الریاضا ت I و-عما و

. 15

الله المنصور الجامعة

Civil Engineering 1st. Year

From theorem (1), we may say that, if F(x) is any solution of the equation $\frac{dy}{dx} = F(x)$ then all solutions are given by the function formula y = F(x) + C (2)

In definite Integral : The set of all solutions of fix is called indefinite integral of f with respect to x and denoted by: $y = \int f(x) dx = F(x) + C$ (3) where the symbol S is called an "integral sign", the function fex, is called the integrand of the integral, C is called the constant of integration, and dx tell us that the variable of integration is X. $E_{X_{i}}(1)$ Solve the differential equation $\frac{dy}{dx} = 3X^{2}$ Since $\frac{1}{4}\chi^3 = 3\chi^2$ Then $y = \int 3x^2 dx = x^3 + C$. $\underline{EX.(2)}$ solve $\frac{dy}{dx} = \sin x \cos x$ Since $\frac{d}{dx} \left(\frac{1}{2} \sin^2 x\right) = \sin x \cos x$ Then $y = \int \sin x \cos x \, dx = \frac{1}{2} \sin x + C$.

Some Integration formulas
If
$$u = u(x)$$

(1) $\int \frac{du}{dx} dx = u(x) + ($
(2) $\int a u(x) dx = a \int u(x) dx$, where a is constant.
(3) $\int [u_1(x) + u_2(x) + \dots + u_n(x)] dx = \int u_1(x) dx + \int u_1(x) dx + \dots + \int u_n(x) dx$
(4) $\int u^n \frac{du}{dx} dx = \frac{u^{n+1}}{n+1} + ($, $n \neq -1$
 $Ex.(3)$ Evaluate $I = \int (3x^4 - 2x^3 + x^{\frac{1}{2}} + 2x^2 + 5x^{\frac{1}{2}} - \sqrt{2}) dx$
 $= 3 \int x^4 dx - 2 \int x^3 dx + \int x^2 dx + 2 \int x^2 dx + 5 \int x^4 dx - \sqrt{2} \int dx$.
 $= \frac{2}{5}x^5 - \frac{1}{2}x^4 + \frac{2}{3}x^2 - 2x^{-1} + \log x^{\frac{1}{2}} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int (3x - 1)^{\frac{3}{2}} - 2x^{-1} + \log x^{\frac{1}{2}} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{\frac{1}{2}} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{\frac{1}{2}} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{\frac{1}{2}} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{\frac{1}{2}} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{\frac{1}{2}} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{-1} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{-1} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{-1} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{-1} - \sqrt{2}x + ($.
 $Ex.(4)$ Evaluate $I = \int \sqrt{(3x-1)^3} - 2x^{-1} + \log x^{-1} - \sqrt{2}x + ($.

Definite Integrals The integral Sforridx is called the definite integral of fix, over the interval [a, b]. Later, we shall show that this integral is a number definition defined in a Certain May as a limit of approximating sums over the interval from a to b on the x-axis. Properties of definite Integrals If fox) is a continuous function on Ca, b], then $\iint_{a} f(x) dx = - \int_{a}^{b} f(x) dx .$ $O \int f(x) dx = 0$ $(f) \int_{a}^{b} f(x) dx = k \int_{a}^{b} f(x) dx , \quad k \text{ is constant.}$ $(f) \int_{a}^{b} f_{1}(x) + f_{2}(x) + \dots + f_{n}(x) \int_{a}^{b} dx = \int_{a}^{b} f_{1}(x) dx + \int_{a}^{b} f_{2}(x) dx + \dots + \int_{a}^{b} f_{n}(x) dx + \int_{a}^{b$ $(f) \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx \quad for any \quad c \in Ea, b].$ The Fundamental Theorem of Integral Calculus" If far is continuous function on Ea, b] and Far is any solution of fix, over Ea, b], then $\int_{a}^{b} f(x) dx = F(x) \Big|_{a}^{b} = F(b) - F(a) \cdot$

