3.4. Let v1 = (2, 5, 3), v2 = (1, 1, 1), and v = (4, 2, 0). Because there

exist no scalars α1, α2 ∈ K such that v = α1v1 + α2v2 then v is not a linear

combination of v1 and v2.

Definition 3.5. Let V be a vector space over K , and let S = {v1, v2, · · · , vn} be

a subset of V . We say that S spans V , or S generates V , if every vector v in V

can be written as a linear combination of vectors in S. That is, for all v ∈ V , we

have

v = α1v1 + α2v2 + · · ·+ αnvn
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for some scalars α1, α2, · · · , αn ∈ K .

Example 3.6. Show that the set S = {(1, 0), (0, 1)} spans the vector space R2 =

{(a, b) | a, b ∈ R}.

Solution: We have to show that for all v = (a, b) ∈ R2 there exists α1, α2 ∈ R

such that v = α1(1, 0) + α2(0, 1).

(a, b) = α1(1, 0) + α2(0, 1)

= (α1, 0) + (0, α2)

= (α1, α2)

Then α1 = a and α2 = b. So, any vector v = (a, b) ∈ R2 can be written in the

form (a, b) = a(1, 0) + b(0, 1). Thus S spans R2.

Example 3.7. Let S =
{
v1 =

1 0

0 0

 , v2 =

0 0

0 1

}, and

V =
{
v =

a b

c d

 | a, b, c, d ∈ R
}

(1) Does S spans V ?

(2) Define a vector space U such that S spans U .

(3) Find a set that spans V .

Solution: (1) If S spans V then for all v ∈ V , there exists α1, α2 ∈ R such that

a b

c d

 = α1

1 0

0 0

+ α2

0 0

0 1


=

α1 0

0 0

+

0 0

0 α2


=

α1 0

0 α2
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So, α1 = a and α2 = d. But if b or c is non-zero then v cannot be written as a

linear combination of the vectors in S. Hence, S not spans V .

(2) From (1), we can see that if U =
{a 0

0 b

 | a, b ∈ R
}

then S spans U .

(3) The set that spans V is
{1 0

0 0

 ,
0 1

0 0

 ,
0 0

1 0

 ,
0 0

0 1

}.
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Example 3.8. Show that the set S = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} spans R3 and

write the vector (2, 4, 8) as a linear combination of vectors in S.

Solution:

A vector in R3 has the form v = (x, y, z).

Hence we need to show that, for some scalars α1, α2, α3 ∈ R, every such v can

be written as

(x, y, z) = α1(0, 1, 1) + α2(1, 0, 1) + α3(1, 1, 0)

= (α2 + α3, α1 + α3, α1 + α2)

This give us system of equations

x = α2 + α3

y = α1 + α3

z = α1 + α2

This system of equations can be written in matrix form


0 1 1

1 0 1

1 1 0



α1

α2

α3

 =


x

y

z


We can write it as Aα = b. Since det(A) = 2 then this system has a solution.

Now, to write (2, 4, 8) as a linear combination of vectors in S, we find that

A−1 =


−0.5 0.5 0.5

0.5 −0.5 0.5

0.5 0.5 −0.5
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Then

α = A−1b
α1

α2

α3

 =


−0.5 0.5 0.5

0.5 −0.5 0.5

0.5 0.5 −0.5

 ·


2

4

8


So, α1 = 5, α2 = 3, α3 = −1, and

(2, 4, 8) = 5(0, 1, 1) + 3(1, 0, 1) + (−1)(1, 1, 0).

4 Linear independence

Definition 4.1. Let V be a vector space over a field K . A subset {v1, v2, · · · , vn}

in V is linearly dependent over K if there exists scalars α1, α2, · · · , αn ∈ K , (not

all zero), such that

α1v1 + α2v2 + · · ·+ αnvn = 0.

Definition 4.2. Let V be a vector space over a field K . A subset {v1, v2, · · · , vn}

in V is linearly independent over K if α1v1 + α2v2 + · · · + αnvn = 0 then α1 =

α2 = · · · = αn = 0

Example 4.3. Show that the set {(1, 0, 1), (1,−1, 1), (2,−1, 2), (0, 0, 1)}

is linearly dependent over R .

