1 Vector space

Definition 1.1. A vector space V over a field \mathbb{K} is a set V with two operations called addition + and multiplication \cdot such that the following axioms are satisfied:
(1) (i) $u+v \in V$ for all $u, v \in V$. (Addition is closed)
(ii) $u+v=v+u$ for all $u, v \in V$. (Addition is commutative)
(iii) $u+(v+w)=(u+v)+w$ for all $u, v, w \in V$. (Addition is associative)
(iv) There exists an element $0 \in V$, called the zero vector, such that $u+0=0+u=u$ for all $u \in V$.
(v) For all $u \in V$ there exists an element $-u \in V$, called the additive inverse of u, such that $u+(-u)=0=-u+u$.
(2) (i) $\alpha \cdot u \in V$ for all $u \in V$ and $\alpha \in \mathbb{K}$.
(ii) $\alpha \cdot(u+v)=\alpha \cdot u+\alpha \cdot v$ for all $u, v \in V$ and $\alpha \in \mathbb{K}$.
(iii) $(\alpha+\beta) \cdot u=\alpha \cdot u+\beta \cdot u$. for all $u \in V$ and $\alpha, \beta \in \mathbb{K}$.
(iv) $(\alpha \beta) \cdot u=\alpha \cdot(\beta \cdot u)$ for all $u \in V$ and $\alpha, \beta \in \mathbb{K}$.
(v) For all $u \in V$ there exists an element $1 \in \mathbb{K}$, called the multiplicative identity of u, such that $1 \cdot u=u \cdot 1=u$.

Example 1.2. Let \mathbb{C} be the set of complex numbers. Define addition in \mathbb{C} by

$$
\begin{equation*}
(a+b i)+(c+d i)=(a+c)+(b+d) i \quad \text { for all } \quad a, b, c, d \in \mathbb{R} \tag{1}
\end{equation*}
$$

and define scalar multiplication by

$$
\begin{equation*}
\alpha \cdot(a+b i)=\alpha a+\alpha b i \quad \text { for all scalars } \alpha \in \mathbb{R}, \text { and for all } a, b \in \mathbb{R} \tag{2}
\end{equation*}
$$

Show that $(\mathbb{C},+, \cdot)$ is a vector space over \mathbb{R}.
Solution : Let $u=a+b i, v=c+d i, w=e+f i \in \mathbb{C}$, where $a, b, c, d, e, f \in \mathbb{R}$, we have
(i) The addition is closed :

$$
\begin{aligned}
u+v & =(a+b i)+(c+d i) \\
& =(a+c)+(b+d) i \quad \text { by }(1) .
\end{aligned}
$$

Since $(a+c)$ and $(b+d)$ are real numbers then $u+v \in \mathbb{C}$.
(ii) The addition is commutative:

$$
\begin{aligned}
u+v & =(a+b i)+(c+d i) \\
& =(a+c)+(b+d) i \quad \text { by (1), } \\
& =(c+a)+(d+b) i \quad \text { because addition on } \mathbb{R} \text { is commutative, } \\
& =(c+d i)+(a+b i) \quad \text { by (1), } \\
& =v+u
\end{aligned}
$$

(iii) The addition is associative: we have to prove that $u+(v+w)=(u+v)+w$ for all $u, v, w \in \mathbb{C}$.

The left hand side (L.H.S):

$$
\begin{array}{rlr}
u+(v+w) & =u+[(c+d i)+(e+f i)] & \\
& =(a+b i)+[(c+e)+(d+f) i] & \\
\text { by (1), } \\
& =[a+(c+e)]+[b+(d+f)] i & \\
\text { by (1), } \\
& =[(a+c)+e]+[(b+d)+f] i & \\
\text { because addition on } \mathbb{R} \text { is associative. }
\end{array}
$$

The right hand side (R.H.S):

$$
\begin{aligned}
(u+v)+w & =[(a+b i)+(c+d i)]+w \\
& =[(a+c)+(b+d) i]+(e+f i) \quad \text { by }(1), \\
& =[(a+c)+e]+[(b+d)+f)] i \quad \text { by }(1) .
\end{aligned}
$$

Then L.H.S=R.H.S
(iv) The additive identity : For all $u=a+b i \in \mathbb{C}$, we have

$$
\begin{aligned}
(a+b i)+(0+0 i) & =(a+0)+(b+0) i \quad \text { by }(1) \\
& =a+b i \quad \text { because } 0 \text { is the additive identity in } \mathbb{R}
\end{aligned}
$$

Then the additive identity of \mathbb{C} is $(0+0 i)$.
(v) The additive inverse : For all $u=a+b i \in \mathbb{C}$, we have

$$
\begin{aligned}
(a+b i)+(-a+(-b) i) & =(a+(-a))+(b+(-b)) i \quad \text { by }(1) \\
& =0+0 i \quad \text { because }(-a) \text { is the additive inverse of } a \text { in } \mathbb{R} .
\end{aligned}
$$

Then the additive inverse of $a+b i \in \mathbb{C}$ is $\quad-a+(-b) i$.
(2) Let $u=a+b i, v=c+d i \in \mathbb{C}$ and $\alpha \in \mathbb{R}$.
(i) We have to prove that $\alpha \cdot u \in \mathbb{C}$.

$$
\begin{aligned}
\alpha \cdot u & =\alpha \cdot(a+b i) \\
& =\alpha a+\alpha b i
\end{aligned}
$$

Since $\alpha a, \alpha b \in \mathbb{R}$, then $\alpha \cdot u \in \mathbb{C}$.
(ii) We have to prove that $\alpha \cdot(u+v)=\alpha \cdot u+\alpha \cdot v$ for all $u, v \in \mathbb{C}$ and $\alpha \in \mathbb{R}$.

