
Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

1- What is Computation?

Computation is simply a sequence of steps that can be performed by a computer.

2- Theory of computation
 is the theoretical study of capabilities and limitations of Computers (Develop

formal mathematical models of computation that reflect real world

computers).

 includes the fundamental mathematical properties of computer hardware,

software and their applications. It is a computer science branch which deals

with how a problem can be solved efficiently by using an algorithm on a

model of computation.

The theory of computation field is divided into three concepts, which are as

follows:-

• Automated theory and language.

• Computability theory.

• Complexity theory.

Let us understand these concepts in detail.

1- Automata theory and formal language.

 Which answers - What are computers (Or what are models of computers)

 It deals with the definition and properties of various mathematical models of

computers.

 The term automata mean: the plural of automaton and it means” something

that works automatically”. For example,

• Finite Automata − These are used in compilers, hardware design and text

processing.

• Context free grammar − These are used to define the programming

languages and in artificial intelligence.

• Turing machine − These are simple abstract models of a real computer.

In automata we will simulates parts of computers. Or we will make mathematical

models of computers. Automata are more powerful than any real computer because

we can design any machine on papers that can do everything we want.

2- Compatibility theory.

 Which answers - What can be computed by computers?

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

 Computability theory deals with what can and cannot be computed by the

model respectively. The theoretical models are proposed in order to

understand the solvable and unsolvable problems which lead to the

development of the real computers.

3- Complexity theory.

 Which answers - What can be efficiently computed?

 Complexity theory groups the computable problems based on their hardness.

For example,

• Any problem is easy, if it is solved efficiently. For example, sorting sequence,

searching name.

• Any problem is hard, if it cannot be solved efficiently. For example, factoring

a 500-digit integer into its prime factor.

The main purpose of theory of computation is to develop a formal mathematical

model of computation that reflects the real world computers.

3. Applications of Theory of computation

The theory of computation is applied in the following −

• Traffic lights..

• Marketing.

• Compilers.

• Cloud computing.

 4. about “Theory of Computation”

The Theory of Computation rests on the fact that computers can’t solve all problems. A given

machine would have limitations, and the Theory of Computation aims to discover these. The

computational model is given inputs and decides whether or not it can process the information

using the developed algorithm.

For example, you can create a machine and design it so that it only accepts red objects. The

algorithm is pretty straightforward, as represented by the image below. The red square is accepted,

and the model rejects the yellow square.

The Theory of Computation can also help determine if a model needs improvement. In the example

above, the developer may want to introduce other inputs to see how the model treats them. What

happens when a red square with a yellow border is introduced to the machine? How about when

the border is red, but the inside of the object is yellow?

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

Set Notations

Set: A set is a collection of objects without repetition. Each object in a set is called

an element of the set, for example D denotes the set of days of the week:

 D = {Sun, Mon, Tue, Wed, Thu, Fri, Sat}

 D = {x :x is a day of the week}

 If an element x is an element of a set A, then we write Ax (x belong to A),

and if x is not an element of A, we write Ax (x does not belongs to A).

 A particular important set is the Empty Set (or null set), this set contains no

elements and it's denoted by  or { }. Another particular important se is the

Universal Set, the elements of all sets under investigation usually belong to the

universal set.

وهي المجموعة التي تحتوي على جميع العناصر التي تخص مجال : Universal Set لمجموعة الشاملةا

 مثال مجموعة الاحرف هي مجموعة شاملة تضم جميع ابجديات العالم. . Uمعين ويرمز لها بالحرف

على أي عنصر ويرمز يوهي المجموعة منعدمة العناصر أي انها لا تحتو : Empty Setالمجموعة الخالية

 .or {} لها بالرمز

 ⊃هي المجموعة التي تشكل جزءاً من مجموعة أخرى ويرمز لها بالرمز : Subsetالمجموعة الجزئية

We say a set A is a subset of a set B written BA  , and if not written BA :

 }{1,2,3,4,5{1,2,4} , and }{1,2,3,4,5{1,2,6}

 Two sets A and B are said to be equal, written A=B, if A and B contains the

same elements.

