Asst. T. Saja hikmat Software engineering computer science

Chapter two

2.1 Software Lifecycle

Each software product passing to a number of distinct stages as shown in Figure (2-1) which are:

1- Planning
2- Software analysis
3- Software design

4- Software construction

Software
5- Software evaluation or testing Implementation
6- Software deployment
7- Software maintenance
1- Planning
This stage involve:- Figure (2-1)

a- Communication:- User initiates the request for a desired software product by contacts with the

service providers to provide them with his requirement and submits the request to the organization.
Ay gsall Ao g 9all allall a8 g aslllaiag aa g 5 A6 (535 3 aa Jual 5l Aol 52 sOftware product bl aadiudl) » 54

b- Feasibility Study:- the team analyzes if a software can be designed to fulfill all requirements of
the user, and if there is any possibility of software being no more useful. It is also analyzed if the
project is economically, practically, and technologically feasible for the organization to take up.

eﬂM\gid&g&\bj}ceM\Ql__\lbla@.a.;tﬁlg&\:\;.gsoftware HA*AUSMS‘OAOSB!LAJ:‘MM‘&'}?J%‘

s sl Apuaily L U5 5 Ulae 5 ol Lans (1S 130 Lo 3paa] (5 53 G 50 e &5 WS, Software & s

2- Software analysis
a- The functionality of the software and constraints on its operation must be defined.

b- The developers try to bring up the best software model suitable for the project.

sty Cun alee lo sl paats JelS (<5 (Gl Yl lllbidl wasss software product aed o dls el o2
aelen] Laulia software model Jess o5 shall

3- Software design
Convert by developer

Logical software requirements ------------------- technical software design

Page |\

Asst. T. Saja hikmat Software engineering computer science

This happened by describe the software in such a way that programmers can write line of code that
implement what the requirements specify. Engineers produce meta-data and data dictionaries, logical
diagrams, data-flow diagrams, and in some cases pseudo codes.

design 2l e slaie Yl (SUL) 2ol @ system interface pUsil Cileal s araad) plaill asaal aa g1 () ganaall o 6
.code LSy e nall 5 58l requirements (sisy JSis JalS il glgorithm 4wl 55 a5 5 approaches

4- Software construction
is concerned with implementing the software design by means writing the programs in one or more
programming languages and then compiling and linking them. This stage content several steps:

a. Software reuse
The goal of software engineering is to achieve many features with little effort and few defects. Software
components reuse is believed to play an important role in achieving this goal by encapsulating effort in
units of source code, which can be reused in other projects.

b. Security and reliability
Software must be dependable by making it reliable (software should work very well under any
environments), secure and safety (by verifying from user authentication to using any system).

c. Software documentation
Software must be properly documented and understandable so as to minimize the cost of updates that may
occur

d. Coding standards
Coding standards are important to ensure portability and make code maintainable by others than the

original developer.

5- Software evaluation or testing

In this phase, the software is reviewed with the purpose of detecting defects.
sladl @lilia IS 13) Lagd CBLEESY HLial) g aal g ali y 8 a5 a3 zalindll e e 3 JS dee lidl oy

Starting with verification ----------------- ending with validation

Verification: - checking that the software (not the actual final product) meet the specified requirements
for that phase of life cycle, someone other than the programmer reads a program unit of limited size to
determine whether it satisfies the requirements.

«software sba 3 53 (30 s jall el Lalal) clillaiall requirements (séss 43 Ul software daal e o Ads jall 338 4

requirements sy 43 UL code Axal e el jue adid dleal) 3360 2)

Page |Y

Asst. T. Saja hikmat Software engineering computer science

Software validation, checking that the software (during or at the end of life cycle) is what the customer

requires or meets intended use.

sha 3,90 Aled A o) A user requirements padtuall cilllaie giay 43l UL software esd b Als jall oda 3
Basall allall jplaall ke s software

6- Software deployment

Refers to all of the activities that accrue after a software system has been developed and made available

for release and use for users

- the following deployment activities

- Release, packaging, transfer, installation, update, download
7- Software maintenance

