Chapter 3
VECTOR SPACES

3.1 EUCLIDEAN SPACE E"

Real euclidean space is a generalization of two-space and three-space. Gen-
eralization is needed since in some applications more than three variables
may be needed to describe a situation. Recall the example of an absorption
column at the beginning of Chap. 2: The number of plates in the column
dictates the number of components in the concentration vector. Or consider
the problem of estimating the thermal conductivity (a real number associated
with a given material) of a heat-conducting body. Solution may require that
temperatures be measured at several points at several times. Arrangement
of these data in a vector requires much more than three components.

Definition 3.1.1

REAL EUCLIDEAN n-SPACE, DENOTED E", PARALLEL SITUATION FOR THREE-SPACE

CONSISTS OF

1. The set of all ordered n-tuples|3. An operation of scalar multipli-
(x1,22,...,2,), where x1, 29, ..., z, | cation defined by
are all real numbers. An n-tuple is
called a vector, and the numbers r(z1, ..., xn) = (rey, ... ,TT,)
x1,...,T, are called components of
the vector. The set of ordered triples (1, T2, x3).
2. An operation of vector addition

+ defined by

(X1, T2y T0) + (Y1, Y2y -+, Yn)

=(x1+ Y1, T2+ Y2, s Tn+ Yn)
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Addition here was given by Multiplication here was given by

(w1, 22, 23) + (Y1, Y2, 93) r(21, 22, 23) = (11, 703, 73)

= (z1+ Y1, T2 + Y2, 73 + y3)
Definition 3.1.2. Two vectors (x1,... ,x,) and (y1, ... ,y,) in E™ are called
equal if vy = yy, zo =yo,... , Ty = Yn.

Example 1. In E° let v = (—=1,0,2,3,—6),w = (1,0,—2,-3,6), u =
(3,7,—6,2,—1), and z = (0,0,0,0,0). Calculate (a) u+v, (b) v+u, (c)
u+2z,(d) 3u. (e) =7v, (f) 3u+7v, (g) v+ w, (h) Ou, and (i) 2z.

Solution
(a)

(3,7,—-6,2,—-1) + (—1,0,2,3,—6)
=3+ (-1),7+0,-6 42,243, -1+ (—6))
= (27 77 _47 57 _7)

(-1,0,2,3,—6) + (3,7 —6,2,—1)
=(=14+3,0+7,24(-6),34+2,-6+ (—1))
= (27 77 _4757_7)
Note that u+v =v + u.
(c)
u+z=(3,7,-6,2,—-1)+(0,0,0,0,0)

=(340,7+0,—6+0,2+0,—1+0)
=(3,7,-6,2,—1)

3u=3(3,7,-6,2,—1) = (3-3,3-7,3- (—6),3-2,3- (—1))
= (9,21, —18,6,—3)
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(e)

—7v =—-7(-1,0,2,3,—6) = (=7 (=1),-7-0,—7-2,-7-3,—7- (—6))
(7,0, —14,21,42)

3u+7v = (9,21,-18,6,—3) + (=7, 0,14, 21, —42)
(2,21, —4,27, —45)

v+w=(-1,0,2,3,-6)+(1,0,—2,-3,6)
= (0,0,0,0,0)

Ou=0(3,7,-6,2,—1) = (0-3,0-7,0- (—6),0-2,0- (—1))
= (0707 07 07 O)

Notice that 0(z1, x2, 3, 24, 25) = (0,0,0,0,0) regardless of the values
for x1, x9, T3, x4, and xs.

(i)
2z =2(0,0,0,0,0)=(2-0,2-0,2-0,2-0,2-0)
=(0,0,0,0,0) =z
Note that rz = z for any real number r.

Example 1b leads us to believe that the commutative property for addi-
tion of vectors in three-space carries over to E”. Also the vector with all zero
components may have a special role (Example 1c) as an additive identity. In
fact, this intuition is correct. Let us define some special vectors first.

Definition 3.1.3. The zero vector in E” is denoted by 6 and is defined by
6 =(0,0,...,0).
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Definition 3.1.4. Given a vector x = (z1, ...
x in E™ is denoted —x and is defined by

,Tpn) in £, the negative of

—x = (—x1,—To,... ,—Tp)
Example 2. Let x = (1,2, —3,4). Find —x. Calculate x + (—x).