Solution: We have to show that there exists α1, α2, α3, α4 ∈ R not all zero such

that

α1(1, 0, 1) + α2(1,−1, 1) + α3(2,−1, 2) + α4(0, 0, 1) = (0, 0, 0)
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We have the following system of equations

α1 + α2 + 2α3 = 0

−α2 − α3 = 0

α1 + α2 + 2α3 + α4 = 0

Put the first equation in the last equation, we get α4 = 0.

From the second equation, we have α2 = −α3 . Let α2 = 1 then α3 = −1 and

α1 = 1 . Hence, (1, 0, 1) + (1,−1, 1) + (−1)(2,−1, 2) + (0)(0, 0, 1) = (0, 0, 0).

Example 4.4. Show that the set {(1, 0, 1), (0, 0, 1)} is linearly independent over

R .

Solution:

α1(1, 0, 1) + α2(0, 0, 1) = (0, 0, 0)

(α1, 0, α1) + (0, 0, α2) = (0, 0, 0)

(α1, 0, α1 + α2) = (0, 0, 0)

So, α1 = 0, α1 + α2 = 0 then α2 = 0. Then it is linearly independent over R.

Example 4.5. Show that the set S = {i, i+ 1} is linearly dependent over C, but

it is linearly independent over R.

Solution: Since (−1 + i)i+ (1)(1 + i) = 0, so, S is linearly dependent over C.

Let α(i) + β(1 + i) = 0, where α, β ∈ R

Then

αi+ β + βi = 0 + 0i

β + (α + β)i = 0 + 0i
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So, β = 0, α+β = 0 and then α = 0. Hence, S is linearly independent over R.

Theorem 4.6. If A = (aij) ∈ Mn×n( K ), and Cj = {a1j, a2j, · · · , anj} , j =

1, 2, · · · , n are the n columns of A then {C1, C2, · · · , Cn} is linearly dependent

over K if and only if detA = 0.

Corollary 4.7. The n rows of a matrix A ∈ Mn×n( K ) are linearly dependent

over K if and only if detA = 0.

5 Basis and dimension

Definition 5.1. Let V be a vector space over K . A subset S = {v1, v2, · · · , vn}

is called a basis for V if

(i) V is spanned by S, that is, for every v ∈ V there exists scalars α1, α2, · · · , αn ∈

K such that v = α1v1 + α2v2 + · · ·+ αnvn.

(ii) The set S is linearly independent over K .

Example 5.2. Show that the set S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for the

vector space R3.

Solution: (i) we have to show that S spans R3. That is, f or all v = (x, y, z) ∈

R3, we have to find scalars α1, α2, α3 ∈ R3 such that v = α1v1 + α2v2 + α3v3

(x, y, z) = α1(1, 0, 0) + α2(0, 1, 0) + α3(0, 0, 1)

(x, y, z) = (α1, α2, α3)

So, (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1) and, hence, R3 is generated by S.
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(ii) To show that S is linearly independent, Let A =


1 0 0

0 1 0

0 0 1


Since det(A) 6= 0 then S is linearly independent.

Finally, we get S is a basis for R3.

Example 5.3. Let e1 = (1, 0, 0, · · · , 0), e2 = (0, 1, 0, 0, · · · , 0), · · · , en = (0, 0, · · · , 1).

Then B = {e1, e2, · · · , en} is a basis for Rn. This basis called the standard basis

for Rn.

Theorem 5.4. Let V be a vector space over a field K , and S = {v1, v2, · · · , vn} be

a basis of V containing n vectors.Then any subset containing more than n vectors

in V is linearly dependent.

Definition 5.5. Let V be a vector space with a basis S = {v1, v2, · · · , vn} has n

vectors. Then, we say n is the dimension of V and we write dim(V ) = n.

Theorem 5.6. Any vector space V has a basis. All bases for V are of the same

dimension.

Example 5.7. The following vector spaces over R have dimensions :

(1) dim(Rn) = n.

