QUEUES

Movie Hall Ticketing

One Way Traffic

LAST IN . B
LAST OUT FIRST OUT

e _‘—-___
fOt ikl - b

Intro

* Queueis alinear list of elements in which deletion of an element can

take place at one end, called the front and insertion can take place at
the other end, called the rear.
A;\L;Lq‘)m.xs LJ.A;\.@_\S?.\Ju\uSAAL;\M Jm_\zj\uAML;M\Au.Q Queue .
¢ AYI Lkl s)oY Gasy O (Sass (Front) deleY) dgal gl ey ¢ 448)l
(rear) A&l ¢l e
* The first element in a queue will be the first one to be removed from
the list.

Alal) cpeadll) Ay uaie Jgl s HUAYI A 8 J V) i)) S
 Queues are also called FIFO (Fi rst In First OUt) l.e. the data

item stored first will be accessed first.
&) Jsasll ais sl <FIFO (First In First Out) ha‘ }Lw‘ﬁ‘ eébﬂ Ls“'““

Queue Representation

» In queue, we access both ends for different reasons

In

& B
Data Data Data Data Data Data Out
| »
Last In Last Cut First In First Out
Queue

Back Front

Dequeue
Enqueue

Applications of queue gl ciliykas

» Serving requests on a single shared resource, like a printer, CPU task
scheduling etc.
%}ﬂ\@hﬂ\ﬁh\ge@;u\ggjc@w\dhckﬂJm.AAU.JJJ.AuJQQw\ﬁ.ﬁi .
REAY A Lag
* In real life, Call Center phone systems will use Queues, to hold people
calling them in an order, until a service representative is free.

Crdll GalAEN) s ey ¢ JURIEN) ad) 8 JLaiy) 38 pa (B gl dalii] addiodin ¢ 4Bl gl Blad) & m
Ll daddl) Jlaa oy s ¢l Al agy G slaly
* Handling of interrupts in real-time systems. The interrupts are
handled in the same order as they arrive, First come first served.
Qi p (uddy Ciladaliall &AdAM\@u (_,Su.“ uﬁﬂ‘@h\&u&bb—d\ dallas =

Yj\edu'gg\@hua LQJMJ

The queue asan ADT

* A queue q of type T is a finite sequence of elements with the operations
« MakeEmpty(q): T o make g as an empty queue
ae ju jUanl Adli€q Jaal: Make Empty (q) e
 IsEmpty(q): To check whether the queue g is empty. Return true if g is empty, return
false otherwise.
elals ¢ A Jliq culS 1Y munaa pla) Ae i UaiY) Aals culS 1) Las Giaill : Is Empty (q)
Al Gl Uaa
* IsFull(g): To check whether the queue q is full. Return true in q is full, return false
otherwise.

Wad gla)5 ¢ (liaaq (A rma pla) Adliaaq UanY) 4aild cuilS 13) Lae 38l ; Ts Full (q)
Iy AL
» Enqueue(q, X): To insert an item X at the rear of the queue, if and only if
g is not full.
Adlae Cooal o)) dadd ¢ 13) ¢ HUSTY) A8 e @u\ ¢ yall X r=ie z) Y :Enqueue (q, x):

» Dequeue(q): To delete an item from the front of the queue q if and only if

g 1s not empty. /
& Ladg 1)L 10 ey dddidatie (e paic Cial:Dequeue (0)

« Traverse ((): To read entire queue that is display the content of the queue.

USEY A (5 gina et i LeleSl USRI Al se) 3 (WialTraverse (Q) q): *

Enqueue Operation
 Queue maintains two data pointers, front and rear

 The following steps should be taken to enqueue(insert) data into
queue —
 Step 1 — Check if queue is full
 Step 2 - if queue is full
produce overflow error and exit
else
Increment rear pointer to point next empty space
and add data element to the queue location, where rear Is
pointing
« Step 3 - return success

Rear Front

(2]))
\"‘ | C | | B l A before

>

Rear Front

l l

.
»
.
r

[D]IC'B]A after

>

Queue Enqueue

Implementation of enqueue()

Int enqueue(int data) {
If(isfull())
return O;
rear = rear + 1;
queue[rear] = data;
return 1;

Dequeue Operation

* Accessing data from queue Is a process of two steps
* Access the data from where front is pointing
« And remove the data after access

* The following steps are taken to perform dequeue operation
 Step 1 — Check If queue Is empty
 Step 2 — if queue is empty
produce underflow error and exit
else

access data where front is pointing, increment front pointer
to point next available data element

» Step 3 — return success.

l (8]] { c | B A
>
Rear Front
| L
b] [e J " a dequeue
Queue \
A

Queue Dequeue

12

Inmplementation of dequeue()

