Asst. T. Saja hikmat Software engineering computer science

Chapter three

Software Requirements and Analysis

1.1 Software Requirement

The requirements for a system are the descriptions of the services provided by the system and its
operational constraints. These requirements reflect the needs of customers for a system that helps solve

some problem such as controlling a device, placing an order or finding information.
AUaill o Sleall clalging cllliial) oda s, Lgale Labazill 358l 5 Qs U8 (e Aediall Ciladall Gy & Lo allail cilllaidl)
Apa Claglaa o il 5 L Slean aSal) Jie OSa (any Ja 8 2 by 53))

Requirements engineering (RE):- The process of finding out, analyzing, documenting and checking
these services and constraints. The goal of requirement engineering is to develop and maintain

sophisticated and descriptive ‘System Requirements Specification’ document.

e Llaally 55kt 58 Requirements engineering (e <aagll, 3 gll g cleadll 038 daal jo 5 (35555 Jalad g LIS dolee o
. “,A.x.a. X IS "el.k.‘d\ s_al_\lk.u i QG..A\}A" 2\3,33_9

We need to write requirements at different levels of detail because different types of readers use them in
different ways. To distinguish between them we can use the term user requirements to mean the high-
level abstract requirements and system requirements to mean the detailed description of what the system
should do.

Lagin aaill, dilisa (3 yhay Lgwadiiast i) o) 31 (pe dilida o) gil lllia (Y Jaaiill (e dalise <l giusey clllaiall 4,US) 2 Uias
hadill Caa gl a3 Al oUaill Slllata g (5 sall ddlle 33 a0 Slllaia et Al Maddiial) Gldkia! mllaias aladiu) Wikay
AUl aledy o cany Wl

1.2 Requirements Types

(Types of requirements)

(User] (System) (Software speciﬁcation)

Figure (3-1):- Types of requirements

Page |\

Asst. T. Saja hikmat Software engineering computer science

User requirements:- Are statements, in natural language with simple tables and diagrams (that are easily
understood), of what services the system is expected to provide. The user requirements should describe
the functional and non-functional requirements in such a way that they are understandable by system users

without detailed technical knowledge. It written for customers.

B siall (o A leaddl ¢ (A sguss Lgagh (San) Al o sy g Adassy Jghas pe Aipme 43y 45 53S0 @l jlae (o - padiidd) Gl

Abail) addiiee J8 (e lgagd Sy A8 sk il o)) e g Aaids o)) colallaiall aadiiad) cilllaie Chual () cang, allail) L i g o
.g\)\.uﬂtilw. i \b&k—\dﬁm 8 :UJSJM‘)MUJJ

System requirements:- are more detailed descriptions of the software system’s functions, services, and

operational constraints. It written as a contract between client and contractor (the software developers).

Agall s Jpend) O 28aS 0SS, Lgle bl 3 il 5 ol Lganiy i) ciladsll o) Caills o) it JiST iy o - sallail) il
() 55 shae) Leaa s8laial)

Software specification:- it is detailed software description that can serve as a basis for design or

implementation. Typically it is written for software developers.

w e oo, 2] el Al el oy ALES it (K) a5 cilinal] Cims 58 - el lioal 5o
Sl all (g shaal LS

Functional requirements:- These are statements of services the system should provide, how the system
should react to particular inputs and how the system should behave in particular situations. In other words,

functional requirements for a system describe what the system should do.

L MR e allail) Jeliy o) cangy 2S5 ¢ allaill W gy of amy G ciledall O jle e 5 le (A - il o i)
ew\wu\uuwuewwj\ﬁw\cﬁ]@wMuﬁ\f‘few\u‘)mﬁgu\u;.)u,ﬁj

Non-functional requirements:- These are constraints on the services or functions offered by the system.
They include timing constraints, constraints on the development process, and constraints imposed by
standards. Non-functional requirements often apply to the system as a whole, rather than individual system

features or services.

ol By il 3 gl g ¢ gl Lt 3 gl 038 5, AUA) Lpaths 2 I g cilansl) e 30 ol - Al) e il
Alal) Leatiy 3 el) atliadl e Yy o JSS AUl e Guiada gl e clllatall e Le Gle, uladll gy shail) didee
(SAA Sy