As software evolves after its first release, software maintenance is needed to improve it, i.e., support,

repair defects, and to extend it work, i.e., add new functionality.
:\L)AS\ 0l Mj c\.@_u.w;.\u.a_)dsﬂ]bj LLII:\M‘_).\“MLLAALA\ G\:\;Jc LL'L)M\).\MJ‘M\ d}\@@&\)ﬂdﬂ]hﬁﬁ

Cbaaa cailla g o) Gatliad A8l 5 celdadl) Zeaal 6‘:.‘;3]‘
2.2 Software layered technology

Software engineering is a layered technology. Any software
can be developed using these layered approach. Various

layers on which the technology is based are quality focus

layer, process layer, methods layer, tools layer. As shown in
figure (2-2) Figure (2-2)

1- A quality focus: a disciplined quality management is a backbone of software engineering
technology.

2- Process layer: is a foundation of software engineering. Basically, process defines the framework
for timely delivery of software.

3- Method layer: the actual method of implementation is carried out with the help of requirement
analysis, designing, program construction, testing and maintenance.

4- Tools: are used to bring automation in software development process.

So, software engineering is a combination of process, methods and tools for development of quality

software.

Page |¥

Asst. T. Saja hikmat Software engineering computer science

2.3 Software Process models

When you build a product or system, it’s important to go through a series of predictable steps—a road

map that helps you create a timely, high-quality result. The road map is called a ‘software process.’

Alle Aagi o Jgeanll b dlaclis 5k dday 53 e Bk A ¢ <l shall (e Alul gL agall (e ¢l sl e ¢l e
"software process" Ll iday jal) o34 <o yad, Cauliall gl 852 5

Software process is a set of activities, actions and tasks whose goal is the development of software.

There are four fundamental process activities (1. Software analysis, 2. Software design, 3.
Implementation, 4. Software maintenance), these different activities may organized in different ways and
described at different level of detail for different types of software.

A software process model (also referred as software Development process Models) is an abstract
representation of a process. It presents a description of a process from some particular perspective.

Each process model follows a life cycle in order to success in process of software development. A process
model for software engineering is chosen based on the nature of the project and application, the methods
and tools to be used, and the controls and deliverables that are required. There are variety different process

models such as:-
1- The Waterfall Model (linear sequential model)

Was first process model introduced in software engineering. This model is known as waterfall model
because all these phases overlap and feed information to each other, the second phase should not start
until the first phase has finished (when defined set of goals are achieved). The waterfall model should
only be used when the requirements are well understood and unlikely to change radically during system

development, Figure (2-3) showing waterfall model.

Vs ¢ prarll Lpand il slaall miail Jalaii Jal yall 538 IS ¥ JOLEN 23 s ansly 723 saill 138 Cyay 5 4apai 3 3 503 J sl 58
OS5 Ladie b JOLA 73 ga3 aladiad Gang, (A yall Calaal 335 die) V) A el i a4l Al el lag of oy
AUl sha JOIA (53 IS a O s el e ey s IS e pgde il

This model divided into separate process phases:-

Page |¢

Asst. T. Saja hikmat Software engineering computer science

Requirements
Definition

k v
System and
Software Design
/
Implementation
and Unit Testing

A
Integration and
System Testing

A v

/Operation and)

KMaintenance

Figure (2-3) waterfall model
1- Requirement gathering and analysis phase

The system's services, constrains and goals are established by consultation with system users. They are

then defined in detail and serve as a system specification.

ol &8 Layl Analyst e 3 software engineer daul s ds JSG Lgagd ang g Al jall 330 L) aaea iy y2 o)
e JS Ly s

2- System and software design

Partitions the requirements to either hardware or software systems. It establishes overall system

architecture. Software design involves identifying and describing the fundamental software system

abstractions and their relationships, design focus on program attribute such as (data structure, software

architecture, interface representation, algorithm details).

253 LS oUaill dalal) 000 a0as
3- Implementation and unit testing phase

During this stage, the software design is realized as a set of programs or program units. Unit testing

involves verifying that each unit meets its specification.

cltlaiall (b Ll 38l Lgia ¢ Ja JSLEAN a5 o)) JS3 o gral jall (i
4- Integration and system testing

The individual program units or programs are integrated and tested as a complete system to ensure that

the software requirements have been met. After testing, the software system is delivered to the customer.