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

Basic Operations on Sets

1. Unary operation, e.g. complement.

2. Binary operation, e.g. Union, Intersection, and Difference.

- The complement of a set A, written (A−, 𝐴𝑐) is the set that contains of all

elements in the universal set which are not in A.

Ac = {x : Ax }, contains of all elements in the universal set which are not in A.

 Bor xA x:xBA = ,all elements which belongs to A or B.

 B xandA x:xBA = , all elements which belongs both A and B.

 B xandA x:xB\A = , all elements which belongs to A but does not belongs to B.

P(A) is the power set of A, the set of all subsets of A. (2A)

Example:

 If U= {0,1,2,3,4,…,9}, A= {0,1,3,5}, B= {2,3,5}

Find: Ac, BA , BA , B\A , P(A).

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

Sol.:

   5 , 3 , 2 , 1 , 0 BA =

   5 , 3 BA =

   1 , 0 B\A =

 P(A)= {  ,{0}, {1}, {3}, {5}, {0,1}, {0,3}, {0,5}, {1,3}, {1,5}, {3,5},

{0,1,3}, {0,1,5}, {0,3,5}, {1,3,5}, {0,1,3,5}}

Some Properties of Sets

 Let A, B, and C be subsets of the Universal set U

Associative Laws
() ()
() () C BA CB A

C BA CB A





=

=

Distributive Properties
() () ()
() () ()CA BACB A

CA BACB A





=

=

Idempotent Properties AAA ,A AA == 

Double Complement Property (Ac)c = A

De Morgan's Laws
()

() ccc

ccc

B AB A

B AB A





=

=

Commutative Properties
ABBA

ABBA





=

=

Identity Properties AUA ,A ΦA == 

Complement Properties UAA , ΦAA cc == 

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

Language

 Language is the set of all strings of terminal symbols derivable from alphabet.

Alphabet is a finite set of symbols. For example {0, 1} is an alphabet with two

symbols, {a, b} is another alphabet with two symbols and English alphabet is also

an alphabet. A String (also called a Word) is a finite sequence of symbols of an

alphabet.(b, a and aabab) are examples of string over alphabet {a, b}, and 0, 10 and

001 are examples of string over alphabet {0, 1}.A null string is a string with no

symbols, usually denoted by epsilon 𝜖 or lambda (λ) or null Λ.

A languageis a set of strings over an alphabet. Thus {a, ab, baa} is a language

(over alphabet {a,b}), and {0, 111} is a language (over alphabet {0,1}). The number

of symbols in a string is called the length of the string. For a string w its length is

represented by |w|. The empt ystring(also called null string) it has no symbols. The

empty string is denoted by (λ),thus |λ | = 0.

For example: |00100| = 5, |aab| = 3, | λ | = 0

Rule

Language = alphabet + string (word) + grammar (rules, syntax) + operations on

languages (concatenation, union, intersection, Kleene star)

Types of Languages

1- Talking Language (e.g.: English, Arabic): It has alphabet: ∑ = {a, b, c, …, z}.

From these alphabetic we make sentences that belong to the language. Now we

need a grammar to know if this sentence is true or false.

2- Programming Language: (e.g.: c++, Pascal):It has alphabetic:

∑ ={a,b,c,..., z , A,B,C,..., Z, ?, /, - ,\}. From these alphabetic we make sentences

that belong to programming language. Now we want to know if this sentence

is true or false so we need a compiler to make sure that syntax is true.

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

3- Formal Language: (any language we want): It has strings from these strings

we make sentences that belong to this formal language. And we want to know

if this sentence is true or false so we need rules.

Example:

Alphabetic: ∑ = {0, 1}.

Sentences: 0000001, 1010101.