The left hand side (L.H.S) :

$$
\begin{aligned}
\alpha \cdot(u+v) & =\alpha \cdot[(a+b i)+(c+d i)] & & \\
& =\alpha \cdot[(a+c)+(b+d) i] & & \text { by (1) } \\
& =\alpha(a+c)+\alpha(b+d) i & & \text { by (2) } \\
& =(\alpha a+\alpha c)+(\alpha b+\alpha d) i & & \text { because multiplication distributes over addition in } \mathbb{R} .
\end{aligned}
$$

The right hand side (R.H.S) :

$$
\begin{aligned}
\alpha \cdot u+\alpha \cdot v & =\alpha \cdot(a+b i)+\alpha \cdot(c+d i) & & \\
& =(\alpha a+\alpha b i)+(\alpha c+\alpha d i) & & \text { by }(2), \\
& =(\alpha a+\alpha c)+(\alpha b+\alpha d) i & & \text { by }(1),
\end{aligned}
$$

Then L.H.S=R.H.S
(iii) We have to prove that $(\alpha+\beta) \cdot u=\alpha \cdot u+\beta \cdot u$ for all $u \in \mathbb{C}$ and $\alpha, \beta \in \mathbb{R}$. The L.H.S :

$$
\begin{aligned}
(\alpha+\beta) \cdot u & =(\alpha+\beta) \cdot(a+b i) \\
& =(\alpha+\beta) a+(\alpha+\beta) b i \quad \text { by }(2) \\
& =(\alpha a+\beta a)+(\alpha b+\beta b) i \quad \text { because multiplication distributes over addition in } \mathbb{R} .
\end{aligned}
$$

The R.H.S :

$$
\begin{array}{rlr}
\alpha \cdot u+\beta \cdot u & =\alpha \cdot(a+b i)+\beta \cdot(a+b i) \\
& =(\alpha a+\alpha b i)+(\beta a+\beta b i) & \text { by }(2), \\
& =(\alpha a+\beta a)+(\alpha b+\beta b) i & \text { by (1). }
\end{array}
$$

Then L.H.S=R.H.S

(iv) We have to prove that $(\alpha \beta) \cdot u=\alpha \cdot(\beta \cdot u)$ for all $u \in \mathbb{C}$ and $\alpha, \beta \in \mathbb{R}$. The L.H.S :

$$
\begin{aligned}
(\alpha \beta) \cdot u & =(\alpha \beta) \cdot(a+b i) \quad \\
& =(\alpha \beta) a+(\alpha \beta) b i \quad \text { by }(2), \\
& =\alpha \beta a+\alpha \beta b i \quad \text { because multiplication is associative in } \mathbb{R} .
\end{aligned}
$$

The R.H.S :

$$
\begin{aligned}
\alpha \cdot(\beta \cdot u) & =\alpha \cdot[\beta \cdot(a+b i)] & & \\
& =\alpha \cdot[\beta a+\beta b i] & & \text { by }(2), \\
& =\alpha \beta a+\alpha \beta b i & & \text { by }(2) .
\end{aligned}
$$

Then L.H.S=R.H.S

(v) The multiplicative identity : we have to show that $1 \cdot u=u$ for all $u=a+b i \in \mathbb{C}$. (Note that, 1 represents scalar from the field \mathbb{R} and NOT from the set \mathbb{C}).

$$
\begin{aligned}
1 \cdot u & =1 \cdot(a+b i) \\
& =1 a+1 b i \quad \text { by }(2), \\
& =a+b i \\
& =u
\end{aligned}
$$

We have proved that all axioms hold in \mathbb{C}. Hence, $(\mathbb{C},+, \cdot)$ is a vector space over \mathbb{R}.

Example 1.3. Let $M_{2 \times 2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$ be the set of all two by two matrices with entries in \mathbb{R}. For $A=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right), B=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right) \in M_{2 \times 2}$ and $\alpha \in \mathbb{R}$, addition and scalar multiplication of matrices defined by

$$
\begin{gather*}
A+B=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}+b_{1} & a_{2}+b_{2} \\
a_{3}+b_{3} & a_{4}+b_{4}
\end{array}\right) \tag{3}\\
\alpha \cdot A=\alpha \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)=\left(\begin{array}{ll}
\alpha a_{1} & \alpha a_{2} \\
\alpha a_{3} & \alpha a_{4}
\end{array}\right) . \tag{4}
\end{gather*}
$$

Prove that $\left(M_{2 \times 2},+, \cdot\right)$ is a vector space over \mathbb{R}.
Solution: Let $A=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right), B=\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right), C=\left(\begin{array}{ll}c_{1} & c_{2} \\ c_{3} & c_{4}\end{array}\right) \in M_{2 \times 2}$.
(i)

$$
A+B=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}+b_{1} & a_{2}+b_{2} \\
a_{3}+b_{3} & a_{4}+b_{4}
\end{array}\right) \quad \text { by }(3)
$$

Since $a_{1}, a_{2}, a_{3}, a_{4}, b_{1}, b_{2}, b_{3}, b_{4}$ are real numbers, then $a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, a_{4}+b_{4} \in$ \mathbb{R}. Hence, $A+B \in M_{2 \times 2}(\mathbb{R})$.
(ii) We have to show that $A+B=B+A$ for all $A, B \in M_{2 \times 2}$.

$$
\begin{aligned}
A+B & =\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
a_{1}+b_{1} & a_{2}+b_{2} \\
a_{3}+b_{3} & a_{4}+b_{4}
\end{array}\right) \quad \text { by }(3), \\
& =\left(\begin{array}{ll}
b_{1}+a_{1} & b_{2}+a_{2} \\
b_{3}+a_{3} & b_{4}+a_{4}
\end{array}\right) \quad \text { because addition on } \mathbb{R} \text { is commutative } \\
& =\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)+\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \quad \text { by }(3), \\
& =B+A
\end{aligned}
$$

(iii) We have to show that $A+(B+C)=(A+B)+C$ for all $A, B, C \in M_{2 \times 2}$. The L.H.S:

$$
\begin{aligned}
A+(B+C) & =\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left[\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)+\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\right] \\
& =\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
b_{1}+c_{1} & b_{2}+c_{2} \\
b_{3}+c_{3} & b_{4}+c_{4}
\end{array}\right) \quad \text { by }(3), \\
& =\left(\begin{array}{ll}
a_{1}+\left(b_{1}+c_{1}\right) & a_{2}+\left(b_{2}+c_{2}\right) \\
a_{3}+\left(b_{3}+c_{3}\right) & a_{4}+\left(b_{4}+c_{4}\right)
\end{array}\right) \quad \text { by }(3), \\
& =\left(\begin{array}{ll}
\left(a_{1}+b_{1}\right)+c_{1} & \left(a_{2}+b_{2}\right)+c_{2} \\
\left(a_{3}+b_{3}\right)+c_{3} & \left(a_{4}+b_{4}\right)+c_{4}
\end{array}\right) \quad \text { because addition on } \mathbb{R} \text { is associative. }
\end{aligned}
$$

The R.H.S:

$$
\begin{aligned}
(A+B)+C & =\left[\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)\right]+\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
a_{1}+b_{1} & a_{2}+b_{2} \\
a_{3}+b_{3} & a_{4}+b_{4}
\end{array}\right)+\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right) \quad \text { by }(3) \\
& =\left(\begin{array}{ll}
\left(a_{1}+b_{1}\right)+c_{1} & \left(a_{2}+b_{2}\right)+c_{2} \\
\left(a_{3}+b_{3}\right)+c_{3} & \left(a_{4}+b_{4}\right)+c_{4}
\end{array}\right) \quad \text { by }(3) .
\end{aligned}
$$