Page |®

Asst. T. Saja hikmat Software engineering computer science

software aded oy ¢ LAY aay, llliall Ll Glacal JulS SUSE programs sl 43 &l program units JLial s geed o
Jreall) system

5- Operation and maintenance

Is the longest life cycle phase. When the system is installed and put into practical use, then the error may
get introduced, correcting such errors is the major purpose of Maintenance, and also improving the

system’s services as new requirements are discovered.

sp ellad¥l ol iy ¢ sedally olad¥) g Waie ¢ Ulae asladiivl g sllail) cudi oy Lexie [ife cycle 8 As o Jshl &
Baaa Glallate LIS vie aUsil Ciladd aat SIS 6 ¢ Ala jall 03g] s I (m jal)

- Benefits of waterfall model

1. the documentation it produce at each phase.
2. Fit with other engineering process models.

- Drawbacks (problems) of waterfall model

1. The requirement analysis is done initialy and sometimes it is not possible to state all
therequirements explicitly in the beginning. This lead to increase of cost.

bt requirements L oS model 13 & requirement Gathering 4ls e 2 requirements ges JWS) agall (0

A s Jy el Guaigall Ledaaty oY) A) LR N A;“\S\J 4alaall requirements «adl<s ;la 13l s e Jg) 2 A

cost

2. The customer can see the working model of the project only at the end, after reviewing of the
working model; if the customer gets dissatisfied then it causes serious problems.

Grany 48 ¢ Gl) e daandl QIS 1) ¢ dar) 23 503 dran) je 22 ¢ Algal) a8 ¢ g il Galad) Jandl 73 503 405) aendl (S
b yabd JSLia
3. The linear nature of waterfall model leads to “blocking states” in which some project team
members must wait for other members of the team to complete dependent tasks. In fact, the time

spent waiting can exceed the time spent on productive work.
long time Gt JWlL s s AY) phase A JEsY) a5 Ml s phase 33 xie Ll a3 Y one phase 2 Problems
ACaa Jad
4. Waterfall model is not appropriate for work with is fast-paced and subject to a never-ending

stream of changes

B yaliine il et) dxalall g dadll dag o Jlee DU Caslia e

Page |"

Asst. T. Saja hikmat Software engineering computer science

2- Prototyping model

The prototype model is using for many reasons, such as:

a) A customer define a set of general objectives for software but does not identify detailed input,

processing, or output requirements.

input, processing or output <blkic JS Jualéill sasy Y g softwared! 4clall calaa ¥l (e de ganae <3 20 customer s 3
b) The developer may be unsure of the efficiency of an algorithm, the adaptability of an operating
system, or the form that human/machine interaction should take.

(il gall ana Jeliinn Ja 5 ulia 2ainal) operating system Ja s algorithm selS (e SUe e) < Developer
When implementing a prototype model, you first develop the parts of the system you understand least,
then you begin by developing the parts of the system you understand best.

The stages of prototyping model

1- requirements gathering (listen to customer)
Developer and customer meet and define the overall objectives for the software, identify whatever
requirements are known, and outline areas where further definition is mandatory.
STl el Sl sl 5 5 pae cilillatia 4 aan 5 ¢ software I delad)l calaal) ciy il s 5 shaal) aaiag
A "quick design' then occurs. The quick design focuses on a representation of those aspects of the
software that will be visible to the customer/user (e.g., input approaches and output formats).
4 e OsSie Sll dlidials s csoftware (e 8axsa)55 diiad e g pull araadll S 50 "Quick design” <llls s g 5 o
. (input and output and interface) aaaiwall i ¢ 5250

2- Construction of prototype (build / revise mock-up)
Writing the software code depending on the quick design information.
3- Evaluation (customer test drives mock-up):-

The prototype is evaluated by the customer/user and used to refine requirements for the software to be
developed. Iteration occurs as the prototype is tuned to satisfy the needs of the customer, while at the same

time enabling the developer to better understand what needs to be done.

sy, uﬁ#gﬁé\ Glisal yll Gkl u.u.uaﬁa.usd\ EIR) FRESEP edil\.ml\ }i BE\ dﬁuﬁé‘g‘ﬂ\ ESJ.A.'\S\ (’éfﬂf“'\f
Gl Juadl agh Sl (ge 4313 Bl 8 shaall (Rar 1385 oy s) ilillatia sl Y1 3 gaill Jasa JSA (1« fteration

alaay)

Page |V

Asst. T. Saja hikmat Software engineering computer science

Build/revise
mock-up

Listen to
customer

Customer
test drives
mock-up

Figure (2-4): The prototyping Paradigm

Benefits of using Prototype Model:

. Improved system usability.

