
Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 1

This part of the course discusses
production rules and how these

rules can be used to infer
answers to queries.

5-1 Production Systems

A production system is a model of computation which provides pattern
directed control of a problem-solving process and consists of the following
components:

 A Set of Production Rules: A production rule is a condition-action
pair and defines a single chunk of problem-solving knowledge. The
condition part determines when that rule may be applied to a
problem instance. The action part defines the associated problem
solving step. For instance, in an expert system for medical diagnosis, if
a patient has fever (condition), then the nurse should give him
paracetamol (action).

 Working Memory: It contains a description of the current state of
the world. Specifically, the state is described in terms of predicates.

 The Recognize-Act Cycle: This is the control structure for a
production system. It loops until the working memory pattern no
longer matches the conditions of any of the production rules. This
termination means two things: the system halts abnormally or there is
an answer found to the query of the user.

A production rule is enabled when it matches the contents of working

CHAPTER 5

 PRODDUCTION SYSTEMS

By: Dr Muhanad Tahrir Younis

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 2

memory. An enabled rule is part of the conflict set. A conflict resolution
technique is needed to determine which rule to select based on the
elements of the conflict set. It is fired when it is selected as the rule to
use to know the next action.
A schematic drawing of a production system is presented in figure (5-1).

As an example, consider the production set program for sorting a
string composed of the letters a, b, c. The production set has three
rules. With the rule ba → ab, the ba is the condition and ab is the
action. The same is true for the next 2 rules.

Production set:

(1) ba → ab
(2) ca → ac
(3) cb → bc

Suppose the current state of the working memory is: cbaca. The conflict
set will contain rules 1,2 and 3 since ba, ca and cb are substrings of the
current contents of working memory. The first rule is fired because the

Figure (5-1): A production System. Control loops until
working memory pattern no longer
matches the conditions of any productions.

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 3

conflict resolution strategy used is lower-valued rule first. When rule 1 is
fired it replaces the substring ba with ab, yielding cabca. Now only rule
2 matches the contents of working memory. Since there is only 1 rule
matching the working memory, it is fired: This action changes the
contents of working memory from cabca to acbca. This process goes op
until there are no more rules which matches the contents of working
memory. Figure (5-2) shows a trace of how this production system
works.

5-2 Control of Search in Production Systems

Given the recognize-act cycle in production systems, there are
several ways for us to look at solutions to problems. We may either
start with the data given to us, or start from the goal we wish to verify.
These two approaches are called data-driven search (forward
chaining) and goal-driven search (backward chaining).

 Data-driven search (Forward Chaining): This approach takes
the facts of the problem and applies the rules/legal moves to
produce new facts that lead to the goal.

 Goal driven search (Backward chaining): It focuses on the
goal, finds the rules that could produce the goals, and chains
backward through successive rules and subgoals to the given
facts of the problem.

Iteration #
Working
Memory Conflict Set Rule Fired

0 cbaca 1,2,3 1

1 cabca 2 2

2 acbca 3,2 2

3 acbac 1,3 1

4 acabc 2 2

5 aacbc 3 3

6 aabcc ø Halt

Figure (5-2): A Trace of How a Production System Works.

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 4

How do we know which approach to use given our applications? If there
are a large number of potential goals, or if all or most of the data is
given it is best to use data-driven search. On the other hand, if a goal
or a certain hypothesis is given, or if there is a large number of rules
that match the facts of the problem or if the data is minimal then it is best
to use goal-driven search.

Let us have another example and apply these two strategies.

(1) p Λ q → goal

(2) r Λ s → p
(3) w Λ r → q
(4) t Λ u→q
(5) v → s
(6) start → v Λ r Λ q

In this example we are given 6 rules, and our working memory initially
contains start. We use forward chaining first. The conflict set will contain
rule 6, and since it is the only rule in the conflict set it will be fired Notice
that we match the contents of working memory with the condition part of
the production rule. Firing rule 6 changes the contents of working memory
to start, v, r, q. Looking at the condition part of our rules again, we match
the contents of working memory with it. The conflict set this time
contains rules 5 and 6. We fire rule 5 because we are applying the recency
rule. We examine the rules again and see that this changes the contents
of working memory to start, v, r, q, s. This process continues until we have
reached the goal. Figure (5-3) shows the applying of forward chaining to a
Production Set.

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 5

Using backward chaining, we start the process from the goal. In this case
hypothesis is identified to be goal. This time we do not match the
contents of memory with the condition, instead we match it with the
action part of the production rule. In this case, the only rule which
matches the working memory is rule 1. This rule is fired and the working
memory contains goal, p and q. This process continues, the contents of
working memory being matched with the action part of the rule until no
more rule matches the working memory. Figure (5-4) shows the applying of
backward chaining to a Production System.