Solution By definition —x = (-1, -2, —(—3), —4) = (—1,—-2,3,—4). Now
X+ (=x) = (1,2, -3,4) + (—1,-2,3,—4) = (0,0,0,0) = 6.

Example 2 illustrates the fact that for any x in £, x + (—x) = . This
is part (d) of the next theorem.

Theorem 3.1.1. Let x = (1, 22,... ,Zpn), Y = (Y1, Y2, --- ,Yn), and z = (21,

Z9,. .. ,2n) be vectors in E™, and let r and s be real numbers. Then
a) x+y=y+x Commutative law

b) (x+y)+z=x+(y +2) Associative law

c) x+0=x Additive identity

X+ (—x) =20
(rs)x = r(sx)

Additive inverse
Associative law

~—

f) (r+s)x=rx+sx Distributive laws

g) rx+y)=rx+ry Distributive laws

h) Ix=x Multiplicative identity
Proof. (a) x+y = (1 +vy1,22+ Y2,.-. ,Tn + yn). The additions in each

component are additions in the set of real numbers. Since addition is
commutative for real numbers, we have

X+y=(@1+v%,. - s Tn+Yn) =1 +T1,... ,Yn+Tn) =y +X

(d) Since —x = (—x1, —a,... ,—Ty), we know that

X+ (—%x) = (1, T2, ... , Tp) + (—21, —T2,. .. ,
= (.’L‘l + (—561),562 + (—IEQ),...
=(0,0,...,0) =46

_l»n)
y T + (_xn))

T’(X—l—}’) :r(a:1+y1,x2+y2,... ,;Cn—l—yn)
= (r(x1 +w),r(@2 +1y2), ., 7(Tn + Yn))
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Now since in each component we can apply the distributive law for real
numbers, the last vector is

r(x+y)=(rey + 1y, 10+ ry2, ... \TTp + rYn)

However,
X+ 1y =121, %2, .. Xn) + (Y1, Y25 -+ Yn)
= (ray,ree, ... ,rx,) + (ry1, rya, . .. ,TYn)
= (roy + 1y, T F Y2y .o Ty + TYn)
Therefore r(x +y) =rx +ry. O

Proofs of the other parts are left to the problems.

Example 3. Illustrate parts (b), (e) and (f) of Theorem 3.1.1 by means of
examples from E3.

Solution For (b), let x = (1,-1,2),y = (0,3,6), and z = (—5,0,2). Then
1,-1,2) +(0,3,6) + (—5,0,2)

((1,
= (1,2, ) (—5,0,2)
= (—4,2,10)

(x+y)+z=

and

X+ (y +x) = (1,-1,2) + ((0,3,6) + (~5,0,2))
= (17 _]-7 2) + (_5737 8)
= (—4,2,10)
For (e) let r =3,s = —5, and x = (4,—2,6). Then

(rs)x = [3(=5)](4, —2,6) = —15(4, -2, 6) = (—60, 30, —90)
r(sx) = 3[—5(4,—2,6)] = 3(—20, 10, —30) = (—60, 30, —90)

For (f) use the same values as in (e). Then

(r+s)x = —2(4,-2,6) = (—8,4,—12)
rx + sx = 3(4,—-2,6) + (—5)(4,—-2,6) = (12, —6, 18) + (—20, 10, —30)
= (_8747 _12)
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Theorem 3.1.1 shows that E™ has the same generic properties as the set of
two- and three-vectors had. In the next section we will see how the important
properties of E” outlined in Theorem 3.1.1 can be used to define the concept
of a vector space. We postpone the discussion of generalizing the dot product
until Sec. 3.6.

PROBLEMS 3.1

1.

From the following list of vectors pick all possible pairs of vectors which
are equal.

A=(1,-1,0) D = ((a —b)%1,2)
B:(a2_627172) E:((a’_b)(a+b)7(_1)272)

C = (sinm/2,cos m,sin)

Let x and y be vectors in E”. Define x —y as x + (—y). Setting
X = (x1,T2,...,2,) and y = (y1,Y2,... ,Yn), Write out the vector

X—Yy.