. A closer match of the system to users' needs.

1

2

3. Improved design quality.

4. Improved maintainability. (Detect errors earlier and save time and money).
5

. Reduce development effort

Drawbacks (problems) of Prototyping model

The prototyping can also be problematic for the following reasons:

1- The customer sees what appears to be a working version of the software, unaware that in the rush
to get it working no one has considered overall software quality or long-term maintainability.

Uasl i Ul e (6 23 saill 138 o)) &y e 585 sOftware (e (Alile) dasaa 235 450 53 L prototype 2 osoV s
(maintainability)4ilua 408 i software J 44 quality Glesdl 386 Al jlas) i de yudl ca W & ju Y 5 daa Ll
dashll gl e

2- The developer often makes implementation compromises in order to get a prototype working
quickly. An inappropriate operating system or programming language may be used simply because
it is available and known; an inefficient algorithm may be implemented simply to demonstrate
capability.

o A Al) Jsni allai aadin 388 Je ju Jany alead 5V 3 saill Sl (8 <) slaill Gany) shaall (5 a LeLlle
ey liary ai AAS e de)l sA 2y By ola s ymay 1A st LegdY Jall (ppalie

Page |A

Asst. T. Saja hikmat Software engineering computer science

3- It may be impossible to tune the prototype to meet some important requirements that were ignored
during prototype development, such as performance, security, robustness and reliability.

V) Jia ¢ (JY) zasaill 5ot ol Lelalad a3 i) dagad) Clallaiall Gamy ddil J V1 23 saill Jasia Janiesdl) (o (55 8
A i gall 53 58 5 laY 5

4- Rapid change during development inevitably means that prototype is undocumented. Only the
design specification is the prototype code. This is not good enough for long-term maintenance.

sl sl e Aslpall A 48 Ly Vo o 305 B 3m st 15¥) 20 gl (o L iy sl O3S gl il

3. Evolution software process model

Evolutionary models are iterative. They are characterized in a manner that enables software engineers to
develop increasingly more complete versions of the software. There are several types of that model, these

are:

Cilnal all YWS) ST el jlaal sl o e) i Sai 48l jaaii a5 41 S5 8 Evolutionary J) z il
(b masalll 18 (e gl 3ac dla | software
zasall L) il w13 JLaS) aey alaill JalS alad Qi 43 (n i (ase ad) bl skl c¥lal aaa Al
(e pUad aaluil Aad Le gae sl ol g cilillaiall agd e) ghaall o) () g3 3)) 3acbial sana (prototyping model)

b- The incremental model

c- The spiral model

d- Exploratory model
a- The incremental model (calendar time)

The incremental model combines elements of linear sequential model + iterative of prototyping model

- The incremental model applies linear sequences as calendar time progresses.

- The incremental model delivers a series of releases (increments) to the customer, more and more
functionality is associated with each increment.

- Thefirst increment is called a core product, in this release the basic requirements are implemented

and then in subsequent increments new requirement are added.

a3 Cua next increment Jl dadaasll i o5 ¢ ga 31 (e Al g dladiul o5 g Luulud) clillaiall core product J) Géss
s dlaall 28) S S ALl il 55 L) e A8lial 5) 5031151 aadisall i 40 core product J de ;o) cadaadll

.complete product 4LlS 5) gay mitall 4 o% S increment JS aalus

Page |9

Asst. T. Saja hikmat Software engineering computer science

The incremental process model, like prototyping and other evolutionary approaches, is iterative in nature.
But unlike prototyping, the incremental model focuses on the delivery of an operational product with each
increment.
operational product e 43¥ aie aling <1y prototyping model (Js¥) zisaill Jia sl S5 s z3galll 134
increment JS @
- For example, word-processing software developed using the incremental model as bellow:
1) In the first increment only the document processing facilities (the basic file management, editing,
and document production functions) are available.
2) In the second increment, more sophisticated document production and processing facilities.
3) In the third increment, Spelling and grammar checking.