(2) dim R = 1.

(3) dim C = 2.

(4) dim Mn,n(R) = n2.

Theorem 5.8. Let V be a vector space such that dim(V ) = n. Let S = {v1, v2, · · · , vn}

be a subset of V . Then we have

(1) If S spans V , then S is also linearly independent hence a basis for V .
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(2) If S is linearly independent, then S also spans V hence is a basis for V .

Example 5.9. Show that S is not a basis for R3 where S = {(6, 4, 1), (3,−5, 1), (8, 13, 6), (0, 6, 9)}.

Solution: Since dim(R3) = 3 , then any basis for R3 must have 3 vectors, while

here S has four.

Example 5.10. Show that S =


1 0

0 1

 ,
1 0

1 1

 ,
1 1

0 1

 ,
1 1

1 0

 is a basis

for M2,2(R).

Solution: Since S has four vectors and dim(M2,2(R) = 4 then, by Theorem 5.8,

we have to show that either S spans V or S is linearly independent.

6 Dot and cross products

Definition 6.1. Let v = (a1, a2, · · · , an) be a vector in a vector space V . The

length (or norm or magnitude) of v is

‖v‖ =
√
a21 + a22 + · · ·+ a2n.

Example 6.2. Suppose that the vector v = (2,−1, 4, 1), then the length of v is

‖v‖ =
√

22 + (−1)2 + 42 + 12 =
√

22.

Definition 6.3. Let u = (a1, a2, · · · , an) and v = (b1, b2, · · · , bn) are vectors in a

vector space V . The dot product of u and v is defined by

u · v = a1b1 + a2b2 + · · ·+ anbn

.
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Definition 6.4. The angle θ between two vectors u and v is determined by the

formula

u · v = ‖u‖‖v‖ cos θ

Example 6.5. Let u = (1, 3, 0) and v = (−2, 1, 5). The dot product of u and v is

u · v = 1(−2) + 3(1) + 0(5) = 1,

and the angle between them is

cos θ =
u · v
‖u‖‖v‖

=
1√

10
√

30

So,

θ = cos−1
( 1√

10
√

30

)
.

Some properties of the dot product : Let u, v and w are vectors in a vector

space V over K . The dot product has the following properties:

(1) v · v = ‖v‖2

(2) u · v = v · u

(3) u · (v + w) = u · v + u · w

(4) (αu) · v = u · (αv) = α(u · v), where α ∈ K .

(5) If u · v > 0 then the angle formed by the vectors (0 < θ < 90).

(6) If u · v < 0 then the angle formed by the vectors, (90 < θ ≤ 180).

(7) If u · v = 0 then the angle formed by the vectors is 90 degrees.

Definition 6.6. Let u and v are vectors in a vector space V . If

u · v = 0

24



then we say that u and v are orthogonal.

Definition 6.7. A subset S = {v1, v2, · · · , vn} of a vector space V form an or-

thogonal set if all vectors in S are orthogonal to each other, vi · vj = 0 for i 6= j.

In addition, if all vectors in an orthogonal set S has length one, ‖vi‖ = 1, then S

is called an orthonormal set.

Theorem 6.8. Any orthogonal set is linearly independent .

Gram-Schmidt process : If B = {v1, v2, · · · , vn} is a basis for a vector space V .

Then we can define an orthogonal basis W = {w1, w2, · · · , wn} for V by using the

following steps:

w1 = v1

w2 = v2 −
w1 · v2
w1 · w1

w1

w3 = v3 −
w1 · v3
w1 · w1

w1 −
w2 · v3
w2 · w2

w2

...

wn = vn −
w1 · vn
w1 · w1

w1 −
w2 · vn
w2 · w2

w2 − · · · −
wn−1 · vn
wn−1 · wn−1

wn−1

In addition, the set { w1

‖w1‖
,
w2

‖w2‖
, · · · , wn

‖wn‖

}
is an orthonormal basis for V .