Rules: Accept any sentence start with zero and refuse sentences that start with one.

So we accept: 0000001 as a sentence satisfies the rules.

And refuse: 1010101 as a sentence doesn't satisfy the rules.

Example:

Alphabetic: ∑ = {a, b}.

Sentences: ababaabb, bababbabb

Rules: Accept any sentence start with (a) and refuse sentences that start with (b).

So we accept: aaaaabba as a sentence satisfies the rules.

And refuse: baabbaab as a sentence doesn't satisfy the rules.

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

Kleene star,

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

8- Palindrome: is a language that={⋀, all string x such that reverse(x)=x}

Example: aba,aabaa,bab,bbb,…

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

Regular Expression

Is a set of symbols, thus if alphabet= {a, b}, then aab, a, baba, bbbbb, and

baaaaa would all be strings of symbols of alphabet. In addition we include an empty

string denoted by λ which has no symbols in it.

Examples of Kleene star (Kleene closure):

1* is the set of strings {λ, 1, 11, 111, 1111, 11111, …, etc.}

(1100)* is the set of strings {λ, 1100, 11001100, 110011001100, …, etc.}

(00+11)* is the set of strings {λ, 00, 11, 0000, 0011, 1100, 1111, 000000, 000011,

001100, …, etc.}

(0+1)* is all possible strings of zeros and ones, often written as ∑* where ∑= {0, 1}.

(0+1)*(00+11) is all strings of zeros and ones that end with either 00 or 11.

(w)+ is a shorthand for (w)(w)*, w is any string or expression with the superscript

(+).

Concatenation:

Notation to the concatenation is (.) (The dot):

IfL1 = {x, xxx} and L2 = {xx}, so (L1.L2) means L1 concatenated L2 and it is equal

to {xxx, xxxxx}

Examples on concatenations:

Ex1:

L1 = {a, b}.

L2 = {c, d}.

L1.L2 = {ac, ad, bc, bd}

Ex2:

∑= {x}.

L1 = {set of all odd words over _ with odd length}.

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

L1 = {set of all even words over _ with odd length}.

L1= {x, xxx, xxxxx, xxxxxxx……}.

L2= {_, xx, xxxx, xxxxxx…}.

L1.L2 = {x, xxx, xxxxx, xxxxxxx…}.

 التكرار غير مسموح داخل المجموعة

Ex3:

L1 = {x, xxx}.

L2 = {xx}.

L1.L2 = {xxx, xxxxx}.

Some rules on concatenation

λ.x = x

L1.L2 = {set of elements}

Definition of a Regular Expression

A regular expression may be the null string, r = λ

A regular expression may be an element of the input alphabet, r = a

A regular expression may be the union of two regular expressions, r = r1 + r2

A regular expression may be the concatenation of two regular expressions, r = r1 r2

A regular expression may be the Kleene closure (star) of a regular expression r = r1*

A regular expression may be a regular expression in parenthesis r = (r1)

λ is the zero length string

0, 1, a, b, c, are symbols in ∑

x is a variable or regular expression

(...)(...) is concatenation

(...) + (...) is union

(...)* is the Kleene Closure = Kleene Star

(λ)(x) = (x)(λ) = x

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

(λ) + (x) = (x) + (λ) = x

x + x = x

(λ)* = (λ)(λ) = λ

(x)* + (λ) = (x)* = x*

(x + λ)* = x*

x* (a+b) + (a+b) = x* (a+b)

x* y + y = x* y

(x + λ)x* = x* (x + λ) = x*

(x+ λ)(x+ λ)* (x+ λ) = x*

λ is the null string (there are no symbols in this string)

* is the set of all strings of length greater than or equal 0.

Example:

A = {a,b} // the alphabet is composed of a and b

A* = {λ, a, b, aa, ab, ba, bb, aaa, aab, …}

The symbol * is called the Kleene star.