4) Advanced page layout capability in the fourth increment.

Increment 1
Code Bol Test Delivery of
15t mcrement
- ~ - = -
Incrament 2 | Analysis feed Design Coce Beef Test Defivery of
2nd increment
Increment 3 | Anolysis fel Design fe] Code Test _ Delivery of
3rd increment
Increment 4 | Anolysis fee] Design e Code Test Delivery of
' 4th increment

Colendar time

Figure (2-5): The incremental model

When to choose it?
1. When requirements are reasonably well-defined.

2. When overall scope of the development effort suggests a purely linear effort.
3. When limited set of software functionality needed quickly.

- Incremental development is particularly useful when:

1- Staffing is unavailable for a complete implementation by the business deadline that has been
established for the project. Early increments can be implemented with fewer people. If the core

product is well received, then additional staff (if required) can be added to implement the next
increment.

Page |V

Asst. T. Saja hikmat Software engineering computer science

Early 48590 o 330 5l (S g g pdiall sagand o5 o2 gl ae sall 3 Jlae 1 SlaiY (il gall (e CBlS (33)8 853 a2e 2ic

Gy G 13)) daa il ge ddlia) Mdie (Kay luadinly core product Jis s s 13 eoalalall e Jil 22ey increments

.next increment G &) 330 SasY (L s

2- Increments can be planned to manage technical risks. For example, a major system might require

the availability of new hardware that is under development and whose delivery date is uncertain.

It might be possible to plan early increments in a way that avoids the use of this hardware, thereby
enabling partial functionality to be delivered to end-users without inordinate delay.

e gl 2o g ¢ shaill a8 JI 30 e new hardware 85 oty aUas allaty 38 Sl technical risks 315 bl i

O s a8 Sy ML 5 chardware 138 aladiul (st (S S Le 44)k early increment dadads USes (58 38 xS 5e

b. The Spiral Model

- proposed by Boehm, it couples the iterative nature of prototyping + the controlled and systematic aspects
of the linear sequential model.

- This model gives efficient development of incremental versions of the software. In this model, the
software is developed in a series of increments.

- A spiral model is dividing into a number of framework activities called task regions, contain six task
regions as shown in figure (2-6):

Planning

Customer Risk analysis

communication

Project entry
point axis

Engineering

Customer

evaluation Construction & release

Product maintenance projects
Product enhancement projects

[l
[
New product development projects
1

Concept development projects

Figure (2-6): Spiral model

Page |V

Asst. T. Saja hikmat Software engineering computer science

1. Customer communication
-tasks required to establish effective communication between developer and customer.
O3 s shall G Jladl) Jaal 5l

2. Planning
-tasks required to define resources, timelines, and other project-related information.

resource, timelines Jic g s il (o Gla slaall g 321l 4 sllae
3. Risk analysis
-tasks required to assess both technical and management risks. Aol Al jhlall yaadl
4. Engineering

-tasks required to build one or more representations of the application. Application J! z3lei ¢l 45 sllas

5. Construction and release
-tasks required to construct, test, install, and provide user support (e.g., documentation and training).

daa Jaladll 48K e ay)35 g addiial) andat
6. Customer evaluation

-tasks required to obtain customer feedback based on evaluation of the software representations created

during the engineering stage and implemented during the installation stage.
e Jaall 5 4liad 2y software 3 4w e J pasll Jal (e Customer feedback s U 83 5=l
- The software engineering team moves around the spiral in a clockwise direction, beginning at the center.