Iteration # Working Memory
Conflict

Set
Rule Fired

0 start 6 6

1 start,v,r,q 5,6 5

2 start,v,r,q,s 5,6,2 2

3 start,v,r,q,s,p 5,6,2,1 1

4 start,v,r,q,s,p,goal ø Halt

Figure (5-3): Applying Forward Chaining to a Production Set

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 6

Iteration # Working Memory Conflict Set Rule Fired

0 goal 1 1

1 goal,p,q 1,2,3,4 2

2 goal,p,q ,r,s 1,2,3,4,5 3

3 goal,p,q ,r,s,w 1,2,3,4,5 4

4 goal,p,q ,r,s,w,t,u 1,2,3,4,5 5

5 goal,p,q ,r,s,w,t,u,v 1,2,3,4,5,6 6

6 goal,p,q ,r,s,w,t,u,v,start ø Halt

5-3 Examples of Production Systems

EXAMPLE (1): THE 8-PUZZLE
The 8-puzzle is a 3 x 3 array in which eight tiles can be moved around in nine
spaces. Although in the physical puzzle moves are made by moving tiles, it is
much simpler to think in terms of "moving the blank space" instead. The legal
moves are:

1- Move the blank up ↑

2- Move the blank right →

3- Move the blank down ↓

4- Move the blank left ←
In order to apply a move, we must sure that it does not move the blank off
the board. Therefore, all four moves are not applicable at all times; for
example, when the blank is in one of the corners only two moves are
possible.
Legal moves are defined by the productions in Figure (5-5). Of course, all four
of these moves are applicable only when the blank is in the center; when it is
in one of the corners only two moves are possible. If a beginning state and a
goal state for the 8-puzzle are now specified, it is possible to make a
production system accounting of the problem's search space.
An actual implementation of this problem might represent each board

Figure (5-4): Applying Backward Chaining to a Production System.

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 7

configuration with a "state" predicate with nine parameters (for nine possible
locations of the eight tiles and the blank); rules could be written as
implications whose premise performs the required condition check.
Alternatively, arrays or list structures could be used for board states.
An example of the space searched in finding a solution for the problem given
in Figure (5-5) follows in Figure (5-6). Because this solution path can go very
deep if unconstrained, a depth bound has been added to the search. (A
simple means for adding a depth bound is to keep track of the length of the
current path and to force backtracking if this bound is exceeded.) A depth
bound of 5 is used in the solution of Figure (5-6). Note that the number of
possible states of working memory grows exponentially with the depth of the
search.

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 8

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 9

EXAMPLE (2): THE KNIGHT'S TOUR PROBLEM

In the game of chess, a knight can move two squares either horizontally or
vertically followed by one square in an orthogonal direction as long as it does
not move off the board. The example given here is a simplified version of it:
is there is a series of legal moves that will take the knight from one square to
another on a reduced-size (3 x 3) chessboard?
Figure (5-7) shows a 3 x 3 chessboard with each square labeled with integers
1 to 9. the legal moves on the board are then described in predicate logic
using a predicate called move, whose parameters are the starting and ending
squares of a legal move.

This problem may be solved using a production system approach. Here each
move would be represented as a rule whose condition is the location of the
knight on a particular square and whose action moves the knight to another
square. Sixteen productions represent all possible moves of the knight.
Working memory contains both the current board state and the goal state.
The control regime applies rules until the current state equals the goal state
and then halts. A simple conflict resolution scheme would fire the first rule
that did not cause the search to loop. Because the search may lead to dead
ends (from which every possible move leads to a previously visited state and,
consequently, a loop), the control regime should also allow backtracking: An
execution of this production system that determines whether a path exists
from square 1 to square 2 is charted in Figure (5-8).

Figure (5-7): a 3 x 3 chessboard with move rules.

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 10

RULE # CONDITION ACTION

1 knight on square 1 → move knight to square 8

2 knight on square 1 → move knight to square 6

3 knight on square 2 → move knight to square 9

4 knight on square 2 → move knight to square 7

5 knight on square 3 → move knight to square 4

6 knight on square 3 → move knight to square 8

7 knight on square 4 → move knight to square 9

8 knight on square 4 → move knight to square 3

9 knight on square 6 → move knight to square 1

10 knight on square 6 → move knight to square 7

11 knight on square 7 → move knight to square 2

12 knight on square 7 → move knight to square 6

13 knight on square 8 → move knight to square 3

14 knight on square 8 → move knight to square 1

15 knight on square 9 → move knight to square 2

16 knight on square 9 → move knight to square 4

Chapter Five: Production Systems Prepared By: Dr Muhanad Tahrir Younis

 11

There are several conflict resolution strategies we can apply to production
systems. Among these are:

 Rule Ordering: Arrange all rules in one long priority list. The triggering
rule appearing earliest in the list has the highest priority.

 Refraction: This strategy specifies that once a rule has fired, it may
not fire again until the working memory elements that match its
conditions have been modified.

 Recency: This approach prefers to select rules whose conditions match
with the patterns most recently added to working memory.

 Specificity: This strategy supposes the conditions of one triggering rule
are a superset of the conditions of another triggering rule. Use the rule
with the superset that is more specialized to the current situation.

Iteration

Working memory
 Conflict set

(rule #'s)
Fire rule

Current square Goal square

0 1 2 1,2 1

1 8 2 13,14 13

2 3 2 5,6 5

3 4
2

7,8 7

4 9 2 15,16 15

5 2 2 Halt

Figure (5-8): Production system solution to the 3 x 3 knight's tour
problem.