Φ (empty set)

λ (empty string)

() delimiter,

 + union (selection)

∩ × intersection

Concatenation

Given regular expressions x and y, x + y is a regular expression

Representing the set of all strings in either x or y (set union)

x = {a, b}, y = {c, d}, x + y = {a, b, c, d}

Example

Let A={0,1}, W1 = 00110011, W2 = 00000

W1W2 = 0011001100000

W2W1 = 0000000110011

W1λ = W1 = 00110011

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

λW2 = W2 = 00000

Example

x = {a, b}, y = {c, d}, x.y = {ac, ad, bc, bd}

Note: (a + b)* = (a* b*)*

Examples of Regular Expressions (RE)

Describe the language = what is the output (words, strings) of the following RE

Regular Expression Output (Set of Strings)

λ { λ}

λ* { λ}

a {a}

aa {aa}

a* { λ, a, aa, aaa, …}

aa* {a, aa, aaa, …}

a+ {a, aa, aaa, …}

ab* {a, ab, abb, abbb,…}

(ab)* { λ, ab, abab, ababab,… }

ba+ {ba, baa, baaa, …}

(ba)+ {ba, baba, bababa, …}

b) (a {a , b}

b a * {a, λ, b, bb, bbb, …}

b) (a * {λ, a, b, aa, ab, ba, bb, …}

a(ba)*b { ab, abab, ababab, abababab,…}

aa(ba)*bb {aabb, aababb, aabababb,…}

(a+a) {a}

(a+b) {a, b}

(a + b)2 (a + b)(a + b)={aa, ab, ba, bb}

(a + b + c) {a, b, c}

(a + b)* {λ, a, b, aa, bb, ab, ba, aaa, bbb, aab, bba, …}

(abc) {abc}

(λ + a) bc {bc, abc}

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

a + b* {a, λ, b, bb, bbb, …}

a *+ b* { λ ,a, b, aa, bb, aaa, bbb,…}

a (a + b)* {a, aa, ab, aaa, abb, aba, abaa, …}

(a + b)* a (a + b)* {a, aaa, aab, baa, bab, …}

(a+b)+(a+b) {a,b}

(a + λ)* (a)* = {λ, a, aa, aaa, …}

a(λ)*b {ab}

x*(a+b) {a, b, xa, xb, xxa, xxb, xxxa, xxxb,…}

x* (a + b) + (a + b) x* (a + b)

x* y + y x* y

(x + λ) x* x* (x + λ) = x*

(x + λ) (x + λ)* (x + λ) x*

start with a a (a + b)*

end with b (a + b)* b

start with a and end with b a (a+b)* b

start with a or b (a+b) (a+b)*

end with 00 or 01 (0+1)* (00+01)

end with ab (a+b)* ab

contains exactly 2 a's (b)* a (b)* a (b)*

contains at least 2 a's (a + b)* a (a + b)* a (a + b)*

contains exactly 2 a's or 2 b's [(b)* a (b)* a(b)*] + [(a)* b (a)* b (a)*]

contains even no. of a [(b)* a (b)* a (b)*]*

with even length of a (aa)+

H.W.

Q.1: Find a regular expression over the alphabet {a, b} that contains exactly three

a's.

Q.2: Find a regular expression over the alphabet {a, b} that end with ab.

Q.3: Find a regular expression over the alphabet {a, b} that has length of 3.

Q.4: Find a regular expression over the alphabet {a, b} that contain exactly two

successive a's.

Q.5: Find the output strings (output words) for the following regular expressions:

Regular expression Output Strings

(λ)*

(x)* + (λ)

Dr. Ghiath Hameed+ Saja Hikmat Lecture 1 Second Stage

aa* b

baa* a

(a + b)* ba

(0 + 1)* 00 (0 + 1)*

(11 + 0)* (0 + 11)*

01* + (00 + 101)*

(a + b)* abb+

(((01 + 10)* 11)* 00)*