$$\frac{EX.(6)}{Evaluate} = \int_{-3}^{2} (6 - x - x^{2}) dx$$

$$I = \left(6x - \frac{1}{2}x^{2} - \frac{1}{3}x^{3}\right) \int_{-3}^{2} = (12 - 2 - \frac{8}{3}) - (-18 - \frac{9}{2} + 9)$$

$$= \frac{125}{6},$$

$$\frac{EX.(7)}{Find} = \int_{0}^{\pi} Sinx dx = -\cos x \int_{0}^{\pi} = -(\cos \pi - (\cos 0)) = -(-1 - 1) = 2.$$
Have
$$SX.(8) = Find = \int_{0}^{\pi} \frac{Sin2 x}{\cos^{2} 2x} dx.$$

$$\frac{EX.(9)}{Find} = \int_{0}^{\pi} \frac{Sin2 x}{\cos^{2} 2x} dx.$$

$$\frac{EX.(9)}{f(x) dx} = \int_{0}^{1} f(-1) dt \cdot \int_{0}^{1} f(x) dx = \int_{0}^{1} f(-1) dt \cdot \int_{0}^{1} f(x) dx = \int_{0}^{1} f(-1) dt \cdot \int_{0}^{1} f(x) dx = \int_{0}^{1} f(-1) dt \cdot \int_{0}^{1} f(-1) dt \cdot \int_{0}^{1} f(-1) dt = \int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{1$$

then
$$\int f(x)dx = \int f(1-t)dt = -\int f(1-t)dt = \int f(1-t)dt$$
.

$$(c)$$

Method [1] Integration By Substitution (7)
The goal of this method is to transform the integral into
a standard from the following steps:
1. Substitute u=g(x) then du=g(x)dx to obtain I=
$$\int f(u)du$$

2. Evaluate $I = \int f(u)du$ by integrating with respect to u .
3. Replace u by $g(x)$ in the final yesult.
EX.(1) Evaluate $\int \frac{dx}{\sqrt[3]{1-2x}}$
 $I = \int (1-2x)^{\frac{1}{3}} dx$. Let $u = 1-2x \Rightarrow du = -2 dx$
 $I = -\frac{1}{2} \int (1-2x)^{\frac{1}{3}} (-2) dx = -\frac{1}{2} \int u^{\frac{1}{3}} du = -\frac{1}{2} \frac{u^{\frac{3}{2}}}{\frac{2}{3}} + C$
 $= -\frac{3}{4} (1-2x)^{\frac{2}{3}} + C$.
EX.(2) Find $I = \int \sin^{2} \beta x \cos 5x dx$
 $I = \frac{1}{5} \int u^{2} du = \frac{1}{5} \frac{u^{3}}{3} + C = \frac{1}{15} \frac{\sin^{3} 5x + C}{2}$.
EX.(3) Find $I = \int x e^{x^{2}+1} dx = \frac{1}{2} \int e^{x^{2}+1} ex dx$
 $u = x^{2}+1 \Rightarrow du = 2x dx$
 $I = \frac{1}{2} \int e^{u} du = \frac{1}{2} e^{u} + C = \frac{1}{2} e^{x^{2}+1} C$.

$$\frac{EX.(4)}{s \text{ solar}} \quad \text{find } I = \frac{1}{3} \int \frac{3 \cosh 3x}{4 + \sinh 3x} dx$$

$$u = 4 + \sinh 3x \implies du = 3 \cosh 3x dx$$

$$I = \frac{1}{3} \int \frac{du}{u} = \frac{1}{3} \ln u + c = \frac{1}{3} \ln (4 + \sinh 3x) + (.$$

$$\frac{EX.(5)}{s \text{ evaluable}} \quad I = \frac{1}{3} \int \frac{3 \cosh 5x}{4 + \sinh^2 3x} dx$$