Then L.H.S = R.H.S
(iv) For all $A=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right) \in M_{2 \times 2}$, we have

$$
\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)
$$

Then the zero matrix $\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$ is the additive identity.
(v) For all $A=\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right) \in M_{2 \times 2}$, we have $(-A)=\left(\begin{array}{cc}-a_{1} & -a_{2} \\ -a_{3} & -a_{4}\end{array}\right) \in M_{2 \times 2}$, where

$$
A+(-A)=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
-a_{1} & -a_{2} \\
-a_{3} & -a_{4}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) .
$$

Then the matrix $(-A)$ is the additive inverse for the matrix A.
(i) We have to show that $\alpha \cdot A \in M_{2 \times 2}(\mathbb{R})$ for all $A \in M_{2 \times 2}$ and $\alpha \in \mathbb{R}$.

$$
\alpha \cdot A=\alpha \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)=\left(\begin{array}{ll}
\alpha a_{1} & \alpha a_{2} \\
\alpha a_{3} & \alpha a_{4}
\end{array}\right) \quad \text { by (4). }
$$

Since $\alpha, a_{1}, a_{2}, a_{3}, a_{4}$ are real numbers then $\alpha a_{1}, \alpha a_{2}, \alpha a_{3}, \alpha a_{4} \in \mathbb{R}$.

Hence, $\alpha \cdot A \in M_{2 \times 2}(\mathbb{R})$.
(ii) We have to show that $\alpha \cdot(A+B)=\alpha \cdot A+\alpha \cdot B$ for all $A, B \in M_{2 \times 2}$ and $\alpha \in \mathbb{R}$.

The L.H.S:

$$
\left.\begin{array}{rll}
\alpha \cdot(A+B) & =\alpha \cdot\left[\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)\right.
\end{array}\right] \quad \text { by (3), } \begin{array}{ll}
& =\alpha \cdot\left(\begin{array}{ll}
a_{1}+b_{1} & a_{2}+b_{2} \\
a_{3}+b_{3} & a_{4}+b_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha\left(a_{1}+b_{1}\right) & \alpha\left(a_{2}+b_{2}\right) \\
\alpha\left(a_{3}+b_{3}\right) & \alpha\left(a_{4}+b_{4}\right)
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha a_{1}+\alpha b_{1} & \alpha a_{2}+\alpha b_{2} \\
\alpha a_{3}+\alpha b_{3} & \alpha a_{4}+\alpha b_{4}
\end{array}\right)
\end{array} \quad \text { because multiplication distributes over addition in } \mathbb{R} . ~ \$
$$

The R.H.S:

$$
\begin{align*}
\alpha \cdot A+\alpha \cdot B & =\alpha \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\alpha \cdot\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha a_{1} & \alpha a_{2} \\
\alpha a_{3} & \alpha a_{4}
\end{array}\right)+\left(\begin{array}{ll}
\alpha b_{1} & \alpha b_{2} \\
\alpha b_{3} & \alpha b_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha a_{1}+\alpha b_{1} & \alpha a_{2}+\alpha b_{2} \\
\alpha a_{3}+\alpha b_{3} & \alpha a_{4}+\alpha b_{4}
\end{array}\right) \tag{3}
\end{align*}
$$

Then L.H.S = R.H.S
(iii) We have to show that $(\alpha+\beta) \cdot A=\alpha \cdot A+\beta \cdot A$ for all $A \in M_{2 \times 2}$ and $\alpha, \beta \in \mathbb{R}$.

The L.H.S:

$$
\begin{aligned}
(\alpha+\beta) \cdot A & =(\alpha+\beta) \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
(\alpha+\beta) a_{1} & (\alpha+\beta) a_{2} \\
(\alpha+\beta) a_{3} & (\alpha+\beta) a_{4}
\end{array}\right) \quad \text { by (4), } \\
& =\left(\begin{array}{ll}
\alpha a_{1}+\beta a_{1} & \alpha a_{2}+\beta a_{2} \\
\alpha a_{3}+\beta a_{3} & \alpha a_{4}+\beta a_{4}
\end{array}\right) \quad \text { because multiplication distributes over addition in } \mathbb{R} .
\end{aligned}
$$

The R.H.S:

$$
\begin{aligned}
\alpha \cdot A+\beta \cdot A & =\alpha \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)+\beta \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha a_{1} & \alpha a_{2} \\
\alpha a_{3} & \alpha a_{4}
\end{array}\right)+\left(\begin{array}{ll}
\beta a_{1} & \beta a_{2} \\
\beta a_{3} & \beta a_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha a_{1}+\beta a_{1} & \alpha a_{2}+\beta a_{2} \\
\alpha a_{3}+\beta a_{3} & \alpha a_{4}+\beta a_{4}
\end{array}\right)
\end{aligned} \quad \text { by (4), }(3) .
$$

Then L.H.S = R.H.S

(iv) We have to show that $(\alpha \beta) \cdot A=\alpha \cdot(\beta \cdot A)$ for all $l A \in M_{2 \times 2}$ and $\alpha, \beta \in \mathbb{R}$.

The L.H.S:

$$
\begin{aligned}
(\alpha \beta) \cdot A & =(\alpha \beta) \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
(\alpha \beta) a_{1} & (\alpha \beta) a_{2} \\
(\alpha \beta) a_{3} & (\alpha \beta) a_{4}
\end{array}\right) \quad \text { by (4), } \\
& =\left(\begin{array}{ll}
\alpha\left(\beta a_{1}\right) & \alpha\left(\beta a_{2}\right) \\
\alpha\left(\beta a_{3}\right) & \alpha\left(\beta a_{4}\right)
\end{array}\right) \quad \text { because multiplication on } \mathbb{R} \text { is associative. }
\end{aligned}
$$

The R.H.S:

$$
\begin{aligned}
\alpha \cdot(\beta \cdot A) & =\alpha \cdot\left[\beta \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)\right] \\
& =\alpha \cdot\left(\begin{array}{ll}
\beta a_{1} & \beta a_{2} \\
\beta a_{3} & \beta a_{4}
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha\left(\beta a_{1}\right) & \alpha\left(\beta a_{2}\right) \\
\alpha\left(\beta a_{3}\right) & \alpha\left(\beta a_{4}\right)
\end{array}\right)
\end{aligned}
$$

Then L.H.S = R.H.S
(v) For all $A \in M_{2 \times 2}$, we have $1 \in \mathbb{R}$ such that

$$
1 \cdot A=1 \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)=\left(\begin{array}{ll}
1 a_{1} & 1 a_{2} \\
1 a_{3} & 1 a_{4}
\end{array}\right)=A .
$$

Then $1 \in \mathbb{R}$ is the multiplicative identity .

