Approaching: Sometimes we can't work something out directly ... but we can see what it should be as we get closer and closer!

$$
\text { Example: }\left(x^{2}-1\right) /(\mathbf{x}-\mathbf{1})
$$

Let's work it out for $\mathrm{x}=1$:

$$
\left(1^{2}-1\right) /(\mathbf{1}-\mathbf{1})=(1-1) /(\mathbf{1}-\mathbf{1})=0 / \mathbf{0}
$$

Now $0 / 0$ is a difficulty! We don't really know the value of $0 / 0$ (it is "indeterminate"), so we need another way of answering this.

So instead of trying to work it out for $\mathrm{x}=1$ let's try approaching it closer and closer:

x	$\left(x^{2}-1\right) /(\mathbf{x}-\mathbf{1})$
0.5	1.50000
0.9	1.90000
0.99	1.99000
0.999	1.99900
0.9999	1.99990
0.99999	1.99999
\ldots	\ldots

Now we see that as x gets close to 1 , then $\left(x^{2}-1\right) /(x-1)$ gets close to 2
We are now faced with an interesting situation:

- When $x=1$ we don't know the answer (it is indeterminate)
- But we can see that it is going to be 2

We want to give the answer " 2 " but can't, so instead mathematicians say exactly what is going on by using the special word "limit"

The limit of $\left(x^{2}-1\right) /(\mathbf{x}-\mathbf{1})$ as x approaches 1 is $\mathbf{2}$

DEFINITION Limit

Assume f is defined in a neighborhood of c and let c and L be real numbers. The function f has limit L as \boldsymbol{x} approaches \boldsymbol{c} if, given any positive number ε, there is a positive number δ such that for all x,

$$
0<|x-c|<\delta \Rightarrow|f(x)-L|<\varepsilon
$$

We write

$$
\lim _{x \rightarrow c} f(x)=L .
$$

Computing Limits
For real numbers b and c , and positive integers n :

Basic Limits

1. $\lim _{x \rightarrow c} b=b$
2. $\lim _{x \rightarrow c} x=c$
3. $\lim _{x \rightarrow c} x^{n}=c^{n}$

Properties of Limits For functions f and g such that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist,

1. $\lim _{x \rightarrow c}[b f(x)]=b \lim _{x \rightarrow c} f(x)$
2. $\lim _{x \rightarrow c}[f(x) \pm g(x)]=\lim _{x \rightarrow c} f(x) \pm \lim _{x \rightarrow c} g(x)$
3. $\lim _{x \rightarrow c}[f(x) g(x)]=\lim _{x \rightarrow c} f(x) \cdot \lim _{x \rightarrow c} g(x)$
4. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$
5. $\lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n}$
6. $\lim _{x \rightarrow c} f(g(x))=f\left(\lim _{x \rightarrow c} g(x)\right)$
A. "Plug-Ins"

Using these basic limits and properties of limits, we can prove that the limit at c of the following kinds of functions can be evaluated by direct substitution of c for x :

Polynomial Function
Rational Function with c in its domain
Radical Function with c in its domain
Trigonometric Function with c in its domain

Examples:
$\lim _{x \rightarrow-3}(3 x+2)=$
$\lim _{x \rightarrow 1}\left(3 x^{3}-2 x^{2}+4\right)=$
$\lim _{x \rightarrow-4} \frac{2}{x+2}=$
$\lim _{x \rightarrow 8} \sqrt{x+1}=$

$$
\lim _{x \rightarrow \pi / 4} \tan x=
$$

B. Rational Functions without c in their domain ("Single Holes")

Example $1 \quad \lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=$
Factor.

Simplify.

Substitute c for x .

Example $2 \lim _{x \rightarrow 0} \frac{x^{2}-3 x}{x}=$
C. Functions with Radicals without c in their domain

Example $1 \lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x}=$ Rationalize the numerator using conjugates.

Simplify.

Substitute c for x .