$$I = \frac{1}{3} \int \frac{du}{4 + u^2} = \frac{1}{3} \frac{1}{2} \tan^2 \frac{u}{2} + c = \frac{1}{6} \ln^2 \left[\frac{\sinh 2x}{2}\right] + (.$$

$$\frac{EX.(6)}{I^3} \int \frac{du}{1 + u^2} = \frac{1}{3} \frac{1}{2} \tan^2 \frac{u}{2} + c = \frac{1}{6} \ln^2 \left[\frac{\sinh 2x}{2}\right] + (.$$

$$\frac{EX.(6)}{I^3} \int \frac{dx}{1 + e^x} = \int \frac{dx}{1 + \frac{1}{e^x}} = -\int \frac{-e^x}{e^x + 1} dx = -\ln(e^x + 1) + c.$$

$$\frac{EX.(7)}{I^3} \int \frac{du}{1 + e^x} = \int \frac{dx}{1 + \frac{1}{e^x}} = -\int \frac{-e^x}{e^x + 1} dx = -\ln(e^x + 1) + c.$$

$$\frac{EX.(7)}{I^3} \int \frac{du}{u} = \int \sec x dx = \int \sec x \cdot (\frac{\sec x + \tan x}{(\sec x + \tan x)}) dx$$

$$u = \sec x + \tan x \Rightarrow du = (\sec x + \tan x + \sec^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x) + (1 + \csc^2 x)) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 = \ln(\sec x + \tan x)) + (1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln u + (1 + 1 + \csc^2 x) dx$$

$$I = \int \frac{du}{u} = \ln \frac{1}{2} \ln \frac{1}{\sqrt{1 - x^2}} = \frac{1}{2} \int \frac{\sqrt{1 - x^2}}{\sqrt{1 - (x^2)^2}} dx$$

$$I = \frac{1}{2} \int \frac{du}{\sqrt{1 - x^2}} = \frac{1}{2} \sin^2 u = \frac{1}{2} \ln \frac{1}{2} \left[\sin^2 \frac{1}{1 + 2} - \sin^2 \frac{1}{1 + 2} \right]$$

Exercises To Solve [NO.1] $(2) \int \frac{1+e^{2x}}{e^{x}} dx$ $(I) \int (x - \frac{1}{x})^2 dx$ $(4) \int \frac{e^{\chi}}{1+e^{2\chi}} d\chi$ $3\int \frac{\sec^2 x \, dx}{1 + \tan^2 x}$ 6 ftan 3xdx $(8) \int \frac{\sec^2(\ln x)}{x} dx$ 7 Sechx dx $(b) \int_{-5}^{\frac{1}{2}} \sin x \cos x \, dx$ 9) Stanx lu(cosx) dx $(1) \int \frac{\sqrt{1+e^{2x}}}{-3x} dx$ $(12) \int_{4}^{7} \frac{dx}{x - \sqrt{x}}$ (13) $\int \frac{(1+e^{2x})^{\frac{1}{2}}}{-3x} dx$ $(4) \int_{e}^{\infty} e^{x} e^{e^{x}} dx$ $(15) \int_{-\infty}^{\frac{1}{2}} \sin^2 x \, dx$ (6) Stan 4 x dx $(18) \int \frac{x\sqrt{x}}{1+x^5} dx$ $(17) \int \frac{x-2}{\sqrt{q-x^2}} dx$ (19) Scschx dx 20) Crixdx.

