Asst. T. Saja hikmat Software engineering computer science

Chapter Four

Software design
4.1 Software design

The goal of design is to create a model a model of software that will implement all customer requirements

correctly and bring delight to those who use it.

eladl (g2 prnia (R 5 ardiial) lllaie JS (38ay o w3 software J model a8 aeaill As jo (e Caagll ¢
Aseddival dagd) Clag

Software design sits at the technical kernel of software engineering and is applied regardless of the
software process model that is used. Beginning once software requirements have been analysed and
modelled, software design is the essential to start other phases (code generation and testing), that are
required to build and verify the software.
Axx33uall software process model oo Bl Gaiy adulad &5 5 Glase sl dwaigd 2@l 5 ll Software design J) Jie
Jal el Ay fadl Al Ala ye 2235 ¢ sOftware A model zitedll dae 5 cilllaiall Jidas (e slgi¥) &5 Lalla Ala el 038 fag
Al Gaadll 5 software «LinY 4e 331 ¢ (o lia) 5 code J) 4lS) e
4.2 Software Design Stages

Design creates a representation or model of the software, but unlike the requirements model (that focuses
on describing required data, function, and behaviour), the design model provides detail about software
architecture, data structures, interfaces, and components that are necessary to implement the system.

Figure (4-1) illustrate how to translate the analysis model to design model. These stages are:-

relotionshi
£ \ level dasign

£ :
Interfoce
design

Architectural
design

Dictionary °

2 State-fransition
dnogrom

%y Q Doto
v design
o/’Poc.hcosoﬂ & 9
The onclysis model The design model

Figure (4-1) Translating the analysis model into a software design

Page |\

Asst. T. Saja hikmat Software engineering computer science

1- Data design
Data design translates the data objects defined in the analysis model (using entity relationship diagrams
(ERD) and the data dictionary (DD)) -------- into----------- data structures that reside within the software.

The attributes that describe the object, the relationships between data objects and their use within the

program all influence the choice of data structures.

The data design activity translates these elements of the requirements model into data structures at the
software component level and, when necessary, a database DB architecture or a data warehouse DW at

the application level.
2- Architectural design

The architectural design defines the relationship between major structural elements of the software. It

depicts the structural elements, their properties, and the connections between them.

Lein Qa5 48yl 5 Lpnailiad a6 g Leaaa 5 3 5 | softwared! 43 sS4 structural elements G A8Mall o yay

Software components include program modules and the various data representations that are manipulated
by the program. Therefore, data design is an integral part of the software architecture. The primary
objective of architectural design is to develop a modular program structure and represent the control

relationship between modules.

Ao g0 Leinllaa oy g calite 5 Allee cilily e (g 63a3 Al Ana o Glas g program modules 4 Software J) &b sSa
program J1aSa s olai sa dla jall s3] bl Cangdl | software architecture o« = > » data design <Al gzl il
Lein A8l Jiiai s modules

3- Interface design

User interface design begins with the identification of user, task, and environmental requirements.
requirement CLllidl s task Asgall s USEr padival) o oyl Gy Cilgal 5l aranal

The interface design involves:-
- Design the interfaces between human (user) and computer
- Design the interfaces between the software and other nonhuman producers and
consumers of information (other external entities)
Three important principles for effective user interfaces design: Ly i sae sle e cay Slgal) avanail
- Place the user in control
- Make the interface consistent

- Reduce the users’ memory load

Page |Y

Asst. T. Saja hikmat Software engineering computer science

4- component-level design

- Also called procedural design

It transforms structural elements of the software architecture into a procedural description of software
components. Information obtained from the PSPEC, CSPEC, and STD serve as the basis for component

design.
Component-level design depicts the software at a level of abstraction that is very close to code.

At the component level, the software engineer must represent data structures, interfaces and algorithms in
sufficient detail to guide in the generation of programming language source code. To accomplish this, the
designer uses one of a number of design notations<!_=_i! that represent component level design detail in

either graphical, tabular, or text based formats, as follows:

Component-level design techniques:

A. Structured programming
*s constructs Sl 3 233 N software J) sUaill Jogic flow ikl aail) 48K aaas Al 46l avana’ 40585 a

Al Al Jealds el aasns Sl sequence, condition, and repetition, used to represent algorithmic detail

the intent of structured programming is to assist the designer Jissisuaail aaaall acs Jal (e Al 338 e Caagl)

To limit the procedural design of software to---- a small number of predictable operations,

defining algorithms that are less complex and therefore easier to read, test

DLERY) 5 sle all Algu g et J8 Apa) oA iy yail

Consider the following C++ program scgment:

i 0; ne 1
o (i“Z= 320 Loop control variable
{
cout << 1 <<
1 = %1 + 5; ine
} i
cout << endl:; 7

Sample Run:

0 S 10 15 20

B. Graphical design
The activity diagram allows a designer to represent sequence, condition, andrepetition-all elements of

structured programming-by using a flowchart.

(flowcharts) diagram alasinls zell) jualic JSV Jualul) 5 <l S0 5 da g pall Jiiad (10 paraall (S

Page |¥

Asst. T. Saja hikmat Software engineering computer science

‘ Condition
First
task F T
Next Else.pon Then-part
task
'
if-then-else
| +
<
F
T
Do white Repeat untl
¥ selection Repetition

Figure (4-2): Flowchart constructs

C. Tabular design notation
In many software applications, a module may be required to evaluate a complex combination of conditions

and select appropriate actions based on these conditions. Decision tables provide a notation that translates

actions and conditions.

