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Intro

* Queueis alinear list of elements in which deletion of an element can

take place at one end, called the front and insertion can take place at
the other end, called the rear.
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* The first element in a queue will be the first one to be removed from
the list.
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 Queues are also called FIFO (Fi rst In First OUt) l.e. the data

item stored first will be accessed first.
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Queue Representation

» In queue, we access both ends for different reasons
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Applications of queue gl ciliykas

» Serving requests on a single shared resource, like a printer, CPU task
scheduling etc.
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* In real life, Call Center phone systems will use Queues, to hold people
calling them in an order, until a service representative is free.
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* Handling of interrupts in real-time systems. The interrupts are
handled in the same order as they arrive, First come first served.
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The queue asan ADT

* A queue q of type T is a finite sequence of elements with the operations
« MakeEmpty(q): T o make g as an empty queue
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 IsEmpty(q): To check whether the queue g is empty. Return true if g is empty, return
false otherwise.
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* IsFull(g): To check whether the queue q is full. Return true in q is full, return false
otherwise.
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» Enqueue(q, X): To insert an item X at the rear of the queue, if and only if
g is not full.
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» Dequeue(q): To delete an item from the front of the queue q if and only if

g 1s not empty. /
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« Traverse ((): To read entire queue that is display the content of the queue.
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Enqueue Operation
 Queue maintains two data pointers, front and rear

 The following steps should be taken to enqueue(insert) data into
queue —
 Step 1 — Check if queue is full
 Step 2 - if queue is full
produce overflow error and exit
else
Increment rear pointer to point next empty space
and add data element to the queue location, where rear Is
pointing
« Step 3 - return success
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Implementation of enqueue()

Int enqueue(int data) {
If(isfull())
return O;
rear = rear + 1;
queue[rear] = data;
return 1;



Dequeue Operation

* Accessing data from queue Is a process of two steps
* Access the data from where front is pointing
« And remove the data after access

* The following steps are taken to perform dequeue operation
 Step 1 — Check If queue Is empty
 Step 2 — if queue is empty
produce underflow error and exit
else

access data where front is pointing, increment front pointer
to point next available data element

» Step 3 — return success.
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Inmplementation of dequeue()

Int dequeue() {

If(isempty()) {
return O;

¥

Int data = queue[front];
front = front + 1; return
data;



Implementation of queue

 There are two techniques for implementing the queue:
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« Array implementation of queue (static memory allocation)
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 Circular arayhnplementation (Carcular queue)
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 Linked list implementation of queue (dynamic memory allocation)
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Array implementation of queue

 The easies way of implementing a queue Is by using an Array.
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* Initially head(FRONT) and the tail(REAR) of the queue points at the
first index of the array. o
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* As we add elements to the queue, we can either move tail before
adding another item or we can move the tail after adding the item,
while the head remains at the first index.
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Linear Queue
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Linear Queue

Insertion of an item in queue Deletion of an item from queue
1. Initialize front=0 and rear=-1 1. if rear<front
if rear>=MAXSIZE-1 print ‘gueue is empty ”and return
print ‘gueue overflow”’and return else
else item=queue[front++]
set rear=rear+1 2. end

queue[rear]=item
2. end
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Problems with Linear queue implementation

» Both rear and front indices are INCreased but never decreased.
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 As items are removed from the queue, the storage space at the
beginning of the array Is discarded and never used again.
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« Wastage of the space Is the main problem with linear queue which is
Illustrated by the following example.
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11 |22 | 33 | 44 |55

0 1 2 3 4 5 6 front=2, rear=6
f r
This queue is considered full, even though the space at beginning is vacant.

18



Circular queue

* A queue where the start and end of the queue are joined together.
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 Acircular queue is one In which the insertion of a new element Is
done at very first location of the queue If the last location of the queue
Is full.
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Circular gueue

- IfHEAD == (Tail %o MAX) + 1 - If Head ==Tail
Then Full <- True; Then Full <- True;
Else Full <- False; Else Full <- False;

- If they have caught up to each other, then it’s full
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Circular gueue

Enqgueue operation Dequeue operation
Step 1. start Step 1. start
Step 2. if (front == (rear+1)%max) Step 2. if isEmpty() == True
Print error “circular queue overflow Print error “Queue is Empty*

Step 3. else{ Step 3. else{

rear = (rear+1)%max element = Q[front]

Q[rear] = element; front = (front + 1) % max
¥ ¥

Step 4. stop Step 4. stop
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