Page |Y

Asst. T. Saja hikmat Software engineering computer science

1.3 The software requirements documents

Also known as software requirements specification (SRS) is the official statement of what the system
developers should implement and it include user requirements and system requirements. It should be
organized so that both system customers and software developers can use it. The following diagram

illustrates possible users of the requirements document and how they use it:

em‘@mwjowew\g‘)}}anécumw‘;nu‘)u\.u}h}(SRS) Q\&M\)ﬂ\&m@h‘a‘w@iuﬁ
Cpeddiall & g3 Jay g, Sl pall (5) ghaa g il caddiiie e JS I8 (e Lealadin) (Say Cuay G5) ang, alail) lallatia g
Croshall 38 iadi JCo cilllaial) aaat g ¢ o Saal)) clillaidl) Jaa 68 oy &Jﬂgwﬁoi%aw\wjoiW\

saal cllliiall we alaill CaySi agle cany (il Alall andiga 3o Lise s 52Eall araaill <l) caind e

Specify the requirements and
System read them to check that they
Customoss =| meet their needs. Customers
specify changes to the
requirements.
Use the requirements
Managers _ | document to plan a bid for
& | the system and to plan the
system development process.
Use the requirements to
Ersly?rt::;rs =| understand what system is
8 to be developed.
Use the requirements to
T estSEyr ei:‘eets =| develop validation tests for
5 the system.
Use the requirements to
Ma?nyts::\r:nce understand the system and
Ensionses the relationships between
& its parts.

Figure (3-2): Users of requirements document

Page |¥

Asst. T. Saja hikmat Software engineering computer science

3.4 Requirements analysis

Requirements analysis is a software engineering task that bridges the gap between system level

requirements engineering and software design.

Requirements analysis provides the software designer with a representation of information, function, and

behavior that can be translated to data, architectural, interface, and component-level designs.
3.5 Software requirements analysis phases

(1) Problem recognition.

(2) Evaluation.

(3) Modeling.

(4) Specification.

(5) Review.

3.6 Analysis principles

1. The information domain of a problem must be represented and understood.

2. The functions that the software is to perform must be defined.

3. The behavior of the software must be represented.

4. The models that depict information, function, and behavior must be partitioned in a manner that

uncovers detail in a layered (or hierarchical) fashion.

-Information Domain

<btal) g relationships <@l s numbers, text, images, audio or video ¢ s~3 il data objects JS e s s~
information structure <uUlall <

Page |¢

Asst. T. Saja hikmat Software engineering computer science

3.7 Analysis Model

The analysis model consists of:

1- data model (shows relationships among system objects)
2- function model (description of the functions that enable the transformation of system objects)

3- behavioral model (manner in which software responds to events from the outside world)

Data Model

Function Model

Behavioral Model

Figure (3-3): Analysis model

1- data model

data processing application <tly dallas alai (b Jasi 55 Al saosall ALY (e de gane o cumy

allaill Jd (g Lgiallas ol Al 230 5Y) UL primary data objects 4k -)
asai Sl (ailadll ales data object o ¢ 55 IS)53 composition sl -Y
objects 4 object \» ¢ relationships Skl Al -V

el saiu Al processes 4allal s objects o relationships 2l -¢

To answer these questions data modelling methods make use of the entity relationships diagram (ERD),
The ERD enables a software engineer to identify data objects and their relationships using a graphical

notation.
- Data model component

1- data object
A data object is a representation of almost any composite information (which mean something that has a
number of different properties or attributes). Anything have three dimensions (height, width, and depth)

could be defined as an object. For example, a person or a car Figure (3-4).

Page |®

Asst. T. Saja hikmat Software engineering computer science

person , Jie (At Glially aibadl) e e @l ¢ 5) composite information S s daslea Y Jid s

car
(height , width, depth) 3- dimensions <l ¢ 25)
Therefore, the data object can be represented as a table as shown in Figure (3- 5).

2- Attributes
Data attributes define the properties of a data object and take on one of three different characteristics.
They can be used to (1) name an instance of the data object, (2) describe the instance, or (3) make reference
to another instance in another table. In addition, one or more of the attributes must be defined as an
identifier—that is, the identifier attribute becomes a "key" when we want to find an instance of the data
object. In some cases, values for the identifier(s) are unique. Referring to the data object car, a reasonable
identifier might be the 1D number.