Sm % s Decision tables old el L pal ol e lalaie) L dulial) aY) LA ¢ 328 Lo g 3 de gana PET PR
lla¥l g da g il

the table is divided into four sections. The upper left-hand quadrant contains a list of all conditions. The
lower left-hand quadrant contains a list of all actions that are possible based on combinations of
conditions. The right-hand quadrants form a matrix that indicates condition combinations and the

corresponding actions that will occur for a specific combination.

Rules
Conditions 1123 |4 |5|6
Regular customer o [T
Silver customer K
Gold customer L [
Special discount FEITIEFEITIELT
Actions
No discount v
Apply 8 percent discount
Apply 15 percent discount
dAi;:::)gL:'dd-honol x percent / /

Figure (4-3): Decision tables

Page |¢

Asst. T. Saja hikmat Software engineering computer science

D. Program Design language(PDL)
Is also called pesudocode or structured English, it uses the vocabulary of one language (i.e., English) and
the overall syntax of another (i.e., a structured programming language)".

A Aad a8 At g (oS) Jie Glalll aaY lallaiadl) aodind Aavse 43 (e 5 e

The differences between PDL and real programming language is the use of narrative text (e.g., English)

embedded directly into a syntactical structure
LS Ll A S Aapall il il aae) g8 Ll 4000 3 Aianine 4y K0V) Aol oot JUS aaill 3 yuadl o sl aladii) s

PDL tools currently exist to translate PDL into programming language is "graphical representation
(flowchart),

PDL example (part of it): The safe Home security system software

Security moniror component

PROCEDURE security.monitor;
INTERFACE RETURNS system.status;
TYPE signal IS STRUCTURE DEFINED
name IS STRING LENGTH VAR,
address 1S HEX device location;
bound.value IS upper bound SCALAR;
message IS STRING LENGTH VAR,
END signal TYPE;

TYPE system.status IS BIT (4);

TYPE alarm.type DEFINED
smoke.alarm IS INSTANCE OF signal;

fire.alarm IS INSTANCE OF signal;
water.alarm IS INSTANCE OF signal;
temp.alarm IS INSTANCE OF signal;
burglar.alarm IS INSTANCE OF signal;
TYPE phone.number IS area code + 7-digit number;
-

-

-

initialize all system ports and reset all hardware;
CASE OF control.panel.switches (cps):
WHEN cps = "test"” SELECT

CALL alarm PROCEDURE WiITH "on" for test.time in
seconds;

WHEN cps = "alarm-off" SELECT
CALL afarm PROCEDURE WITH "off";
WHEN cps = "new.bound.temp" SELECT

Page |®

Asst. T. Saja hikmat Software engineering computer science

4.3 Architectural Design
Aallaa sy et 48yl g Aadai¥) (pn Jua) 510l 43y sl ale s e) AadaiV oSl 25y (a5 oUall oy e) 45, 5l o La ol
) e ST bl

(i) sliy) AalalY) A28 (3 b Structural System Models .A
4aNL asail) 34k, Control Models .B

Juai¥) 3,k Modular Decomposition .C

slad ¥l dallea g oUaill by siaw A 43y 5kl o4 W Structural System Models —A
IS (o Ak olid 5l SO Ll
Ao ganadnily acld () <5 IS AUaill led el o) JIsall S @l jilia o 25 () K544 Hhall 338 & :Repository model -)
(A8 yide il L 2a 65) compilers sl Jie dama dls 5l Jlaa
server Jls 48wl (385 server gebiw by s client el oLl o 58 44 Hlall 338 4 ¢ client / server model -Y
i Y1 s S A1 el oSl Alany o s GAISS 5 sitianal) 5 3eaY) il asla
Jiw A= Lgiad Al e adiad il (e d8da JS5 linha JRG e 44 Hlall 33 adiai ; stract Machine Model -¥
Al e Jin Y el Ll 3338 (e 3l (o) (3l ALl 83 e Ll a3 Juiiiil Al Lgsle Jlia s MDD ALELE JUial)
T e oSall 5 Jpa il

iyl &1l (3,0 Control Models .B
ole i laly cilel oY) sl dae il dadai¥) e 5) dasil yil

i) AN) e) el DA (e JSS aUailly oSl 25 centralized)

Ome Jae it 2y Caal) (33Uad) died Calaal) (el e Sadll lé 45, k) 338 8 Events Based .Y
Aaill U S oy Jlai) 4S5 Auadl jiul - Modular Decomposition

A- object oriented programming

B- data flow model

Page |"

Asst. T. Saja hikmat Software engineering computer science

4.4 Software Design Approaches

1- Top - Down Design
takes the whole software system and decomposes it to achieve more than one sub-system or component
based on some characteristics. Each sub-system or component is then treated as a system and decomposed
further. This process keeps on running until the lowest level of system in the top-down hierarchy is
achieved. Top-down design is more suitable when the software solution needs to be designed from

scratch and specific details are unknown.
High level of abstraction ------------------ low level of abstraction
2- Bottom-up Design

starts with most specific and basic components. It proceeds with composing higher level of components
by using basic or lower level components. It keeps creating higher level components until a complete
system is arrived. With each higher level, the amount of abstraction is increased. Bottom-up strategy is
more suitable when a system needs to be created from some existing system, where the basic

primitives can be used in the newer system.
Low level of abstraction ------------------ high level of abstraction
3- Hybrid design

Mix the benefit of top down and bottom up approaches

Page |V