Example $2 \quad \lim _{x \rightarrow 3} \frac{\sqrt{x+1}}{x-4}=$

Example 3

$$
\lim _{x \rightarrow 1} \cdot \frac{x^{3}-1}{x-1}=\lim _{x \rightarrow 1^{1}} \cdot \frac{(x-1)\left(x^{2}+x+1\right)}{(x-1)}=\lim _{x \rightarrow 1} \cdot\left(x^{2}+x+1\right)=3
$$

Example 4

$$
\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+9}-3}{x}=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{x+9}-3}{x} \cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3}=\lim _{x \rightarrow 0^{\cdot}} \frac{x+9-9}{x(\sqrt{x+9}+3)}=\frac{1}{6}
$$

Squeeze Theorem

If $h(x) \leq f(x) \leq g(x) \forall x$ in an open interval containing c , except possibly at c itself, and if $\lim _{x \rightarrow c} h(x)=L$ and $\lim _{x \rightarrow c} g(x)=L$, then $\lim _{x \rightarrow c} f(x)$ exists and $=L$. (see text p. 65)
D. Special Trigonometric Limits
(1) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
and
(2) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$

Examples of Use:
$\lim _{\theta \rightarrow 0} \frac{\cos \theta \tan \theta}{\theta}=$

$$
\lim _{x \rightarrow 0} \frac{\tan ^{2} x}{x}=
$$

Homework:

1- $\lim _{x \rightarrow 2} \cdot \frac{x^{4}-2 x^{2}-8}{x^{2}-4}$
$2-\lim _{x \rightarrow 0^{.}} \frac{(1+x)^{\frac{3}{2}}-1}{x}$
3- $\lim _{x \rightarrow 3} \frac{\sqrt{3 x}-3}{x-3}$
4- $\lim _{x \rightarrow a} \cdot \frac{\sqrt{x^{2}+1}-\sqrt{a^{2}+1}}{x-a}$
$5-\lim _{x \rightarrow 0} \cdot \frac{1}{x}\left(\frac{1}{x+2}-\frac{1}{2}\right)$
6- $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$
7- $\lim _{x \rightarrow 2^{\cdot}} \frac{\left(x^{2}-4\right)}{\sqrt{x-2}}$
8- $\lim _{x \rightarrow 0^{+}} \frac{\tan x}{x}$
9- $\lim _{h \rightarrow 0^{+}} \frac{\sqrt{x+h}-\sqrt{x}}{h}$

One -sided limits (right-hand limits and left-hand limits)

Definition: we say the limits of the function $f(x)$ as x approaches a from the right equals L if given any $\in>0, \exists a, \delta>0$ such that for all x ,
$a<x<a+\delta$ Implies $|f(x)-L|<\in$ denoted by $\lim _{x \rightarrow a^{+}} f(x)=L$
Definition: we say the limits of the function $f(x)$ as x approaches a from the left equals L if given any $\in>0, \exists a, \delta>0$ such that for all x, $a-\delta<x<a$ Implies $|f(x)-L|<\in$ denoted by $\lim _{x \rightarrow a^{-}} f(x)=L$

Note:
A function $f(x)$ has a limit at a point a iff the right -hand and left- hand limits at a exist and are equal

$$
\lim _{x \rightarrow a} f(x)=L \leftrightarrow \lim _{x \rightarrow a^{+}} f(x)=L \text { and } \lim _{x \rightarrow a^{-}} f(x)
$$

Example: find the limit of the function

$$
f(x)=\left\{\begin{array}{c}
x+1, \quad x \geq 1 \\
x^{2}-1, \quad x<1
\end{array}\right\}
$$

as

1. $x \rightarrow 5$
2. $x \rightarrow-5$
3. $x \rightarrow 1$
sol: 1. $\lim _{x \rightarrow 5} f(x)=\lim _{x \rightarrow 5}(x+1)=6$
4. $\lim _{x \rightarrow-5} f(x)=\lim _{x \rightarrow-5}\left(x^{2}-1\right)=24$
5. a/ $\lim _{x \rightarrow 1+} f(x)=\lim _{x \rightarrow 1+}(x+1)=2$

$$
\begin{aligned}
& \text { b/ } \lim _{x \rightarrow 1-} f(x)=\lim _{x \rightarrow 1-}\left(x^{2}-1\right)=0 \\
& \therefore \lim _{x \rightarrow 1+} f(x) \neq \lim _{x \rightarrow 1+} f(x)
\end{aligned}
$$

Homework: Find the limit of the following functions:

$$
1-f(x)=\left\{\begin{array}{lr}
x^{2}, & x \geq 0 \\
x^{3}, & -1<x<0 \\
x+1, & x \leq-1
\end{array}\right\}
$$