Example 1.4. Let $V=\{x \in \mathbb{R} \mid x>0\}$. For $x, y \in V$ and $\alpha \in \mathbb{R}$, we define addition and scalar multiplication as following

$$
\begin{aligned}
& x \oplus y=x y, \\
& \alpha \otimes x=x^{\alpha} .
\end{aligned}
$$

Show that (V, \oplus, \otimes) is a vector space over \mathbb{R}.
Example 1.5. Is the set $V=\left\{\left.\left[\begin{array}{l}a \\ b\end{array}\right] \right\rvert\, a, b>0\right\}$ with the usual addition and scalar multiplication of matrices define a vector space over \mathbb{R} ?

Solution: Let $\alpha=-2 \in \mathbb{R}$, then $\alpha\left[\begin{array}{l}a \\ b\end{array}\right]=-2\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}-2 a \\ -2 b\end{array}\right] \notin V$.
Since $a, b>0$ then $-2 a,-2 b<0$.

Proposition 1.6. Let V be a vector space over \mathbb{K}, then we have
(1) The additive identity, $0 \in V$, is unique.
(2) The additive inverse, $(-u) \in V$, for $u \in V$ is unique.
(3) For all $u \in V$ we have $0 \cdot u=0$.
(4) For all $u \in V$ we have $(-1) \cdot u=-u$.
(5) For all $u, v, w \in V$, if $u+v=u+w$ then $v=w$.
(6) For all $u, v \in V$, the equation $u+x=v$ has a unique solution $x=v-u \in V$.
(7) For all $u \in V$, we have $-(-u)=u$.

2 Subspace

In this section we suppose that $(V,+, \cdot)$ is a vector space over \mathbb{K}.
Definition 2.1. A non-empty subset U of V is called a subspace of V if $(U,+, \cdot)$ is a vector space over \mathbb{K}.

Proposition 2.2. A non-empty subset U of a vector space V over \mathbb{K} is a subspace of V if and only if the following conditions are satisfied:
(1) $0 \in U$.
(2) For all $u, v \in U$, we have $u+v \in U$.
(3) For all $u \in U$ and $\alpha \in \mathbb{K}$, we have $\alpha \cdot u \in U$.

Remark 2.3. Every vector space V has two subspaces namely V and $\{0\}$, which are called trivial subspaces. Any other subspace of V is called a proper subspace of V.

Example 2.4. Show that which of these sets are subspace of \mathbb{R}^{3}
(1) $U=\{(x, y, 0) \mid x, y \in \mathbb{R}\}$.
(2) $U=\{(x, y, 1) \mid x, y \in \mathbb{R}\}$.

Proposition 2.5. If W_{1} and W_{2} are subspaces of V, then $W_{1} \cap W_{2}$ is a subspace of V.

Proof. We have to satisfy the three conditions in Proposition 2.2.
(1) Since W_{1} and W_{2} are subspaces of V, then $0 \in W_{1}$ and $0 \in W_{2}$.

Hence,

$$
0 \in W_{1} \cap W_{2}
$$

(2) Let $u, v \in W_{1} \cap W_{2}$, then $u, v \in W_{1}$ and $u, v \in W_{2}$.

Since W_{1} and W_{2} are subspaces of V, then $u+v \in W_{1}$ and $u+v \in W_{2}$.
Hence,

$$
u+v \in W_{1} \cap W_{2}
$$

(3) Let $\alpha \in \mathbb{K}$ and $u \in W_{1} \cap W_{2}$, then $u \in W_{1}$ and $u \in W_{2}$.

Since W_{1} and W_{2} are subspaces of V then $\alpha \cdot u \in W_{1}$ and $\alpha \cdot u \in W_{2}$.
Hence,

$$
\alpha \cdot u \in W_{1} \cap W_{2} .
$$

Example 2.6. Show that if W_{1} and W_{2} are subspaces of a vector space V, then $W_{1} \cup W_{2}$ is NOT a subspace of V.

To prove this, we have $W_{1}=\{(a, 0) \mid a \in \mathbb{R}\}$ and $W_{2}=\{(0, b) \mid b \in \mathbb{R}\}$ are both subspaces of \mathbb{R}^{2}. But $W_{1} \cup W_{2}$ is not a subspace of \mathbb{R}^{2} because $(1,0) \in W_{1} \cup W_{2}$ and $(0,1) \in W_{1} \cup W_{2}$ while $(1,0)+(0,1)=(1,1) \notin W_{1} \cup W_{2}$.

Proposition 2.7. Let $W_{1}, W_{2}, \cdots, W_{n}$ are subspaces of a vector space V over a field \mathbb{K}, then we have
(1) $W_{1} \cap W_{2} \cap \cdots \cap W_{n}$ is a subspace of V.
(2) $W_{1}+W_{2}+\cdots+W_{n}=\left\{w_{1}+w_{2}+\cdots+w_{n} \mid w_{i} \in W_{i}, i=1,2, \cdots n\right\}$ is a subspace of V.

Proof.

3 Linear Combinations and Span

Definition 3.1. Let $v_{1}, v_{2}, \cdots, v_{n}$ be vectors in a vector space V over \mathbb{K}. A linear combination of these vectors is any expression of the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

for some scalars $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \mathbb{K}$.
Example 3.2. Consider the vector space \mathbb{R}^{2}. The vector $v=(-7,-13)$ is a linear combination of $v_{1}=(-2,1)$ and $v_{2}=(1,5)$, where

$$
v=2 v_{1}+(-3) v_{2} .
$$

Example 3.3. Consider the vector space \mathbb{R}^{2}. The vector $v=(1,-3)$ is a linear combination of $v_{1}=(0,1), v_{2}=(2,-1), v_{3}=(1,-2)$ and $v_{4}=(0,3)$ where

$$
v=(-2) v_{1}+(0) v_{2}+1 v_{3}+\left(\frac{1}{3}\right) v_{4}
$$

Sometimes we cannot write a vector v in a vector space V as a linear combination of $v_{1}, v_{2}, \cdots, v_{n} \in V$, as explained in this example.

