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Newton-Cotes formulas

Newton-Cotes rules are a group of formulas for numerical integration, also called quadrature.
These methods were first suggested by Isaac Newton & Roger Cotes.

As we have mentioned before the general formula of integration methods takes the form:
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Where p,, can be considered as Lagrange polynomial

For n=1, we have showed that, the general form above is the Trapezoidal formula
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while for n=2, we get the Simpson formula:
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For n=3, we can show using a similar way that the integral formula takes the following form
(which called Simpson’s 3/8 rule):
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And so on.. We can find a Newton-cotes formula for any n.

All these methods above are called closed Newton-Cotes formulas, because it use the function

value at all points. While , there are another type of Newton-Cotes methods, which does not use
the function values at the endpoints (x, or x,) , these methods are called open Newton-Cotes

formulas

Next, we state some of these methods, that can be derived in a manner similar to the closed
formulas :
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It is well known that, any Newton-Cotes method of order n, gives exact results where f is
polynomial of order less than or equal n, and that because the truncation error formula equal
zero, where
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This fact can be used to derive closed Newton-Cotes formulas, without using Lagrange
polynomial as follows:

For n =1,
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Where E is the truncation error, which equal zero for f = {1,x},0<x <h
fohldx=h=a0+a1, ...... (1)
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From equation (2), we get a; = %
If we substitute a, in equation (1) , we get a, = g
Thus for any function f,
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which is the Trapezoidal formula
For n = 2, since it is known that E=0, where , f = {1, x, x?},

0<x<2h
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Let x0=0, x1=h, x2:2h

by using similar way to that above, we have
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From last three equations, we get
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Thus for any function f, we have
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which is the Simpson formula.
By using similar way we can get a closed Newton-Cotes formula forany  n.

Remark:- For Newton-cotes methods, to be accurate, the step size h needs to be small,
which means that the interval of integration must be small itself. For this reason, composite
Newton-Cotes rules give more accurate results with small h, such as composite
Trapezoidal or composite Simpson formula.