Makhad [2] Certain powers of Trigonometric
And Hyperbolic Integral
Consider the following integrals forms:
(A)
$$\int \sin^{m} u \cos^{n} u \, du$$
 or $\int \sinh^{m} u \cosh^{n} u \, du$
(B) $\int \tan^{m} u \sec^{n} u \, du$ or $\int \tanh^{m} u \operatorname{sech}^{n} u \, du$
(C) $\int \cot^{m} u \csc^{n} u \, du$ or $\int \tanh^{m} u \operatorname{sech}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \cot^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \operatorname{cot}^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \operatorname{cot}^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \operatorname{cot}^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(C) $\int \operatorname{cot}^{m} u \operatorname{csc}^{n} u \, du$ or $\int \operatorname{coth}^{m} u \operatorname{csch}^{n} u \, du$
(S) $\operatorname{coth}^{n} u \operatorname{csc}^{n} u \, du$
(S) $\operatorname{coth}^{m} u \operatorname{csc}^{n} u \, du$
(S) $\operatorname{cosc}^{n} u \, (\operatorname{csc}^{n} u \, du$
(C) $\operatorname{cosc}^{n} u \, (\operatorname{csc}^{n} u \, du)$
(C) $\operatorname{cosc}^{n} u \,$

(1)
If n is odd and +ive, we factor out Cosu (coshu) and
Change the remaining even power of cosu (coshu) to sinu (sinhu)
using the identities:-
Cos² u = 1 - sin² u, Cosh² u = 1 + sinh² u.
EX.(2) Find I =
$$\int sinh3 x cosh3 x dx = \int Cosh3 x sinh4 x cosh x dx$$

 $I = \int (1 + sinh2 x) sinh4 x cosh x dx = \int (sinh5 x + sinh4 x) (osh x dx)$
 $I = \int (1 + sinh2 x) sinh4 x cosh x dx = \int (sinh5 x + sinh4 x) (osh x dx)$
 $= \frac{1}{3} \left[-\frac{sinh5 x}{7} + \frac{sinh5 x}{5} \right] + C = \frac{1}{21} sinh7 x + \frac{1}{15} sinh5 x + C.$
Case III
If both m and n are even and tive (or one of them Zero)
we veduce the degree of the expression by using the identities:-
 $Sin2 u = \frac{1 - cos 2u}{2}$, $Sinh2 u = \frac{cosh 2u - 1}{2}$
 $cos2 u = \frac{1 + cos 2u}{2}$, $Cosh2 u = \frac{cosh 2u - 1}{2}$
 $EX.(3) I = \int sin2 x cos2 x dx = \frac{1}{4} \int (1 - \frac{1 + cos 8x}{2}) dx = \frac{1}{4} \int (\frac{1}{2} - \frac{1}{2} (cos 8x) dx)$
 $= \frac{1}{4} \int (\frac{1}{2} - \frac{1}{16} sin 8x] + C.$
Under Type (B), there are two factor out secu (sech² u) and
Change the remaining even power of secu (sech² u) to tan u (tanhu)
Using the identities: sec² u = 1 + tan² u, $\frac{1}{2} - \frac{1}{2} - \frac{1}$

$$\frac{FX.(4)}{Find} = \int \operatorname{sech}^{4} \underline{x} \quad \tan h \frac{1}{2} \, dx \qquad (2)$$

$$= \int \operatorname{sech}^{2} \underline{x} \quad \tan h \frac{1}{2} \underline{x} \quad \operatorname{sech}^{2} \underline{x} \, dx$$

$$= \int (1 - \tan h \frac{5}{2}) \tan h \frac{1}{2} \underline{x} \quad \operatorname{sech}^{2} \underline{x} \, dx = \int (\tan h \frac{1}{2}) \tan h \frac{5}{2} \underline{x} \\ = \int (1 - \tan h \frac{5}{2}) \tan h \frac{1}{2} \underline{x} \quad \operatorname{sech}^{2} \underline{x} \, dx = \int (\tan h \frac{1}{2}) - \tan h \frac{5}{2} \underline{x} \\ = \operatorname{sech}^{2} \underline{x} - \tan h \frac{5}{2} \underline{x} \quad \operatorname{sech}^{2} \underline{x} \, dx = \int (\tan h \frac{1}{2} - \frac{1}{2} - \tan h \frac{5}{2}) \frac{1}{2} dx$$

$$= 2 \left[-\frac{\tan h \frac{5}{2}}{2/3} - \frac{\tan h \frac{5}{2}}{3/3} \right] + (2 - \frac{1}{3} - \frac{1}{$$

 $csc^2u = cofu+1$, $csch^2u = cothu-1$.

