
STACKS IN C++

INTRODUCTION TO STACK
DEFINITION:

 A stack is a data structure that provides temporary storage of data in such

a way that the element stored last will be retrieved first.

 This method is also called LIFO – Last In First Out.

EXAMPLE:

In real life we can think of stack as a stack of copies, stack of plates etc. The first

copy put in the stack is the last one to be removed. Similarly last copy to put in the

stack is the first one to be removed.

OPERATIONS ON STACK

 A stack is a linear data structure.

 It is controlled by two operations: push and pop.

 Both the operations take place from one end of the stack,

usually called top. Top points to the current top position of the

stack.

 Push operation adds an element to the top of the stack.

 Pop operation removes an element from the top of the stack.

 These two operations implements the LIFO method .

IMPLEMENTATION OF STACK

Stack can be implemented in two ways:

 As an Array

 As a Linked List

STACK AS AN ARRAY

Array implementation of stack uses

 an array to store data

 an integer type variable usually called the top, which

points to the top of the stack.

NOTE: The variable top contains the index number of

the top most filled element of the array.

30

20

10

2

4

3

2

1

0TOP

PUSH OPERATION

 Initially when the stack is empty, TOP can have any integer value other

than any valid index number of the array. Let TOP =

-1;

 The first element in the empty stack goes to the 0th position of the array

and the Top is initialized to value 0.

 After this every push operation increase the TOP by 1 and inserts

new data at that particular position.

 As arrays are fixed in length, elements can not be inserted beyond the

maximum size of the array. Pushing data beyond the maximum size of

the stack results in “data overflow”.

PUSHOPERATION EXPLAINED

NOTE: Pushing one more element into the stack will result in overflow.

POPOPERATION

The pop operation deletes the most recently entered item from

the stack.

Any attempt to delete an element from the empty stack results in

“data underflow” condition.

The variable TOP contains the index number of the current top

position of the stack.

Each time the pop operation is performed, the TOP variable is

decremented by 1.

POPOPERATION EXPLAINED

top = 2

PROGRAM TO ILLUSTRATE OPERATIONS ON STACKAS AN INTEGER ARRAY

#include<iostream

.h>

#include<process.

h> const int size=5

class stack

{ int arr[size];

int top; //top will point to the last item

//pushed onto the stack

public:

stack() { top=-1; } //constructor to

create an

//empty stack, top=-1

indicate

//that no item is present in the

array void push(int item)

{ if(top==size-1)

cout<<”stack is full, given item

cannot be added”;

else

{ top++;

arr[top]=item
;}

void pop()

{ if (top== -1)

cout<<”Stack is

empty “; else

{

cout<<arr[top

]; top - -; }

}

void display()

{

for(int

i=top;i>=0;i--)

cout<<arr[to

p];

}

void main()

{ stack s1;

int

ch,data;

while(1)
{

cout<<”1.push”<<”\n

2.pop”<<”\n3.display”

<<”\n 4.exit”;

cout<<”Enter choice :”;

cin>>c

h; if

(ch==1)

{ cout<<”enter item to

be pushed in the

stack”; cin>>data;

s1.push(data);

}

else if (ch == 2)

{

s1.pop(); }

else if (ch==3)

{ s1.display(); }

else

exit(-1);
} }

PROGRAM TO ILLUSTRATE OPERATIONSON STACK
AS AN ARRAY OF OBJECTS

#include<iostream.h>
#include<process.h>
const int size=5
struct stu
{

int roll;
char name[20];
float total;

};
class stack

{ stu arr[size];
int top;

public:
stack() { top=-1; }
void push(int r, char

n[20],float tot)
{ if (top==size-1)

cout<<”overflow”;

else
{ top++;

arr[top].roll=r;
strcpy(arr[top].name,n);
arr[top].total=tot; }

void pop()
{ if (top== -1)

cout<<”Stack is empty “;
else
{ cout<<arr[top].roll<<
arr[top].name<<arr[top].tot;
top - -; }

void display()
{
for(int i=top;i>=0;i--)

cout<<arr[top].roll<<
arr[top].name<<arr[top].tot<<”\n”;

}

void main()
{ stack s1;

int ch,data;
while(1)
{ cout<<”1.push”<<”\n
2.pop”<<”\n3.display”<<”\n
4.exit”;
cout<<”Enter choice :”;
cin>>ch;
if (ch==1)
{ cin>>data;

s1.push(data); }
else if (ch == 2)

{ s1.pop(); }
else if (ch==3)

{ s1.display(); }
else

exit(-1); } }

APPLICATIONS OF STACK
A stack is an appropriate data structure on which information is stored and

then later retrieved in reverse order. The application of stack are as

follows:

When a program executes, stack is used to store the return address at time

of function call. After the execution of the function is over, return address

is popped from stack and control is returned back to the calling function.

Converting an infix expression o postfix operation and to evaluate the

postfix expression.

Reversing an array, converting decimal number into binary number etc.

INFIX AND POSTFIX OPERATIONS

The infix expression is a conventional algebraic

expression, in which the operator is in between

the operands.

For example: a+b

 In the postfix expression the operator is

placed after the operands.

For example: ab+

NEEDOF POSTFIX EXPRESSION

The postfix expressions are special because

 They do not use parenthesis

 The order of expression is uniquely reconstructed

from the expression itself.

These expressions are useful in computer applications.

CONVERTING INFIX TO POSTFIX EXPRESSION
CONVERT_I_P(I,P,STACK) Where I = infix expression, P = postfix expression, STACK = stack as an array

Step 1. Push ‘(‘ into STACK and add ‘)’ to the end of I.