Example 3.4. Let $v_{1}=(2,5,3), v_{2}=(1,1,1)$, and $v=(4,2,0)$. Because there exist no scalars $\alpha_{1}, \alpha_{2} \in \mathbb{K}$ such that $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}$ then v is not a linear combination of v_{1} and v_{2}.

Definition 3.5. Let V be a vector space over \mathbb{K}, and let $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a subset of V. We say that S spans V, or S generates V, if every vector v in V can be written as a linear combination of vectors in S. That is, for all $v \in V$, we have

$$
v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}
$$

for some scalars $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \mathbb{K}$.
Example 3.6. Show that the set $S=\{(1,0),(0,1)\}$ spans the vector space $\mathbb{R}^{2}=$ $\{(a, b) \mid a, b \in \mathbb{R}\}$.

Solution: We have to show that for all $v=(a, b) \in \mathbb{R}^{2}$ there exists $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that $v=\alpha_{1}(1,0)+\alpha_{2}(0,1)$.

$$
\begin{aligned}
(a, b) & =\alpha_{1}(1,0)+\alpha_{2}(0,1) \\
& =\left(\alpha_{1}, 0\right)+\left(0, \alpha_{2}\right) \\
& =\left(\alpha_{1}, \alpha_{2}\right)
\end{aligned}
$$

Then $\alpha_{1}=a$ and $\alpha_{2}=b$. So, any vector $v=(a, b) \in \mathbb{R}^{2}$ can be written in the form $(a, b)=a(1,0)+b(0,1)$. Thus S spans \mathbb{R}^{2}.
Example 3.7. Let $S=\left\{v_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], v_{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$, and $V=\left\{\left.v=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$
(1) Does S spans V ?
(2) Define a vector space U such that S spans U.
(3) Find a set that spans V.

Solution: (1) If S spans V then for all $v \in V$, there exists $\alpha_{1}, \alpha_{2} \in \mathbb{R}$ such that

$$
\begin{aligned}
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] } & =\alpha_{1}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\alpha_{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha_{1} & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
0 & \alpha_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right]
\end{aligned}
$$

So, $\alpha_{1}=a$ and $\alpha_{2}=d$. But if b or c is non-zero then v cannot be written as a linear combination of the vectors in S. Hence, S not spans V.
(2) From (1), we can see that if $U=\left\{\left.\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$ then S spans U.
(3) The set that spans V is $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$.

Example 3.8. Show that the set $S=\{(0,1,1),(1,0,1),(1,1,0)\}$ spans \mathbb{R}^{3} and write the vector $(2,4,8)$ as a linear combination of vectors in S.

Solution:
A vector in \mathbb{R}^{3} has the form $v=(x, y, z)$.
Hence we need to show that, for some scalars $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$, every such v can be written as

$$
\begin{aligned}
(x, y, z) & =\alpha_{1}(0,1,1)+\alpha_{2}(1,0,1)+\alpha_{3}(1,1,0) \\
& =\left(\alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{3}, \alpha_{1}+\alpha_{2}\right)
\end{aligned}
$$

This give us system of equations

$$
\begin{aligned}
& x=\alpha_{2}+\alpha_{3} \\
& y=\alpha_{1}+\alpha_{3} \\
& z=\alpha_{1}+\alpha_{2}
\end{aligned}
$$

This system of equations can be written in matrix form

$$
\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

We can write it as $A \alpha=b$. Since $\operatorname{det}(A)=2$ then this system has a solution.
Now, to write $(2,4,8)$ as a linear combination of vectors in S, we find that

$$
A^{-1}=\left[\begin{array}{ccc}
-0.5 & 0.5 & 0.5 \\
0.5 & -0.5 & 0.5 \\
0.5 & 0.5 & -0.5
\end{array}\right]
$$

Then

$$
\begin{gathered}
\alpha=A^{-1} b \\
{\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-0.5 & 0.5 & 0.5 \\
0.5 & -0.5 & 0.5 \\
0.5 & 0.5 & -0.5
\end{array}\right] \cdot\left[\begin{array}{l}
2 \\
4 \\
8
\end{array}\right]}
\end{gathered}
$$

So, $\alpha_{1}=5, \alpha_{2}=3, \alpha_{3}=-1$, and

$$
(2,4,8)=5(0,1,1)+3(1,0,1)+(-1)(1,1,0) .
$$

4 Linear independence

Definition 4.1. Let V be a vector space over a field \mathbb{K}. A subset $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ in V is linearly dependent over \mathbb{K} if there exists scalars $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in \mathbb{K}$, (not all zero), such that

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0 .
$$

Definition 4.2. Let V be a vector space over a field \mathbb{K}. A subset $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ in V is linearly independent over \mathbb{K} if $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0$ then $\alpha_{1}=$ $\alpha_{2}=\cdots=\alpha_{n}=0$

Example 4.3. Show that the set $\{(1,0,1),(1,-1,1),(2,-1,2),(0,0,1)\}$ is linearly dependent over \mathbb{R}.

Solution: We have to show that there exists $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{R}$ not all zero such that

$$
\alpha_{1}(1,0,1)+\alpha_{2}(1,-1,1)+\alpha_{3}(2,-1,2)+\alpha_{4}(0,0,1)=(0,0,0)
$$

We have the following system of equations

$$
\begin{aligned}
\alpha_{1}+\alpha_{2}+2 \alpha_{3} & =0 \\
-\alpha_{2}-\alpha_{3} & =0 \\
\alpha_{1}+\alpha_{2}+2 \alpha_{3}+\alpha_{4} & =0
\end{aligned}
$$

Put the first equation in the last equation, we get $\alpha_{4}=0$.
From the second equation, we have $\alpha_{2}=-\alpha_{3}$. Let $\alpha_{2}=1$ then $\alpha_{3}=-1$ and $\alpha_{1}=1$. Hence, $(1,0,1)+(1,-1,1)+(-1)(2,-1,2)+(0)(0,0,1)=(0,0,0)$.

Example 4.4. Show that the set $\{(1,0,1),(0,0,1)\}$ is linearly independent over \mathbb{R}.

Solution:

$$
\begin{aligned}
\alpha_{1}(1,0,1)+\alpha_{2}(0,0,1) & =(0,0,0) \\
\left(\alpha_{1}, 0, \alpha_{1}\right)+\left(0,0, \alpha_{2}\right) & =(0,0,0) \\
\left(\alpha_{1}, 0, \alpha_{1}+\alpha_{2}\right) & =(0,0,0)
\end{aligned}
$$

So, $\alpha_{1}=0, \alpha_{1}+\alpha_{2}=0$ then $\alpha_{2}=0$. Then it is linearly independent over \mathbb{R}.