Int dequeue() {

If(isempty()) {
return O;

¥

Int data = queue[front];
front = front + 1; return
data;

Implementation of queue

 There are two techniques for implementing the queue:
Uiy) dails dgndl U L elliae
« Array implementation of queue (static memory allocation)
(‘Luu\ E)S\.JM UAM;J) J\.L.L\Y\ 458 (e LJ.\S.LA .A__q_u o
. I - on (i ucre)
(Aabaal) HUainy) daild) Ldadl) 48 dnall 2ai o

 Circular arayhnplementation (Carcular queue)
(Aol sy AAl8) 4y p)a 48 siina 285

 Linked list implementation of queue (dynamic memory allocation)
(Sealinall 3 SIAN (anads) HUaisy) dailal Aoy yall ailall 245 o

Array implementation of queue

 The easies way of implementing a queue Is by using an Array.
s aladinly o Uat) Al Gulail Jeul) 45y HLll
* Initially head(FRONT) and the tail(REAR) of the queue points at the
first index of the array. o
itall J oY) e edl) die i) dalasl (Als) Jad g ((eelal) uly dpladl A e
* As we add elements to the queue, we can either move tail before
adding another item or we can move the tail after adding the item,
while the head remains at the first index.
IV Ggdl) (& el g Ly ¢ pecainl) ALl 2y o) ety s LSy 5l A

Linear Queue

o] [[21 [31 [41 [51 [6] [7]

N

Head Tail
o 11 21 (31 [4 [51 [6] I[7] Adding elements to
Queue
27
T
Head Tail

o] [[([31 (4 [51 (6] [7]

‘T‘ I\ removing element

Head Tail from Queue
[0 [11 [21 [3] (o] [[21 [3] [4]
19 17 7 19 17 7
T AN T AN
Head Tail Head Tail
[A] [B]

16

Linear Queue

Insertion of an item in queue Deletion of an item from queue
1. Initialize front=0 and rear=-1 1. if rear<front
if rear>=MAXSIZE-1 print ‘gueue is empty ”and return
print ‘gueue overflow”’and return else
else item=queue[front++]
set rear=rear+1 2. end

queue[rear]=item
2. end

17

Problems with Linear queue implementation

» Both rear and front indices are INCreased but never decreased.
Sl Laaddy ol ety alal) 5 AR 5l pa JS 01 o
 As items are removed from the queue, the storage space at the
beginning of the array Is discarded and never used again.
Al & Cp Al dalise Jalad afy ¢ HUREY) A8 (e ualial) 41) dic o
S A B e Lgaladinl aae 548 diadll
« Wastage of the space Is the main problem with linear queue which is
Illustrated by the following example.
S i) anm gy (o3 Jadd)) sildall 8 At 1) AISGD) ga sliadll 3 ol e

11 |22 | 33 | 44 |55

0 1 2 3 4 5 6 front=2, rear=6
f r
This queue is considered full, even though the space at beginning is vacant.

18

Circular queue

* A queue where the start and end of the queue are joined together.
e Leiilgs g HUaiiy) Al 4y Jay) oy Sua Uil A8
 Acircular queue is one In which the insertion of a new element Is
done at very first location of the queue If the last location of the queue
Is full.

muj@yd}\@m_m}.‘m:J\Aa\l.@_\seuwd\dh@m}\ﬂ\)\.buwmuo
_\L\MJ\L.\JY‘ dai\al cﬁj.a J;‘ u\S ‘.J\)U:aAf)“

P e = Head
- Re:
£ - SR
/ . : ; \ 4 ‘-"‘ l ront
| / \ ¢ ' ; 6 1
‘ O | :‘——4
\ Y ‘,v’ D |/
\ b I ’y " 5 2
Fig. Circular Queue Tail B il 2

19

Head

«—
2

Tail

7 810‘///
a 1
“=’;2 99

5 oa N

0

Tail %
6 17 1

7 3o v
6 1 —
€3
= 3

3

Tail

Circular gueue

- IfHEAD == (Tail %o MAX) + 1 - If Head ==Tail
Then Full <- True; Then Full <- True;
Else Full <- False; Else Full <- False;

- If they have caught up to each other, then it’s full

21

Circular gueue

Enqgueue operation Dequeue operation
Step 1. start Step 1. start
Step 2. if (front == (rear+1)%max) Step 2. if isEmpty() == True
Print error “circular queue overflow Print error “Queue is Empty*

Step 3. else{ Step 3. else{

rear = (rear+1)%max element = Q[front]

Q[rear] = element; front = (front + 1) % max
¥ ¥

Step 4. stop Step 4. stop

22