Step 2. Scan expression I from left to right and repeat steps 3-6 for each element of I

until the stack is empty.

Step 3. If scanned element =‘(‘ , push it into the

STACK. Step 4. If scanned element = operand, add it to

P.

Step 5. If scanned element = operator, then:

a)Repeatedly pop from STACK and add to P each operator from the top of the

stack until the operator at the top of the stack has lower precedence than the

operator extracted from I.

b) Add scanned operator to the top of the STACK.

Step 6. If scanned element = ‘)’ then:

c)Repeatedly pop from STACK and add to P each operator until the left

parenthesis is encountered.

d) Pop the left parenthesis but do not add to P.

CONVERTING INFIX TO POSTFIX EXPRESSION

Q Convert the following infix

operation to

postfix operation.

((TRUE && FALSE) || !

(FALSE || TRUE))

Ans. The Postfix expression is:

TRUE FALSE && FALSE

TRUE || ! ||

EVALUATIONOF POSTFIX EXPRESSION
Evaluate(P, result, STACK)

where P=Postfix expression, STACK =stack, result=to hold the result of evaluation

Step 1. Scan the postfix expression P from left to right and repeat the steps 2, 3

until the STACK is empty.

Step 2. If the scanned element = operand, push it into the STACK.

Step 3. If the scanned element = operator, then

a) Pop the two operands viz operand A and operand B from the STACK.

b) Evaluate ((operand B) operator (operand A))

c) Push the result of evaluation into the STACK.

Step 4. Set result=top most element of the STACK.

EVALUATING POSTFIX EXPRESSION
Q Evaluate the following Postfix expression:

TRUE FALSE || FALSE TRUE && ! ||

Ans. TRUE Step
No.

Symbol Scanned Operation Performed Stack Status

1 TRUE TRUE

2 FALSE TRUE FALSE

3 || TRUE || FALSE =TRUE TRUE

4 FALSE TRUE FALSE

5 TRUE TRUE FALSE TRUE

6 && FALSE &&TRUE = FALSE TRUE FALSE

7 ! ! FALSE =TRUE TRUE TRUE

8 || TRUE || TRUE TRUE

STACK AS A LINKED LIST
LINKED LIST IMPLEMENTATION OF STACK USES

 A linked list to store data

 A pointer TOP pointing to the top most position of the stack.

NOTE: Each node of a stack as a linked list has two parts : data part and link part and

is created with the help of self referential structure.

The data part stores the data and link part stores the address of the next node of the

linked list.

NODE

TOP

DAT

A
LIN

K

PROGRAM TO ILLUSTRATE OPERATIONS ON STACK
AS A LINKED LIST

#include<iostream.h>

#include<conio.h>

struct node

{

int roll;

char name[20];

float total;

node *next;

};

class stack

{

node *top;

public :

stack()

{ top=NULL;}

void push();

void pop();

void display();

};

void stack::push()

{

node *temp; temp=new

node; cout<<"Enter roll

:"; cin>>temp->roll;

cout<<"Enter name :";

cin>>temp->name;

cout<<"Enter total :";

cin>>temp->total; temp-

>next=top; top=temp;

}

void stack::pop()

{

if(top!=NULL)

{

node *temp=top;

top=top->next;

cout<<temp->roll<<temp-

>name<<temp->total

<<"deleted

"; delete temp;

}

else

cout<<"Stack empty";

}

void stack::display()

{

node *temp=top;

while(temp!=NUL

L)

{

cout<<temp->roll<<temp-

>name<<temp->total<<"

"; temp=temp->next;

} }

void main()

{ stack st;

char ch;

do

{ cout<<"stack

options\nP

push

\nO Pop \nD

Display \nQ

quit"; cin>>ch;

switch(ch)

{ case 'P':

st.push();break

; case 'O':

st.pop();break;

case 'D':

st.display();break;

}

}while(ch!='Q');

}

PROGRAM TO ILLUSTRATE OPERATIONS
ON STACK

AS A LINKED LIST : EXPLANATION
struct node

{

int roll;

char name[20];

float total;

node *next;

};

Self Referential Structure: These are special structures which

contains pointers to themselves.

Here, next is a pointer of type node itself.

Self Referential structures are needed to create Linked Lists.

class stack

{

node *top;

public :

stack()

{ top=NULL;}

void push();

void pop();

void

display();

};

class stack: It contains pointer TOP which will point to the top

of the stack.

The constructor function initializes TOP to NULL.

PROGRAM TO ILLUSTRATE OPERATIONS ON STACK
AS A LINKED LIST : EXPLANATION

void stack::push()

{

node *temp; // pointer of type node

temp=new node; // new operator will create a new

//node and address of new node

// is stored in temp

cout<<"Enter roll :";

These lines will input

values into roll , name

and total of newly

created node.

cin>>temp->roll;

cout<<"Enter name :";

cin>>temp->name;

cout<<"Enter total :";

cin>>temp->total;

temp->next=top; // address stored in TOP gets

//stored in next of newly

//created node.

top=temp; // Top will contain address of

// newly created node

}

void stack::pop()

{

if(top!=NULL) // if stack is not empty

{

node *temp=top; // temp is a pointer

//containing address of first node

top=top->next; // top will now contain address of

//second node

cout<<temp->roll<<

temp->name<<temp->total

<<"deleted";

// This line will

display

// data stored in

// deleted node

delete temp; // delete operator will delete the node

// stored at temp

}

else

cout<<"Stack empty";}