Example 4.5. Show that the set $S=\{i, i+1\}$ is linearly dependent over \mathbb{C}, but it is linearly independent over \mathbb{R}.

Solution: Since $(-1+i) i+(1)(1+i)=0$, so, S is linearly dependent over \mathbb{C}.
Let $\alpha(i)+\beta(1+i)=0$, where $\alpha, \beta \in \mathbb{R}$
Then

$$
\begin{aligned}
& \alpha i+\beta+\beta i=0+0 i \\
& \beta+(\alpha+\beta) i=0+0 i
\end{aligned}
$$

So, $\beta=0, \alpha+\beta=0$ and then $\alpha=0$. Hence, S is linearly independent over \mathbb{R}.
Theorem 4.6. If $A=\left(a_{i j}\right) \in M_{n \times n}(\mathbb{K})$, and $C_{j}=\left\{a_{1 j}, a_{2 j}, \cdots, a_{n j}\right\}, j=$ $1,2, \cdots, n$ are the n columns of A then $\left\{C_{1}, C_{2}, \cdots, C_{n}\right\}$ is linearly dependent over \mathbb{K} if and only if $\operatorname{det} A=0$.

Corollary 4.7. The n rows of a matrix $A \in M_{n \times n}(\mathbb{K})$ are linearly dependent over \mathbb{K} if and only if $\operatorname{det} A=0$.

5 Basis and dimension

Definition 5.1. Let V be a vector space over \mathbb{K}. A subset $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is called a basis for V if
(i) V is spanned by S, that is, for every $v \in V$ there exists scalars $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in$ \mathbb{K} such that $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$.
(ii) The set S is linearly independent over \mathbb{K}.

Example 5.2. Show that the set $S=\{(1,0,0),(0,1,0),(0,0,1)\}$ is a basis for the vector space \mathbb{R}^{3}.

Solution: (i) we have to show that S spans \mathbb{R}^{3}. That is, f or all $v=(x, y, z) \in$ \mathbb{R}^{3}, we have to find scalars $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}^{3}$ such that $v=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\alpha_{3} v_{3}$

$$
\begin{aligned}
& (x, y, z)=\alpha_{1}(1,0,0)+\alpha_{2}(0,1,0)+\alpha_{3}(0,0,1) \\
& (x, y, z)=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)
\end{aligned}
$$

So, $(x, y, z)=x(1,0,0)+y(0,1,0)+z(0,0,1)$ and, hence, \mathbb{R}^{3} is generated by S.
(ii) To show that S is linearly independent, Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Since $\operatorname{det}(A) \neq 0$ then S is linearly independent.
Finally, we get S is a basis for \mathbb{R}^{3}.
Example 5.3. Let $e_{1}=(1,0,0, \cdots, 0), e_{2}=(0,1,0,0, \cdots, 0), \cdots, e_{n}=(0,0, \cdots, 1)$. Then $B=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$ is a basis for \mathbb{R}^{n}. This basis called the standard basis for \mathbb{R}^{n}.

Theorem 5.4. Let V be a vector space over a field \mathbb{K}, and $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis of V containing n vectors.Then any subset containing more than n vectors in V is linearly dependent.

Definition 5.5. Let V be a vector space with a basis $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ has n vectors. Then, we say n is the dimension of V and we write $\operatorname{dim}(V)=n$.

Theorem 5.6. Any vector space V has a basis. All bases for V are of the same dimension.

Example 5.7. The following vector spaces over \mathbb{R} have dimensions :
(1) $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$.
(2) $\operatorname{dim} \mathbb{R}=1$.
(3) $\operatorname{dim} \mathbb{C}=2$.
(4) $\operatorname{dim} M_{n, n}(\mathbb{R})=n^{2}$.

Theorem 5.8. Let V be a vector space such that $\operatorname{dim}(V)=n$. Let $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a subset of V. Then we have
(1) If S spans V, then S is also linearly independent hence a basis for V.
(2) If S is linearly independent, then S also spans V hence is a basis for V.

Example 5.9. Show that S is not a basis for \mathbb{R}^{3} where $S=\{(6,4,1),(3,-5,1),(8,13,6),(0,6,9)\}$.
Solution: Since $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$, then any basis for \mathbb{R}^{3} must have 3 vectors, while here S has four.
Example 5.10. Show that $S=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]\right\}$ is a basis for $M_{2,2}(\mathbb{R})$.

Solution: Since S has four vectors and $\operatorname{dim}\left(M_{2,2}(\mathbb{R})=4\right.$ then, by Theorem 5.8, we have to show that either S spans V or S is linearly independent.

6 Dot and cross products

Definition 6.1. Let $v=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ be a vector in a vector space V. The length (or norm or magnitude) of v is

$$
\|v\|=\sqrt{a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}}
$$

Example 6.2. Suppose that the vector $v=(2,-1,4,1)$, then the length of v is

$$
\|v\|=\sqrt{2^{2}+(-1)^{2}+4^{2}+1^{2}}=\sqrt{22} .
$$

Definition 6.3. Let $u=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ and $v=\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ are vectors in a vector space V. The dot product of u and v is defined by

$$
u \cdot v=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
$$

Definition 6.4. The angle θ between two vectors u and v is determined by the formula

$$
u \cdot v=\|u\|\|v\| \cos \theta
$$

Example 6.5. Let $u=(1,3,0)$ and $v=(-2,1,5)$. The dot product of u and v is

$$
u \cdot v=1(-2)+3(1)+0(5)=1,
$$

and the angle between them is

$$
\cos \theta=\frac{u \cdot v}{\|u\|\|v\|}=\frac{1}{\sqrt{10} \sqrt{30}}
$$

So,

$$
\theta=\cos ^{-1}\left(\frac{1}{\sqrt{10} \sqrt{30}}\right)
$$

Some properties of the dot product : Let u, v and w are vectors in a vector space V over \mathbb{K}. The dot product has the following properties:
(1) $v \cdot v=\|v\|^{2}$
(2) $u \cdot v=v \cdot u$
(3) $u \cdot(v+w)=u \cdot v+u \cdot w$
(4) $(\alpha u) \cdot v=u \cdot(\alpha v)=\alpha(u \cdot v)$, where $\alpha \in \mathbb{K}$.
(5) If $u \cdot v>0$ then the angle formed by the vectors $(0<\theta<90)$.
(6) If $u \cdot v<0$ then the angle formed by the vectors, $(90<\theta \leq 180)$.
(7) If $u \cdot v=0$ then the angle formed by the vectors is 90 degrees.