Example 6.9. Let S = {v1 = (1, 1, 0), v2 = (1, 1, 1), v3 = (3, 1, 1)} be a basis for

R3. We will use Gram-Schmidt process to find orthogonal and orthonormal bases

for R3.
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w1 = v1 = (1, 1, 0)

w2 = v2 −
w1 · v2
w1 · w1

w1

= (1, 1, 1)− (1, 1, 0) · (1, 1, 1)

(1, 1, 0) · (1, 1, 0)
(1, 1, 0)

= (1, 1, 1)− 1 + 1 + 0

1 + 1 + 0
(1, 1, 0)

= (0, 0, 1)

w3 = v3 −
w1 · v3
w1 · w1

w1 −
w2 · v3
w2 · w2

w2

= (3, 1, 1)− (1, 1, 0) · (3, 1, 1)

(1, 1, 0) · (1, 1, 0)
(1, 1, 0)− (0, 0, 1) · (3, 1, 1)

(0, 0, 1) · (0, 0, 1)
(0, 0, 1)

= (3, 1, 1)− 4

2
(1, 1, 0)− 1

1
(0, 0, 1)

= (3, 1, 1)− (2, 2, 0)− (0, 0, 1)

= (1,−1, 0)

Then W = {w1, w2, w3} = {(1, 1, 0), (0, 0, 1), (1,−1, 0)} is an orthogonal basis for

R3.

Since ‖w1‖ =
√

2, ‖w2‖ = 1, ‖w3‖ =
√

2 then the set

U =
{ w1

‖w1‖
,
w2

‖w2‖
,
w3

‖w3‖

}
=
{ 1√

2
(1, 1, 0), (0, 0, 1),

1√
2

(1,−1, 0)
}

is an orthonormal basis for R3.
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Definition 6.10. Let u = (a1, a2, a3), v = (b1, b2, b3) ∈ R3 then we define the

cross product of u and v as following

u× v =

∣∣∣∣∣∣∣∣∣
i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣ = i(a2b3 − b2a3)− j(a1b3 − b1a3) + k(a1b2 − b1a2).

That is, u× v = (a2b3 − b2a3, a3b1 − a1b3, a1b2 − b1a2).

Geometrically, the cross product of vectors u and v represents a vector that is

orthogonal to both of u and v.

u

u× v

v

Definition 6.11. The angle θ between two vectors u and v is determined by the

formula

‖u× v‖ = ‖u‖ ‖v‖ sin θ.

Note that, the length of u × v represents the area of the parallelogram that

spanned by u and v.

u

v
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Example 6.12. Find the area of the parallelogram that spanned by the vectors

u = (1, 3, 2) and v = (−2, 1, 0) .

Solution :

u× v = (−2,−4, 7)

‖u× v‖ =
√

4 + 16 + 49 =
√

69
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7 Eigenvalues and eigenvectors

Definition 7.1. Let A be an n × n matrix. If there is a number λ ∈ C and a

vector x 6= 0 such that Ax = λx, then we say that λ is an eigenvalue for A, and x

is called an eigenvector for A with eigenvalue λ.

Example 7.2. If

A =

1 3

6 −2

 , and x =

1

1

 ,

then

Ax =

4

4

 = 4x .

So, λ = 4 is an eigenvalue of A, and x is an eigenvector for A with this eigenvalue.

We can write the equation Ax = λx as a linear system. Since λx = λIx, (where

I = In is the identity matrix), we have that

Ax = λx⇐⇒ Ax− λx = 0⇐⇒ (A− λI)x = 0

This linear system has a non-trivial solution x 6= 0 if and only if

det(A− λI) = 0, (why?).

Definition 7.3. The characteristic equation of a square matrix A is the equation

det(A− λI) = 0.
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Theorem 7.4. The eigenvalues of a square matrix A are the solutions of the

characteristic equation

det(A− λI) = 0.

How to find the eigenvalues and the eigenvectors:

To find the eigenvalues of a matrix A, we have to find the solution of the

characteristic equation det(A − λI) = 0, then to find the eigenvectors for A with

eigen value λ we have to solve the linear system (A − λI)x = 0, as explained in

this example.