Show by example that (x —y) —z # x — (y —z) in E”. That is, the
associative law does not hold for vector subtraction. (Note: To show
that a statement does not hold in E”, a particular value of n can be
chosen. So in this problem the example can come from E', E? or E3.)

Now E! is just the set of real numbers. In E' multiplication by a scalar
is quite simple. What is it?

. In E3 consider the vectors e; = (1,0,0), e; = (0,1,0), and e3 =

(0,0,1). A sum of the form ae; + bey + ces, where a,b, and c¢ are
real numbers, is called a linear combination of e, e;, and e3. Write
the vector (3,—2,1) as a linear combination of ey, e,, and e3. (These
vectors are also called i, j, and k.)

. In E™ consider the vectors

e; = (1,0,0,...,0),es=(0,1,0,...,0),...,
er = (0,0,...,0,1,0,...,0),... ,e, = (0,0,...,1)
T

kth component



3.2.

10.

11.

12.
13.
14.
15.
16.
17.
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A sum of the form a,e; + ases + - - - + ape, is called a linear combi-
nation of e, e, ... ,e,. Show that any vector x = (x1, 29, x3,... ,Zy)
can be written as a linear combination of e, es, ... ,e,.

Let x = (1,-2,3) and y = (3,1,0). Calculate x +y. Place the three
vectors X,y, and X +y in a matrix as rows of the matrix (remove the
commas). Calculate the determinant of the matrix.

Work Prob. 7 with x and y as given, but replace x +y with 3x — 2y.

Work Prob. 7 with x and y as given, but replace x +y with ax + by,
where a and b are nonzero real numbers.

Find constants ¢; and ¢, which satisfy
(3,5) = c1(1,—2) 4+ c2(2,—3)
Show that there do not exist constants ci, ¢o, c3 which satisfy
(1,—-1,4) = ¢1(2,3,5) + c2(—1,0,6) + c3(1, 3,11)

Prove part (b) of Theorem 3.1.1. Also illustrate with an example.
Prove part (c) of Theorem 3.1.1, and illustrate with an example.
Prove part (e) of Theorem 3.1.1. Illustrate with an example.
Prove part (f) of Theorem 3.1.1. Also illustrate with an example.
Prove part (h) of Theorem 3.1.1, and illustrate with an example.

State the commutative, associative, and distributive laws in your own
words.

3.2 VECTOR SPACES

The structure of euclidean space (as outlined in Theorem 3.1.1) is important
for other “spaces” used in applied mathematics. For example, consider the
mass-spring arrangement in Fig. 3.2.1a. If the body of mass m is displaced
from rest position and released or pushed, oscillatory motion results. If this is
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done in the absence of external forces and friction is ignored, the displacement
y(t) of the body from rest is given by

y(t) = C) coswt + Cy sin wt

where w = y/k/m with k being the spring constant. Constants C; and Cj
are determined by how far the body is started from rest and how fast and in
what direction it is pushed initially. The set of functions

V = {fIf(t) = Cicoswt + Cosinwt, Cy € R,C; € R}

along with the usual definition (from calculus) of addition of functions and
multiplication of a function by a constant turns out to have the properties
of E™ outlined in Sec. 3.1.

Because there are many important structures with the properties of euclid-
ean spaces, we put them all under the umbrella concept of vector space.

Definition 3.2.1. A real vector space consists of the following.

(a) A set V of objects. These objects are called vectors even though they
may be functions or matrices in a specific case.

(b) An operation denoted by + which associates with each pair of vectors
v,w in V a vector v+ w in V| called the sum of v and w.

(c) An operation called scalar multiplication which associates with each
real number r and vector v in V' a vector rv in V that is called the
product of r and v.

The operations must be defined in such a way that

1. Addition is commutative: v +w = w + V.

2. Addition is associative: v+ (w +u) = (y + w) + u.} v,w,uin V

3. There exists a zero vector € in V such that u 4+ 6 = u for all vectors u
in V. Vector 6 is called an additive identity.