Definition 6.6. Let u and v are vectors in a vector space V. If

$$
u \cdot v=0
$$

then we say that u and v are orthogonal.

Definition 6.7. A subset $S=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ of a vector space V form an orthogonal set if all vectors in S are orthogonal to each other, $v_{i} \cdot v_{j}=0$ for $i \neq j$. In addition, if all vectors in an orthogonal set S has length one, $\left\|v_{i}\right\|=1$, then S is called an orthonormal set.

Theorem 6.8. Any orthogonal set is linearly independent.

Gram-Schmidt process : If $B=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for a vector space V. Then we can define an orthogonal basis $W=\left\{w_{1}, w_{2}, \cdots, w_{n}\right\}$ for V by using the following steps:

$$
\begin{aligned}
w_{1} & =v_{1} \\
w_{2} & =v_{2}-\frac{w_{1} \cdot v_{2}}{w_{1} \cdot w_{1}} w_{1} \\
w_{3} & =v_{3}-\frac{w_{1} \cdot v_{3}}{w_{1} \cdot w_{1}} w_{1}-\frac{w_{2} \cdot v_{3}}{w_{2} \cdot w_{2}} w_{2} \\
& \vdots \\
w_{n} & =v_{n}-\frac{w_{1} \cdot v_{n}}{w_{1} \cdot w_{1}} w_{1}-\frac{w_{2} \cdot v_{n}}{w_{2} \cdot w_{2}} w_{2}-\cdots-\frac{w_{n-1} \cdot v_{n}}{w_{n-1} \cdot w_{n-1}} w_{n-1}
\end{aligned}
$$

In addition, the set

$$
\left\{\frac{w_{1}}{\left\|w_{1}\right\|}, \frac{w_{2}}{\left\|w_{2}\right\|}, \cdots, \frac{w_{n}}{\left\|w_{n}\right\|}\right\}
$$

is an orthonormal basis for V.

Example 6.9. Let $S=\left\{v_{1}=(1,1,0), v_{2}=(1,1,1), v_{3}=(3,1,1)\right\}$ be a basis for \mathbb{R}^{3}. We will use Gram-Schmidt process to find orthogonal and orthonormal bases for \mathbb{R}^{3}.

$$
\begin{aligned}
w_{1} & =v_{1}=(1,1,0) \\
w_{2} & =v_{2}-\frac{w_{1} \cdot v_{2}}{w_{1} \cdot w_{1}} w_{1} \\
& =(1,1,1)-\frac{(1,1,0) \cdot(1,1,1)}{(1,1,0) \cdot(1,1,0)}(1,1,0) \\
& =(1,1,1)-\frac{1+1+0}{1+1+0}(1,1,0) \\
& =(0,0,1) \\
w_{3} & =v_{3}-\frac{w_{1} \cdot v_{3}}{w_{1} \cdot w_{1}} w_{1}-\frac{w_{2} \cdot v_{3}}{w_{2} \cdot w_{2}} w_{2} \\
& =(3,1,1)-\frac{(1,1,0) \cdot(3,1,1)}{(1,1,0) \cdot(1,1,0)}(1,1,0)-\frac{(0,0,1) \cdot(3,1,1)}{(0,0,1) \cdot(0,0,1)}(0,0,1) \\
& =(3,1,1)-\frac{4}{2}(1,1,0)-\frac{1}{1}(0,0,1) \\
& =(3,1,1)-(2,2,0)-(0,0,1) \\
& =(1,-1,0)
\end{aligned}
$$

Then $W=\left\{w_{1}, w_{2}, w_{3}\right\}=\{(1,1,0),(0,0,1),(1,-1,0)\}$ is an orthogonal basis for \mathbb{R}^{3}.

Since $\left\|w_{1}\right\|=\sqrt{2},\left\|w_{2}\right\|=1,\left\|w_{3}\right\|=\sqrt{2}$ then the set

$$
U=\left\{\frac{w_{1}}{\left\|w_{1}\right\|}, \frac{w_{2}}{\left\|w_{2}\right\|}, \frac{w_{3}}{\left\|w_{3}\right\|}\right\}=\left\{\frac{1}{\sqrt{2}}(1,1,0),(0,0,1), \frac{1}{\sqrt{2}}(1,-1,0)\right\}
$$

is an orthonormal basis for \mathbb{R}^{3}.

Definition 6.10. Let $u=\left(a_{1}, a_{2}, a_{3}\right), v=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$ then we define the cross product of u and v as following

$$
u \times v=\left|\begin{array}{ccc}
i & j & k \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|=i\left(a_{2} b_{3}-b_{2} a_{3}\right)-j\left(a_{1} b_{3}-b_{1} a_{3}\right)+k\left(a_{1} b_{2}-b_{1} a_{2}\right)
$$

That is, $\quad u \times v=\left(a_{2} b_{3}-b_{2} a_{3}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-b_{1} a_{2}\right)$.
Geometrically, the cross product of vectors u and v represents a vector that is orthogonal to both of u and v.

Definition 6.11. The angle θ between two vectors u and v is determined by the formula

$$
\|u \times v\|=\|u\|\|v\| \sin \theta
$$

Note that, the length of $u \times v$ represents the area of the parallelogram that spanned by u and v.

Example 6.12. Find the area of the parallelogram that spanned by the vectors $u=(1,3,2)$ and $v=(-2,1,0)$.

Solution :

$$
\begin{gathered}
u \times v=(-2,-4,7) \\
\|u \times v\|=\sqrt{4+16+49}=\sqrt{69}
\end{gathered}
$$

7 Eigenvalues and eigenvectors

Definition 7.1. Let A be an $n \times n$ matrix. If there is a number $\lambda \in \mathbb{C}$ and a vector $x \neq 0$ such that $A x=\lambda x$, then we say that λ is an eigenvalue for A, and x is called an eigenvector for A with eigenvalue λ.

Example 7.2. If

$$
A=\left(\begin{array}{cc}
1 & 3 \\
6 & -2
\end{array}\right), \quad \text { and } \quad x=\binom{1}{1}
$$

then

$$
A x=\binom{4}{4}=4 x
$$

So, $\lambda=4$ is an eigenvalue of A, and x is an eigenvector for A with this eigenvalue.

