oA is a series of connected
® Each node contains at least

® A piece of data (any type)

® Pointer to the next node in the list
@ : pointer to the first node

® The last node points to NULL

® Linked lists
® Abstract data type (ADT) data pointer
® Basic operations of linked lists

® Insert, find, delete, print, etc.

Array node node

——
._._,_,—:-"".-.-.-\.-\—
-

Types of lists

* There are two basic types of linked list
o Singly Linked list

° Doubly linked list

Singly Linked List
° Each node has only one link part

* Each link part contains the address of the next node in
the list

o Link part of the last node contains NULL value which
signifies the end of the node

T,

~_Schematic representation —

e Here is a singly-linked list (SLL):

myList E ‘

* Each node contains a value(data) and a pointer
to the next node in the list

* myList is the header pointer which points at
the first node in the list

) = B C

yoa must declare a data structure that will beused-fertheodes. For example, the

following struct could be used to createa list where each node holds a float:

struct ListNode

{
float wvalue;
ListNode *next;

};

The next step is to declare a pointer to serve as the list head, as shown below.
ListNode *head;

Onceyou have declared a node data structure and have created a NULL head
pointer, you have an empty linked list.

The next step is to implement operations with the list.

Empty Linked list is a single pointer having the value of NULL.

head = NULL; head

Linked list with four nodes

Values of head and some of the nodes of the linked list in previous

B T -
o —_ g

i

.1.

= e — T
:.—.::,—t—'_'_ P

fﬁ”f - : — -.___.
Basic Operations on a list

* Creating a List

* Inserting an element in a list

* Deleting an element from a list
 Searching a list

 Reversing a list

,——— "_;_-;_J-‘-__%_ﬁ;“__-__-___. = __”Jﬁf,:f —
~Creating a node
struct node{
int data; // A simple node of a linked list
node*next;
}¥start; //start points at the first node
start=NULL ; initialised to NULL at beginning

e ey
e

el
ﬁ:f-.:-:‘:'.-_:'
e

PO LT S o
e e aaananaa s e — T__—;;'.—'u-"'""f:"-

T B —
R = — - e

_—node* create(int num) //say num=1 is passed from main

{
node*ptr;
ptr= new node; //memory allocated dynamically
iﬂ:ptr::NULL_)
'‘OVERFLOW’ // no memory available
exit(1);
else

{

ptr->data=num;
ptr->next=NULL;
return ptr;

)

10

~To be called from main() as:-

void main()
{
node* ptr;
int data;
cin>>data;
ptr=create(data);

g

o

“Inserting the node ina SLL |

There are 3 cases here:-

»Insertion at the beginning
»Insertion at the end
»Insertion after a particular node

i
e

E—

——

““Insertion at the beginning

There are two steps to be followed:-

a) Make the next pointer of the node point towards the
first node of the list

b) Make the start pointer point towards this new node

= [f the list is empty simply make the start pointer
point towards the new node;

13

head

newNode

—

100

14

~——void insert_beg(node* p)
[
node* temp;
if(start==NULL) //if the list is empty
f
start=p,
cout<<’\nNode inserted successfully at the
beginning”;
}
else {
temp=start;
start=p;
p->next=temp; //making new node point at
] the first node of the list

15

Inserting at the end

Here we simply need to make the next pointer
of the last node point to the new node

Farmerly nuall

w -

cese — | 95 e—tf—=| 100 | == 102
T)
| 1 11

BPEew e Mod e

— 7 23 I ——
void insert_end(node* p)
{
node *g=start;
if(start==NULL)
{
start=p;
cout<<’\nNode inserted successfully at the end...!"\n”
}
else]
while(g->link!=NULL)
g=qg->link;
q->next=p;
}

17

o™

e e

— — s

ment

Inserting after an ele

Here we again need to do 2 steps :-

= Make the next pointer of the node to be inserted
point to the next node of the node after which you
want to insert the node

= Make the next pointer of the node after which the
node is to be inserted, point to the node to be
inserted

e

__________ > 40 —1—» 00— 100

l

newNode

e — —_—;____________‘_________.__=_____T____ _________F—__:_r__-;:r-""’f"’ﬁ
void insert_after(int ¢,node* p)
{
node* q;
g=start;

for(int i=1;i<c;i++)
{
q=q->link;

if(q==NULL)
cout<<”’Less than “<<c<<” nodes in the list...!!!”;
}
p->link=q->link;
q->link=p;
cout<<”\nNode inserted successfully”;

}

20