2% (K g instance Al (name of data object ~¥!)Jis data object —ai Al paibaddl Gy
data objectd! 7l key <liiall 328 2al

3- Relationship
Data object can be connected to one another via relationship.

Relationship can be to one, one to many, many to many

Figure (3-5) For example:

* A person owns a car. * A person is insured to drive a car.

Obijects: Atiributes: Relationships:

Name

Address
— Age

Driver's license

Number

Make
Model
ID number
Body type

Color

Figure (3-4): data object

Page |"

Asst. T. Saja hikmat

Software engineering

computer science

Naming Ties one data object to another,
atiributes in this case, owner
4 o N\
Descriptive Referential
Identifier atfributes afiributes
7 o Y / LS ol €

| Make Model ID# Body type Color Owner

lexus 1S400 AB123... Sedan White RSP
Instance | Chevy Corvette X456... Sports Red CCD
BMW 750iL XZ765... Coupe White UL
Ford Taurus QI12A45... Sedan Blue BLF

Figure (3-5): data object table

2- function model

1- identify functions that transform data object
2- identify how data flow through the system.
3- Represent producers and consumers of data
3- behavioural model

a- identify different state of system

b- Specify events that cause the system to change state
3.8 Cardinality and modality:

Cardinality is the maximum number of objects that can participate in a relationship. how many

occurrences of object X are related to how many occurrences of object Y.

Cardinality: the data model must be capable of representing the number of occurrence objects in a given

relationship.
The cardinality of an object- relationship pair expressed as following:-
1- One-to-One (1:1):

An occurrence of [object] 'A’ can relate to only one occurrence of [object] 'B," and an occurrence of 'B’

can relate to only one occurrence of ‘A’
object B 4wl o o8l Ludi 5 Object B < 8aa) 53 5 dasi 3 (Sae Object A

Al Ol Ale Jia person and identification -:Jbs

Page |V

Asst. T. Saja hikmat Software engineering computer science

Ex: in a school database, each student has only one student ID, and each student ID is assigned to only

one person.
1- One —-to— Many (1:N)

One occurrence of [object] ‘A’ can relate to one or many occurrences of [object] 'B," but an occurrence of

'‘B' can relate to only one occurrence of ‘A’
Object A (i saal 55 e il » object B 5 object B < JiSI sl 8as) 53 e dasi 5
Ex: Mother can have many children and a child have only one mother

1- Many —to — Many (M:N)
An occurrence of [object] 'A'" can relate to one or more occurrences of 'B," while an occurrence of 'B' can

relate to one or more occurrences of 'A.¢

Jis Object A o SS) 5l sl 53 e Jaii » (Sas Object B object B « JiS) sl sasl 55 e Jasi 3 (Sas Object A

Ex: Uncle can have many nephews while a nephew can have many uncles

Modality: provide whether or not a particular data object must participate in the relationship or not
Modality of a relationship = 0 if no need for relation or optional relation

Modality of a relationship = 1 if it must need for relation

agoatl ¢l) (10 G Y ol 5) 6 Sl Gllin (IS 131 Lo apand) ol o) psbocti 255 5 (6 adiinsy hima s i Jio
Q@ué\cuy@\ua;\;uﬂ\)@Eﬁﬁ}\&%ﬁﬁ&@\cﬁ.ﬁ}su}:Jdpju;ﬁ

Cardinality
Cardinality Implies that there may be
Implies that a single many repair action(s)
customer awaits repair action(s)
Is prowded with :)
Customer H ©€ Repair action
Modality: Mandatory Modality: Optional
Implies that in order to Implies that there may
have a repair action(s), be a situation in which a
we must have a customer repair action is not necessary

Figure (3.6) Cardinality and Modality

Page |A

Asst. T. Saja hikmat Software engineering computer science

3.9 The analysis modelling approaches
A model is an abstraction of the system being studied (using some kind of graphical notation).
- The analysis model objectives:-

» To describe what the customer requires,
» To establish a basis for the creation of a software design
» To define a set of requirements that can be validated once the software is built.