seshispiral Jss sV 5,0 e i B el e Teas deldl o jlie sladly spiral s el dusdia (3 8 & s,
Claal all (e s 225 Uit T 3 cprototype sl z2sed skl spiral Jiss bl @l sall Jasins 85 oeiiall Ciliial 5
Saie Vb el Jsanll 5 AdlSl asm (5 yma g ¢ 5 pdall Aot Jasia I (525 planning region e se JS oo iy | sk SiSI
.software Ja¥ 4 slladll 5 el Lalaadl jterations <lwl 5l sae & g pdall juae asay elly) 4Ll 5030 feedback e
DAL s 5 phal ol Al) gaal) 138 e aum g caaSa IS Jias (pOiNt project entry) g s dhal) Jsas ddasi) sae

multiple saxie il 35 ¢ass) jaiuy s core of the spiral 2 (concept development project) asliall y shig 5 pie lay
Sl e Al dlae A35T ¢ gedall sl JaiS) s (A S el Alllaal) dihaiddl Jasy (531 spiral Ul eiterations

Page |\Y

Asst. T. Saja hikmat Software engineering computer science

sk slhall (S 13 ((new product development project entry point)uis miie sk ¢ 5 pdall Jgaa ddads) il
e spiral dss @l 5l e dae (& sl miid) skl cana ¢ g e kil Al (8 aagis Lida Latie muall o seddll
C bl e AT £l A dleal Adliia (3035 Caaay s ¢ cOre J) Jalla (pe ol Jllai Ll) Adkaially Jassy (5301 lesall

Oe 4ld e) Alee 2385wy shati Ciliaa) GY 5 ¢3Uaill An) 5 Cilina ya g Aadail g olatl Apadl 5 48 Hla 35 3a) 3 gal)
sl zhsaill aadivn ¢ skl il giia o (5 sie IS A Led auliall el A YL Ll Hhlaall agd s 3lls) shaall Jundl)
LY dadaill zagai ubd e jshall (Sa 4l s b e aaY) Sy Qhlaal JlE A0S prototype 4alsY) Asdal
Lea s il waterfall dselaill dusg Hxill 45 Hlall o Jadlay se8 miiall) shai Jal e (00 Als e sl 3 prototyping approach
I jlic) spiral model ka5 aiall allell 181 5 (uSey iterative framework s) S5 b Lgiaday o1 5 éipnliil) slall 5) 50
Aels Conmy A o (0 U i) Iy o s ccsaliall 4s 1l Gala 13) 5 ¢ 5 il il e e (8 Al lalaall T e

Advantages of spiral model
1. Requirement changes can be made at every stage.

2. Risks can be identified and rectified before they get problematic.

- Drawbacks of spiral model:

1. It may be difficult to convince customers (particularly in contract situations) that the evolutionary

approach is controllable.
2. Requires risk assessment expertise and relies on this expertise for success.
3. The model has not been used as widely as the linear sequential or prototyping paradigms.

sl g aSall Sy adly (2580 g VA 8 Aald g) (50l g L) Caniay 8)
i JSLaR ()8 ¢t 1) lalaall e o) 13 caalas 85 0all 038 e aaing s crisk B ohlaall jaf i sam s pa callayy Y
REIRPEPN

the linear sequential or prototyping paradigms Jie gl s (3ai e axdioy al s Tas dpas 4313 any 73 saill 1,80 ¥

Page |\Y

Asst. T. Saja hikmat Software engineering computer science

4- Exploratory model

The approach is based on the idea of developing an initial working system exposing this to the user and
modifying system through many stages until performs adequately is the approach for systems where it is
very difficult or impossible to establish a detailed system specification. Therefore has been used for the

development of A.I system. it use a very high level programming language such as LISP or PROLOG for
software development

The exploratory model phases are:-

1- initial specification development :

starting point &is! immediately available information i

N
1

system construction / modification (development)

Gl slxa (3 3 52 g el lnda pUaill oaei g (318 5 oLy

w
1

system test (validation)

Dbl aS g dalal oy (0 g Jary (oS A8 el pUaill sl

AN
1

system implementation
system finished cxiailad) (15 ghaall jteration <l) S3 sac a2y

-The problem associated with the exploratory model

1- Itis difficult to measure or predict its cost, effectiveness. 4illad 5 43lSh guiill 5 (wld Canaall (g
2- it is limited to use with very high level language (s sl dle Ll o dalasin) uaty

Concurrent

activities
. > Initial
Specification - version
Outline | S Intermediate
description o Development versions

y _ Final
k Validation = version

Figure (2-7): Exploratory model

Page |V¢