 $(4) \int_{\Xi}^{\Xi} \cos^{2} x \, dx \qquad (5) \int_{\Xi}^{\Xi} \sin^{3} 2x \, dx \qquad (6) \int_{\Xi}^{\Xi} \sin^{4} x \, dx$ $= \frac{\pi}{4}$ (in x cos x dx (in x cos x dx (in x cos x dx (in x cos x dx))) (a) $\int x \sin^3 x^2 dx$, (1) $\int \cos^3 x \sin^2 x dx$ (12) Sind x (13) Suce x dx (4) Stan x secx dx (5) Stan & sec X dx.

Method[3] Trigenometric Substitutions
If the integral involve one of the forms
$$a^2+u^2$$
, $\sqrt{a^2-u^2}$,
 $\sqrt{a^2+u^2}$, or $\sqrt{u^2-a^2}$. Then the substitutions as follows:
(1) If $\sqrt{a^2-u^2}$, let $u=a\sin\theta \Rightarrow a^2-u^2 = a^2\cos^2\theta$.
(2) If $\sqrt{a^2-u^2}$, let $u=a\tan\theta \Rightarrow a^2+u^2 = a^2\cos^2\theta$.
(3) If $\sqrt{u^2-a^2}$, let $u=a\sec\theta \Rightarrow u^2-a^2=a^2\tan^2\theta$.
(4) $\sqrt{u^2-a^2}$, let $u=a\sec\theta \Rightarrow u^2-a^2=a^2\tan^2\theta$.
(1) $\sqrt{u^2-a^2}$, let $u=a\sec\theta \Rightarrow u^2-a^2=a^2\tan^2\theta$.
(2) $\sqrt{u^2-u^2}$ u $\sqrt{u^2-a^2}$
(3) $\sqrt{u^2-a^2}$
(4) $\sqrt{u^2-a^2}$
(5) If $\sqrt{u^2-a^2}$, let $u=a\sec\theta \Rightarrow u^2-a^2=a^2\tan^2\theta$.
(2) $\sqrt{u^2-a^2}$
(3) $\sqrt{u^2-a^2}$
(4) $\sqrt{u^2-a^2}$
(5) If $\sqrt{u^2-a^2}$, let $u=a\sec\theta \Rightarrow u^2$, $\sqrt{u^2-a^2}$
(2) $\sqrt{u^2-a^2}$
(3) $\sqrt{u^2-a^2}$
(4) $\sqrt{u^2-a^2}$
(5) If $\sqrt{u^2-a^2}$, let $u=a\sec\theta \Rightarrow u^2$, $\frac{1}{2}$, $\frac{1}{2}$, $\sqrt{u^2-a^2}$
(6) $\sqrt{u^2-a^2}$, let $u=a\sec\theta \Rightarrow u^2$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\sqrt{u^2-a^2}$
(3) $\sqrt{u^2-a^2}$, $\frac{1}{2}$,

$$I = \int_{\overline{C}} \sqrt{I - 5in^{2}\theta} \cos \theta \, d\theta = \int_{\overline{C}} \cos^{3}\theta \, d\theta = \int_{\overline{C}} \frac{1}{2} \left[(5)^{n} - \frac{\pi}{2} - \frac$$

Exercises To Solve [TND.3]

$$\frac{EXercises To Solve [TND.3]}{\sqrt{2}\sqrt{x^{2}-q}} \qquad (b) \int_{x^{2}}^{2} \frac{x^{2} dx}{x^{2}+4}$$

$$(c) \int_{x^{2}}^{x^{3}} \frac{dx}{\sqrt{x^{2}+4}} \qquad (q) \int_{x^{2}}^{1} \frac{x^{2} dx}{(4-x^{2})^{3/2}}$$

