Examples on operation of array

Example

Following program traverses and prints the elements of an array:

```
#include <stdio.h>
main() {
    int LA[] = {1,3,5,7,8};
    int item = 10, k=3,n=5;
    int i=0,j = n;
    printf("The original array elements are :\n");
    for(i=0; i<n; i++) {
        printf("LA[%d] = %d \n", i, LA[i]);
    }
}
```

When we compile and execute the above program, it produces the following result

Output
The original array elements are :
$\mathrm{LA}[0]=1$
$\mathrm{LA}[1]=3$
$\mathrm{LA}[2]=5$
$\mathrm{LA}[3]=7$
LA[4] $=8$

Insertion Operation

implementation of the above algorithm -

```
#include <stdio.h>
main() {
    int LA[] = {1,3,5,7,8};
    int item = 10, k = 3, n = 5;
    int i=0,j=n;
    printf("The original array elements are :\n");
    for(i=0; i<n; i++) {
        printf("LA[%d] = %d \n", i, LA[i]);
    }
```


Examples on operation of array

```
    \(\mathrm{n}=\mathrm{n}+1 ;\)
    while \((\mathrm{j}>=\mathrm{k})\) \{
        \(\mathrm{LA}[\mathrm{j}+1]=\mathrm{LA}[\mathrm{j}]\);
        \(\mathrm{j}=\mathrm{j}-1\);
    \}
    \(\mathrm{LA}[\mathrm{k}]=\) item;
    printf("The array elements after insertion : \(\mathrm{ln} "\) );
    for \((\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)\{\)
        \(\operatorname{printf}(" L A[\% d]=\% d \backslash n ", i, L A[i]) ;\)
    \}
\}
```

When we compile and execute the above program, it produces the following result

Output
The original array elements are :
$\mathrm{LA}[0]=1$
LA[1] = 3
$\mathrm{LA}[2]=5$
LA[3] $=7$
LA[4] $=8$
The array elements after insertion :
$\mathrm{LA}[0]=1$
$\mathrm{LA}[1]=3$
$\mathrm{LA}[2]=5$
$\mathrm{LA}[3]=10$
LA[4] $=7$
LA[5] $=8$
Deletion Operation
Deletion refers to removing an existing element from the array and re-organizing all elements of an array.

Examples on operation of array

Consider LA is a linear array with \mathbf{N} elements and \mathbf{K} is a positive integer such that $\mathbf{K}<=\mathbf{N}$. Following is the algorithm to delete an element available at the $\mathrm{K}^{\text {th }}$ position of LA.

1. Start
2. Set $\mathrm{J}=\mathrm{K}$
3. Repeat steps 4 and 5 while $\mathrm{J}<\mathrm{N}$
4. Set LA[J] = LA[J + 1]
5. Set $\mathrm{J}=\mathrm{J}+1$
6. Set $\mathrm{N}=\mathrm{N}-1$
7. Stop

Example
Following is the implementation of the above algorithm -

```
#include <stdio.h>
void main() {
    int LA[] = {1,3,5,7,8};
    int k = 3, n = 5;
    int i, j;
    printf("The original array elements are :\n");
    for(i=0; i<n; i++) {
        printf("LA[%d] = %d \n", i, LA[i]);
    }
    j = k;
    while(j < n) {
        LA[j-1] = LA[j];
        j = j + 1;
    }
    n = n - 1;
    printf("The array elements after deletion :\n");
    for(i=0; i<n; i++) {
        printf("LA[%d] = %d \n", i, LA[i]);
```


Examples on operation of array

```
    }
}
```

When we compile and execute the above program, it produces the following result

Output
The original array elements are :
$\mathrm{LA}[0]=1$
$\mathrm{LA}[1]=3$
$\mathrm{LA}[2]=5$
LA[3] $=7$
LA[4] $=8$
The array elements after deletion :
$\mathrm{LA}[0]=1$
$\mathrm{LA}[1]=3$
LA[2] $=7$
LA[3] $=8$
Search Operation
You can perform a search for an array element based on its value or its index.
Algorithm
Consider LA is a linear array with \mathbf{N} elements and \mathbf{K} is a positive integer such that $\mathbf{K}<=\mathbf{N}$. Following is the algorithm to find an element with a value of ITEM using sequential search.

1. Start
2. Set $\mathrm{J}=0$
3. Repeat steps 4 and 5 while $\mathrm{J}<\mathrm{N}$
4. IF LA[J] is equal ITEM THEN GOTO STEP 6
5. Set $\mathrm{J}=\mathrm{J}+1$
6. PRINT J, ITEM
7. Stop

Example
Following is the implementation of the above algorithm -

```
#include <stdio.h>
void main() {
    int LA[] = {1,3,5,7,8};
```


Examples on operation of array

```
int item = 5, n = 5;
int i = 0,j = 0;
printf("The original array elements are :\n");
    for(i = 0; i}<n;\mathbf{i}++)
    printf("LA[%d] = %d \n", i, LA[i]);
    }
    while(j<n){
        if( LA[j] == item ) {
            break;
        }
    j = j + 1;
}
printf("Found element %d at position %d\n", item, j+1);
}
```

When we compile and execute the above program, it produces the following result

Output
The original array elements are :
$\mathrm{LA}[0]=1$
$\mathrm{LA}[1]=3$
$\mathrm{LA}[2]=5$
$\mathrm{LA}[3]=7$
LA[4] $=8$
Found element 5 at position 3