We can write the equation $A x=\lambda x$ as a linear system. Since $\lambda x=\lambda I x$, (where $I=I_{n}$ is the identity matrix), we have that

$$
A x=\lambda x \Longleftrightarrow A x-\lambda x=0 \Longleftrightarrow(A-\lambda I) x=0
$$

This linear system has a non-trivial solution $x \neq 0$ if and only if

$$
\operatorname{det}(A-\lambda I)=0, \quad(w h y ?)
$$

Definition 7.3. The characteristic equation of a square matrix A is the equation

$$
\operatorname{det}(A-\lambda I)=0
$$

Theorem 7.4. The eigenvalues of a square matrix A are the solutions of the characteristic equation

$$
\operatorname{det}(A-\lambda I)=0
$$

How to find the eigenvalues and the eigenvectors:

To find the eigenvalues of a matrix A, we have to find the solution of the characteristic equation $\operatorname{det}(A-\lambda I)=0$, then to find the eigenvectors for A with eigen value λ we have to solve the linear system $(A-\lambda I) x=0$, as explained in this example.

Example 7.5. Find the eigenvalues and the eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right)
$$

Solution: We have to find $A-\lambda I$.

$$
\begin{aligned}
A-\lambda I & =\left(\begin{array}{cc}
2 & 3 \\
3 & -6
\end{array}\right)-\lambda\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right)
\end{aligned}
$$

Now, we have to find the solution to the characteristic equation $\operatorname{det}(A-\lambda I)=0$.

$$
\left|\begin{array}{cc}
2-\lambda & 3 \\
3 & -6-\lambda
\end{array}\right|=(2-\lambda)(-6-\lambda)-3.3=\lambda^{2}+4 \lambda-21=0
$$

Then

$$
\lambda^{2}+4 \lambda-21=(\lambda+7)(\lambda-3)=0
$$

So, the eigenvalues of A are

$$
\lambda_{1}=-7 \quad \text { and } \quad \lambda_{2}=3
$$

To find the eigenvector $x=\binom{x_{1}}{x_{2}}$ for $\lambda_{1}=-7$, we have to solve the following system

$$
\begin{aligned}
\left(A-\lambda_{1} I\right) x & =0 \\
\left(\begin{array}{cc}
2-(-7) & 3 \\
3 & -6-(-7)
\end{array}\right)\binom{x_{1}}{x_{2}} & =\binom{0}{0} \\
\left(\begin{array}{ll}
9 & 3 \\
3 & 1
\end{array}\right)\binom{x_{1}}{x_{2}} & =\binom{0}{0}
\end{aligned}
$$

Using Gauss elimination, ($R_{1} \rightarrow \frac{1}{9} R_{1}, R_{2} \rightarrow-3 R_{1}+R_{2}$), we get

$$
\left(\begin{array}{ll}
1 & \frac{1}{3} \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}
$$

We have only one equation with two variables $x_{1}+\frac{1}{3} x_{2}=0$, then $x_{1}=\frac{-1}{3} x_{2}$.

Assume $x_{2}=c_{1}$, gives us $x=\binom{\frac{-1}{3} c_{1}}{c_{1}}=c_{1}\binom{\frac{-1}{3}}{1}$, where $c_{1} \in \mathbb{R}$.
Similarly, we can show that the eigenvector for $\lambda_{2}=3$ is $x=c_{2}\binom{3}{1}$, where $c_{2} \in \mathbb{R}$.

8 Linear transformation on vector spaces

Definition 8.1. Let V and W are vector spaces over a field \mathbb{K}. A linear transformation T from V into W is a mapping $T: V \rightarrow W$ such that
(i) $T(u+v)=T(u)+T(v)$
(ii) $T(\alpha u)=\alpha T(u)$
for all $u, v \in V$ and $\alpha \in \mathbb{K}$. If $T: V \rightarrow V$ then we say that T is a linear transformation on V.

Example 8.2. Show that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}+a_{2}, a_{2}-a_{3}\right)$ is a linear transformation.

Solution:
(i) Let $u=\left(a_{1}, a_{2}, a_{3}\right), v=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$. Then $u+v=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$, and

$$
\begin{aligned}
T(u+v) & =T\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right) \\
& =\left(a_{1}+b_{1}+a_{2}+b_{2}, a_{2}+b_{2}-a_{3}-b_{3}\right) \\
& =\left(a_{1}+a_{2}+b_{1}+b_{2}, a_{2}-a_{3}+b_{2}-b_{3}\right) \\
& =\left(a_{1}+a_{2}, a_{2}-a_{3}\right)+\left(b_{1}+b_{2}, b_{2}-b_{3}\right) \\
& =T(u)+T(v)
\end{aligned}
$$

(ii) Let $\alpha \in \mathbb{K}$, then $\alpha u=\left(\alpha a_{1}, \alpha a_{2}, \alpha a_{3}\right)$.

$$
\begin{aligned}
T(\alpha u) & =T\left(\alpha a_{1}, \alpha a_{2}, \alpha a_{3}\right) \\
& =\left(\alpha a_{1}+\alpha a_{2}, \alpha a_{2}-\alpha a_{3}\right) \\
& =\alpha\left(a_{1}+a_{2}, a_{2}-a_{3}\right) \\
& =\alpha T(u)
\end{aligned}
$$

Then T is a linear transformation.
Example 8.3. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ is defined by $T\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}-1, a_{2}\right)$. Is T a linear transformation?

Solution: Let $u=\left(a_{1}, a_{2}, a_{3}\right)$ and $v=\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3}$. Then

$$
u+v=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)
$$

$$
\begin{aligned}
T(u+v) & =T\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right) \\
& =\left(a_{1}+b_{1}-1, a_{2}+b_{2}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
T(u)+T(v) & =T\left(a_{1}, a_{2}, a_{3}\right)+T\left(b_{1}, b_{2}, b_{3}\right) \\
& =\left(a_{1}-1, a_{2}\right)+\left(b_{1}-1, b_{2}\right) \\
& =\left(a_{1}+b_{1}-2, a_{2}+b_{2}\right)
\end{aligned}
$$

So, $T(u+v) \neq T(u)+T(v)$, and hence, T is NOT a linear transformation.
Example 8.4. Let $M \in M_{m, m}(\mathbb{K})$ and $N \in M_{n, n}(\mathbb{K})$. Define $T: M_{m, n}(\mathbb{K}) \rightarrow M_{m, n}(\mathbb{K})$ by $T(A)=M A N$ for all $A \in M_{m, n}(\mathbb{K})$.
Show that T is a linear transformation.

Solution: Let $A, B \in M_{m, n}(\mathbb{K})$ and $\alpha \in \mathbb{K}$.
(i)

$$
\begin{aligned}
T(A+B) & =M(A+B) N \\
& =M A N+M B N \\
& =T(A)+T(B)
\end{aligned}
$$

(ii) $\quad T(\alpha A)=M(\alpha A) N=\alpha(M A N)=\alpha T(A)$

Then T is a linear transformation.