Example 7.5. Find the eigenvalues and the eigenvectors of the matrix

A =

2 3

3 −6

 .

Solution: We have to find A− λI.

A− λI =

2 3

3 −6

− λ
1 0

0 1



=

2− λ 3

3 −6− λ



30



Now, we have to find the solution to the characteristic equation det(A−λI) = 0.∣∣∣∣∣∣2− λ 3

3 −6− λ

∣∣∣∣∣∣ = (2− λ)(−6− λ)− 3.3 = λ2 + 4λ− 21 = 0

Then

λ2 + 4λ− 21 = (λ+ 7)(λ− 3) = 0

So, the eigenvalues of A are

λ1 = −7 and λ2 = 3

To find the eigenvector x =

x1
x2

 for λ1 = −7, we have to solve the following

system

(A− λ1I)x = 0

2− (−7) 3

3 −6− (−7)

x1
x2

 =

0

0


9 3

3 1

x1
x2

 =

0

0


Using Gauss elimination, (R1 → 1

9
R1, R2 → −3R1 +R2), we get

1 1
3

0 0

x1
x2

 =

0

0


We have only one equation with two variables x1 + 1

3
x2 = 0, then x1 = −1

3
x2.
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Assume x2 = c1 , gives us x =

−1
3
c1

c1

 = c1

−1
3

1

, where c1 ∈ R.

Similarly, we can show that the eigenvector for λ2 = 3 is x = c2

3

1

, where

c2 ∈ R.
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8 Linear transformation on vector spaces

Definition 8.1. Let V and W are vector spaces over a field K . A linear trans-

formation T from V into W is a mapping T : V → W such that

(i) T (u+ v) = T (u) + T (v)

(ii) T (αu) = αT (u)

for all u, v ∈ V and α ∈ K . If T : V → V then we say that T is a linear

transformation on V .

Example 8.2. Show that T : R3 → R2 defined by T (a1, a2, a3) = (a1 +a2, a2−a3)

is a linear transformation.

Solution:

(i) Let u = (a1, a2, a3), v = (b1, b2, b3) ∈ R3. Then

u+ v = (a1 + b1, a2 + b2, a3 + b3), and

T (u+ v) = T (a1 + b1, a2 + b2, a3 + b3)

= (a1 + b1 + a2 + b2, a2 + b2 − a3 − b3)

= (a1 + a2 + b1 + b2, a2 − a3 + b2 − b3)

= (a1 + a2, a2 − a3) + (b1 + b2, b2 − b3)

= T (u) + T (v)

(ii) Let α ∈ K , then αu = (αa1, αa2, αa3).

T (αu) = T (αa1, αa2, αa3)

= (αa1 + αa2, αa2 − αa3)

= α(a1 + a2, a2 − a3)

= αT (u)
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Then T is a linear transformation.

Example 8.3. Let T : R3 → R2 is defined by T (a1, a2, a3) = (a1 − 1, a2). Is T a

linear transformation?

Solution: Let u = (a1, a2, a3) and v = (b1, b2, b3) ∈ R3. Then

u+ v = (a1 + b1, a2 + b2, a3 + b3).

T (u+ v) = T (a1 + b1, a2 + b2, a3 + b3)

= (a1 + b1 − 1, a2 + b2)

On the other hand,

T (u) + T (v) = T (a1, a2, a3) + T (b1, b2, b3)

= (a1 − 1, a2) + (b1 − 1, b2)

= (a1 + b1 − 2, a2 + b2)

So, T (u+ v) 6= T (u) + T (v), and hence, T is NOT a linear transformation.

Example 8.4. Let M ∈Mm,m( K ) and N ∈Mn,n( K ). Define

T : Mm,n( K ) →Mm,n( K ) by T (A) = MAN for all A ∈Mm,n( K ).

Show that T is a linear transformation.

Solution: Let A,B ∈Mm,n( K ) and α ∈ K .
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(i)

T (A+B) = M(A+B)N

= MAN +MBN

= T (A) + T (B)

(ii) T (αA) = M(αA)N = α(MAN) = αT (A)

Then T is a linear transformation.
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