If

1. $x \rightarrow 3$
2. $x \rightarrow-\frac{1}{2}$
3. $x \rightarrow-5$
4. $x \rightarrow 0$
5. $x \rightarrow-1$
$2-f(x)=\left\{\begin{array}{lr}x^{2}-1, & x \geq 1 \\ x+1, & 0 \leq x<1 \\ x^{3}-1, & x<0\end{array}\right\}$
If
6. $x \rightarrow 1$
7. $x \rightarrow \frac{1}{2}$
8. $x \rightarrow-6$
9. $x \rightarrow 0$
10. $x \rightarrow 8$

3- $f(x)=\lim _{x \rightarrow 0} \cdot \frac{|x|}{x}$
Limits at infinity (limits as $x \rightarrow \infty$ or $x \rightarrow-\infty$)
Def: We say the limits of the function $f(x)$ as x approaches infinity is a real number L $\left(\lim _{x \rightarrow \infty} f(x)=L\right)$ if given any $\in>0, \exists M>0$ such that for all x , $M<x$ Implies $|f(x)-L|<\epsilon$
Def: We say the limits of the function $f(x)$ as x approaches negative infinity is a real number L $\left(\lim _{x \rightarrow-\infty} f(x)=L\right)$ if given any $\in>0, \exists N<0$ such that for all x , $x<N$ Implies $|f(x)-L|<\epsilon$

Theorem: if $f(x)=k$ for any no. k
1- $\lim _{x \rightarrow \infty} k=\lim _{x \rightarrow-\infty} k=k$ such that k is constant
2- if $\lim _{x \rightarrow \infty} f(x)=L \quad$ and $\lim _{x \rightarrow-\infty} g(x)=M$, then :
i) $\quad \lim _{x \rightarrow \infty}(f(x) \mp g(x))=\lim _{x \rightarrow \infty} f(x) \mp \lim _{x \rightarrow \infty} g(x)=L \mp M$
ii)
iii) $\lim _{x \rightarrow \infty}(f(x) \cdot g(x))=\lim _{x \rightarrow \infty} f(x) \cdot \lim _{x \rightarrow \infty} g(x)=L \cdot M$
iv) $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow \infty} f(x)}{x \rightarrow \infty} \lim (x) \quad=\frac{L}{M}, \mathrm{M} \neq 0$
v) $\lim _{x \rightarrow \infty^{+}} \frac{\sin x}{x}=0$
vi) $\lim _{x \rightarrow \infty} \frac{\cos x}{x}=0$
vii) $\lim _{x \rightarrow \infty} \frac{1}{x}=0$

Ex: Find the limits of the following functions:

1. $\lim _{x \rightarrow \infty} \cdot \frac{x}{7 x+4}=\lim _{x \rightarrow \infty} \cdot \frac{\frac{x}{x}}{\frac{7 x}{x}+\frac{4}{x}}=\lim _{x \rightarrow \infty} \cdot \frac{1}{7+\frac{4}{x}}=\frac{1}{7}$
2. $\lim _{x \rightarrow \infty} \frac{2 x^{2}+2 x-3}{x^{2}+4 x+4}=\lim _{x \rightarrow \infty} \cdot \frac{2+\frac{2}{x}-\frac{3}{x^{2}}}{1+\frac{4}{x}+\frac{4}{x^{2}}}=\frac{\lim _{x \rightarrow \infty} \cdot\left(2+\frac{2}{x}-\frac{3}{x^{2}}\right)}{\lim _{x \rightarrow \infty} \cdot\left(1+\frac{4}{x}+\frac{4}{x^{2}}\right)}=2$
H.W: Find the following limits:

$$
\begin{aligned}
& \text { 1- } \lim _{x \rightarrow \infty} \cdot \sqrt{\frac{3 x^{4}-x^{2}}{x^{4}-1}} \\
& \text { 2- } \lim _{x \rightarrow \infty} \cdot\left(2+\frac{\sin x}{x}\right) \\
& \text { 3- } \lim _{x \rightarrow \infty} \cdot \frac{3 x^{2}-5 x^{2}+x}{x^{4}}
\end{aligned}
$$