$$(c) \int_{x^{2}}^{x^{3}} \frac{dx}{\sqrt{x^{2}+4}} \qquad (q) \int_{x^{2}}^{1} \frac{x^{2} dx}{(4-x^{2})^{3/2}}$$

$$(c) \int_{x^{2}}^{x^{2}} \frac{x^{2} dx}{\sqrt{x^{2}+4}} \qquad (d) \int_{x^{2}}^{0} \frac{dx}{(4-x^{2})^{3/2}}$$

$$(c) \int_{x^{2}}^{x^{2}} \sqrt{5-x^{2}} dx \qquad (d) \int_{x^{2}}^{3} \frac{dx}{\sqrt{4}\sqrt{x^{2}+3}}$$

$$(f) \int_{x^{2}}^{\sqrt{4}} \frac{dx}{\sqrt{4}-x^{2}} \qquad (f) \int_{x^{2}}^{\sqrt{4}\sqrt{x^{2}-q}} dx \qquad (f) \int_{x^{2}}^{\sqrt{4}\sqrt{x^{2}+3}} \frac{dx}{\sqrt{4}\sqrt{x^{2}+3}}$$

$$(f) \int_{x^{2}}^{1} \frac{dx}{\sqrt{4}\sqrt{4-x^{2}}} \qquad (f) \int_{x^{2}}^{\sqrt{4}\sqrt{x^{2}-q}} dx \qquad (f) \int_{x^{2}}^{\sqrt{4}\sqrt{x^{2}-q}} dx \qquad (f) \int_{x^{2}}^{\sqrt{4}\sqrt{x^{2}-q}} dx \qquad (f) \int_{x^{2}}^{1} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \qquad (f) \int_{x^{2}}^{1} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}-a^{2}}} \sqrt{a^{2}-a^{2}} \sqrt{a^{2}$$

$$E_{X}(2) \quad E_{Valuate} \quad I = \int \frac{dx}{x^3 \sqrt{x^2 + 4}}$$

$$\frac{som}{X=2 \text{ sinh}V} \Rightarrow dx = 2 \cosh V dV$$

$$I = \int \frac{2 \cosh V dv}{8 \sinh^3 V} = \int \frac{dV}{8 \sinh^3 V} = \frac{1}{8} \int (sch^3 V dv)$$
is not easy to find.

We try
$$x = 2 \operatorname{cschv} = 3 \operatorname{v} = \operatorname{csch}^{2} x$$

 $dx = 2 \operatorname{cschv} \operatorname{cothv}^{2} dv$
 $I = \int \frac{-2 \operatorname{cschv}^{2} \operatorname{cothv}^{2} \operatorname{dv}^{2}}{8 \operatorname{csch}^{2} \operatorname{v}^{2} 2 \operatorname{cothv}^{2}} = -\frac{1}{8} \int \sinh^{2} v \, dv = -\frac{1}{8} \int \left(\frac{\operatorname{cschv}^{2}}{2} \right) dv$
 $= -\frac{1}{16} \left[\frac{1}{2} \operatorname{sinh}^{2} \operatorname{v}^{-} \operatorname{v}^{-} \right] + C = -\frac{1}{16} \left[\operatorname{sinhv}^{2} \operatorname{coshv}^{-} \operatorname{v}^{-} \right] + C$
 $= -\frac{1}{16} \left[\frac{2}{x} \cdot \frac{\sqrt{x^{2} + 4}}{x} - \operatorname{csch}^{2} \frac{1}{2} \right] + C$
 $= -\frac{1}{16} \left[\frac{2}{x} \cdot \frac{\sqrt{x^{2} + 4}}{x} - \operatorname{csch}^{2} \frac{1}{2} \right] + C$
 $= -\frac{1}{16} \left[\frac{2}{x} \cdot \frac{\sqrt{x^{2} + 4}}{x} - \operatorname{csch}^{2} \frac{1}{2} \right] + C$
 $= \frac{\operatorname{cschv}^{2}}{(4 - \sqrt{x^{2}})^{3}}$
 $= \frac{\operatorname{schv}^{2}}{(4 - \sqrt{x^{2}})^{3}} = \int \frac{16 \operatorname{tanh}^{2} \operatorname{sech}^{2} - \operatorname{dv}^{-}}{(4 - \sqrt{x^{2}})^{3}/2}$
 $= \int \frac{16 \operatorname{tanh}^{3} \operatorname{sech}^{2} \operatorname{v}^{-} \mathrm{dv}}{8 \operatorname{sech}^{3}} = 2 \int \operatorname{tanh}^{3} \operatorname{v} (\operatorname{sechv}^{-})^{3}/2$
 $= 4 \operatorname{sech}^{3} \operatorname{v}^{-} \operatorname{sechv}^{-} \operatorname{tanhv}^{-} \operatorname{sechv}^{-} \operatorname{tanhv}^{-} \operatorname{dv}^{-}$
 $= 2 \int (\operatorname{sech}^{2} \operatorname{v}^{-}) \operatorname{sechv}^{-} \operatorname{tanhv}^{-} \operatorname{dv}^{-} = 2 \int \operatorname{cschv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tanhv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{tsechv}^{-} \operatorname{t$