Analysis modelling approaches:
1- Structure analysis

Is a widely used for analysis model, considers data and the processes that transform the data as separate
entities. Data objects are modeled in a way that defines their attributes and relationships. Processes that
manipulate data objects are modeled in a manner that shows how they transform data as data objects flow
through the system.

attributes g=ibadll s 23 Sl data model I elis=3 <lblee 5 data <« alg2 s analysis model 8 55 aadiuy
il il relationships <ESkall

2- Object — oriented analysis

This approach to analysis modeling focuses on the definition of classes and the manner in which they
collaborate with one another to effect user requirements.

user requirements (sail AL class Jais Al 48 Hhall 5 class i j2d 2dS Ao aslill 4 58
3.10 The elements of structured analysis model

The structure of analysis model can be expressed in the figure (3-9) that contain:-

~
“'5&‘&\ %
4 ix“a-
Entity Dota Aow
relationship diogrom %

diogram
g 2
Lo

Data dictionary

State-fransition
diagrom

Conrol speciticanon

Figure (3-9): The elements of structured analysis model

Page |9

Asst. T. Saja hikmat Software engineering computer science

1- Data dictionary (D.D) : is a repository that contains description of all data objects consumed or
produced by the software
data W jualic dakiie 4ald JS5 605 ol ety o) Lalisy Al data objects JS ciuas (ssm gasine 5o

input , output and J' x> aed o Slauser and system analyst (e e 1Al 3 Cay et plaS Al e ¢ g5
stores

- The data dictionary most contains the following information
= Name : the primary name of the data or control item, the data store or an external entity.
= Alias : other name used for the first entry.
= Where — used / how used: a listing of process that used data or control item and how it is used
(e.g., input to the process, output from the process, as a store, as an external entity.
= Content Description : < sisall Jiiail

= Additional information : information about data types and limitations

integrated

telephone number office system output
phone —
system
Build the requirements dictionary:
Name: telephone number
Aliases: phone number, number
VWwhere/Howy read-phone-number (input)
used: display-phone-number {output)
analyze-long-distance-calls {input)
Descri ption: telephone no. = [local extension | outside no. | 0]
outside no. = 9 + [service code | domestic no.]
servicecode = [211|411 | 611 | 911]

domestic no. =((0)+ area code) + local number
area code = *three numeral designator*

Format: alphanumeric data

Figure (3-10): data dictionary
2- Entity Relationship Diagram (ERD)

Entity relationships diagram enables software engineer to identify data objects and their relationships

using graphical notation. The primary components for ERD are: data objects, attributes, relationships

> Data objects: represented by labelled rectangle

> Relationships: are indicated with a labelled line connecting objects

Page |V

Asst. T. Saja hikmat Software engineering computer science

manufocturer

Data object table

ID# Model Body type Engine Transmission cee

Figure (3-11): Entity Relationship Diagram
3- Data Flow Diagram (DFD)
DFD is a graphical representation that depicts information flow and the transforms that are applied as data
move from input to output. A data flow diagram, also known as a data flow graph or a bubble chart. The

data flow diagram may be used to represent a system or software at any level of abstraction.
software system Jieil aadiui ddapn 4) gom o s o 3oke 4l e o jay g de @) hbadiay Liayl (cany 5 UL (3835 Jalada

Input data, processing, output data
Data flow Diagram components

» Data Flow (Arrow)

» External entity (source and destination)
> Process (Circle)

» Data store

4- STD (state transition diagram)

is a type of diagram to describe the behaviour of system through external events. STD require a finite
number of states (represents the various modes of behavior) of the system and the manner in which

transitions are made from state to state.

5- The process specification (PSPEC)
Is used to describe all flow model processes. The content of PSPEC are text and a program design

language (PDL) describe process algorithm, tables, mathematical equations, diagrams or charts

Page |V

Asst. T. Saja hikmat Software engineering computer science

Paper feed status
(jammed, empty)

~ —
j”

Start/stop 7~
7

Produce
user
displays

Read
operator
input

Perform
problem

diagnosis
Reload

paper Full

-~
-~
—-— N\
\\
— ——

Figure (3-12): state transition diagram

Data flow diagram

Absolute tank
pressure

Converted
pressure

Check &
convert
pressure

Max
pressure

PSPEC

If absolute tank pressure > max pressure
then

set above pressure o “frue’:
else
set above pressure fo "false™:
begin conversion algorithm x-Ola:
compute converted pressure:
end

endif

Figure (3-13): The process specification

Page |\Y