Infinite limits

Def: We say the limits of the function $\mathrm{f}(\mathrm{x})$ as x approaches a ($a \in D_{f}$) is infinity $\left(\lim _{x \rightarrow a} f(x)=\infty\right)$ if given any $M>0, \exists \delta>0$ such that for all x, such that $\forall x \in D_{f}, \quad 0<|x-a|<\delta$ implies $\mathrm{f}(\mathrm{x})>\mathrm{M}$

Def: We say the limits of the function $f(x)$ as x approaches a ($a \in D_{f}$) is -infinity $\left(\lim _{x \rightarrow a} f(x)=-\infty\right)$ if given any $M<0, \exists \delta>0$ such that for all x, s.t $\forall x \in D_{f}, 0<$ $|x-a|<\delta$ implies $\mathrm{f}(\mathrm{x})<\mathrm{M}$

Ex: Find the limits as follows:
1- $\lim _{x \rightarrow 2+} \frac{1}{x^{2}-4}=\frac{1}{0}=\infty$
2. $\lim _{x \rightarrow \infty} \cdot \frac{2 x^{3}+2 x-1}{x^{2}-5 x+2}=\lim _{x \rightarrow \infty} \frac{2+\frac{2}{x^{2}}-\frac{1}{x^{3}}}{\frac{1}{x}-\frac{5}{x^{2}}+\frac{2}{x^{3}}}=\frac{2}{0}=\infty$

3- $\lim _{x \rightarrow 0+} \frac{1}{x}=\infty$
3- $\lim _{x \rightarrow 0-} \frac{1}{x}=-\infty$
H.W: Find the following limits:

1- $\lim _{x \rightarrow \infty} \frac{x^{2}-x}{x+1} \quad 2-\lim _{x \rightarrow \infty} \frac{x^{5}}{3 x^{4}+x^{3}-x+1}$

continuity

Def: We say the function $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=\mathrm{c}$ iff all the three following conditions are meet:

1- $f(c)$ is exists (c is the domain of f)
2- $\lim _{x \rightarrow c} f(x)$ is exists (f has a limit as $\mathrm{x} \rightarrow c$)
3- $\lim _{x \rightarrow c} f(x)=f(c)$ (the limit equals the fun. value)
Ex: Let $f(x)=\left\{\begin{array}{c}\frac{\sin x}{x}, x \neq 0 \\ 1,\end{array}\right\}$, is f cont. at $\mathrm{x}=0$?
Sol:
$1-\mathrm{f}(0)=1$ is exist
2- $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow a} \frac{\sin x}{x}=1$ is exist as $x \rightarrow 0$
$\therefore \lim _{x \rightarrow 0} f(x)=f(0)=1$
$\therefore f$ is cont. at 0

Discontinuity at a point

Def: If a function f is not continuous at a point c, we say that f is discontinuous at c, and c is called a point of discontinuity of f.

Ex: $f(x)=\left\{\begin{array}{c}\frac{1}{x+1}, x \neq-1 \\ 1, x=-1\end{array}\right\}$ is f cont. at $\mathrm{x}=-1$
Sol:
1- $f(-1)=1 \quad$ is exist
2- $\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1} \frac{1}{x+1}$ not exist as $x \rightarrow-1$
$\therefore f$ is not cont. at $\mathrm{x}=-1$

Homework:

1- $f(x)=\left\{\begin{array}{lc}\frac{x^{2}+x-6}{x}, & x \neq 2 \\ \frac{5}{4}, & x=2\end{array}\right\}$, is f cont. at $\mathrm{x}=2$?
2- $f(x)=\left\{\begin{array}{ll}x^{2}-1 & , x \geq 0 \\ x & , x<0\end{array}\right\}$, is f cont. at $\mathrm{x}=0$?
3-1- $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-9}{x+3}, & x \neq-3 \\ -6, & =-3\end{array}\right\}$, is f cont. at $\mathrm{x}=-3$?
4- $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-4}{x-2}, & x \neq 2 \\ 4, & x=2\end{array}\right\}$, is f cont. at $\mathrm{x}=2$?
5- $f(x)=\left\{\begin{array}{lc}|x+1|+2 & , \quad x \neq-1 \\ 0, & x=-1\end{array}\right\}$, is f cont. at $\mathrm{x}=-1$?