Exercises To Solve ENO. 4] (18) $\binom{11}{\sqrt{\frac{dx}{\sqrt{x^2+q}}}} \qquad (2) \qquad \sqrt{x^2-4} \qquad dx \qquad (3) \qquad \int \frac{x^2dx}{(q+x^2)^{1/2}}$ $(4) \int_{2}^{4} \frac{\sqrt{x^{2}-4}}{x^{2}} dx \quad (5) \int (3+x^{2})^{3/2} dx \quad (6) \int x^{2} (5+x^{2})^{1/2} dx$ $(8) \int x^2 \sqrt{5-x^2} dx$ (9) $\int cs(x dx)$ $(7) \int \frac{x^3 dx}{(5-x^2)^{3h}}$ (11) $\int \sec^3 x \, dx \quad (12) \int \csc^3 x \, dx$. (10) Ssechx dx Method [5] Integrals Involving Quadratic Functions If the integral involve a quadratic function $\chi^2 + a\chi + b$, we reduced it to the form $U^2 + B$ by completing the square as follows :- $\chi^{2} + a\chi_{+}b = \chi^{2} + a\chi_{+} + \frac{a^{2}}{4} + b - \frac{a^{2}}{4} = (\chi_{+} + \frac{a}{2})^{2} + (b - \frac{a^{2}}{4})$ = U + Bwhere $u = x + \frac{a}{2}$ and $B = b - \frac{a^2}{4}$. Then the solution can be found by method [3] or [4]. $\frac{EX.(1)}{EValuale} = \int \frac{dx}{\sqrt{2x-x^2}} = \int \frac{dx}{\sqrt{-(x^2-2x+1-1)}} = \int \frac{dx}{\sqrt{-[(x-1)^2-1]}}$ $= \int \frac{dx}{\sqrt{1 - (x - 1)^{2}}} dx = \int \frac{du}{\sqrt{1 - u^{2}}} = \sin \frac{u}{u} + C$ Let $u = x - 1 = \int du = dx = 2I = \int \frac{du}{\sqrt{1 - u^{2}}} = \sin \frac{u}{u} + C$ $= \sin \frac{u}{(x - 1) + C}$

$$\begin{split} \underline{Fx.(2)} & I = \int \frac{(4x+5) dx}{(x^2-2x+2)} = \int \frac{(4x+5) dx}{(x^2-2x+1+1)^{3/2}} \\ &= \int \frac{(4x+5) dx}{[(x-1)^2+1]^{3/2}} \\ &= \int \frac{(4x+5) dx}{(u^2+1)^{3/2}} \\ &= \int \frac{du}{(u^2+1)^{3/2}} \\ \\ &= \int \frac{du}{(u^2+1)^{3/2}} \\ &= \int \frac{du}{(u^2+1$$

. . . .