4. For each vector v in V there exists an additive inverse —v in V such
that v 4+ (—v) = 6.

5. (rs)v =r(sv)
(r+s)v=rv+sv srseR
7.r(V+w)=rv+rw

o
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8. 1v =v for every vin V.

It is important that a real vector space consist of the set of vectors and
the two operations with certain properties. The same set of vectors with
different operations may not satisfy the required properties.

Note that the properties which we derived for E™ have become the defin-
ing properties, or axioms, for a vector space. The reason that this works
well is that E™, although a specific example, possesses the important qualities
for generalization. This happens often in applied mathematics: A specific
problem leads to a specific solution—yet the solution actually solves many
more problems when it is seen in a larger context.

To show that an object is a vector space, we must show that closure
for both operations holds [parts (b) and (c) of the definition] and that
properties 1 through 8 hold. Altogether these 10 properties are called the
axioms for a real vector space. To show that an object is not a vector
space, we need only show that 1 of the 10 axioms fails to hold.

Example 1. Is the set of ordered pairs V' = {(z1,22)|z1 € R,z2 € R} a
vector space?

Solution Until operations of vector addition and scalar multiplication are
specified, we cannot test for vector space structure. Therefore, we do not
have a vector space.

Example 2. Now E” is a vector space, because the definitions of the oper-
ations imply closure and Theorem 3.1.1 shows that properties 1 to 8 hold.

At this point, we recall that in E™ only the vector (0,0,...,0) had the
property of being an additive identity. Also, given (z1,...,z,) in E", only
(—z1,...,—x,) is an additive inverse. In general, this uniqueness holds in
any vector space.

Theorem 3.2.1. Let V' be a vector space.
(a) There ezists only one additive identity in V.
(b) Given x in V| there is only additive inverse of x in V.

Proof. (a) Let 6; and 0y be additive identities for V. We will show that they
are equal. By the additive-identity axiom

01+ 0, =64
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However,

€1+92:92+61:€2
/ AN

Commutativity Additive-identity axiom

Therefore 8, = 6, + 0y = 0.
(b) Let x bein V. Let w and u be additive inverses. We will show that
w = u. We have
x+w=0=x+u

By commutativity, w + x = u + x, and upon adding w to both sides of this
last equation, we have

(WH+x)+w=(u+x)+W

Finally, by associativity

w+(x+w)=u+ (x+w)
w+b0=u+0

w=u
(|

Example 3. Let V = M,,, = {m x n matrices with real entries}, let vector
addition be the addition of matrices, and let scalar multiplication be the
multiplication of matrices by scalars. Is V' with these operations a vector
space?

Solution From our work with matrices we know that closure, commutativ-
ity, associativity, and distributivity hold. The additive identity is the m x n
matrix with all entries zero. The additive inverse of A, xy is —Auxn. Clearly
1Axn = Amxn. Therefore this is a vector space.

Example 4. Let P, = {polynomials f(z) = axx®+a;z+ag, where ag, a;,as €
R}, and define addition and scalar multiplication as follows:

(a) Addition. Let f(z) = aox®+ a1z + ag and g(z) = bez* + bz +by. Then
define
(f +9)(x) = (az + b2)x” + (a1 + b1)z + (ao + bo)
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(b) Scalar multiplication. Let r € R, f(z) = asx® + a7 + ag. Define
(rf)(x) = (mg)xQ + (rai)x + (rap)
Show that Py is a vector space.

Solution Closure follows easily from the definitions since the right-hand
sides of the equations in (a) and (b) are polynomials of degree < 2. For
commutativity

(f + 9)(x) = (a2 + b2)x* + (a1 + b))z + (ag + bo)
= (by + ag)z® 4 (b1 + ay)x + (bo + ao)
=(g+ f)(z)

Associativity follows similarly. The @ is 0z? + 0x + 0, which is the function
f(z) = 0. The additive inverse —f is simply —as2? — a12 — ag. The other
axioms are easily verified.

Example 5. Let P, = {polynomials f(z) = ap,2™ + ap_12™" 1 ++ -+ asx® +
a1x + ao} with operations defined by [let g(z) = bpa™ + -+ + biz + by and
r € R|

(f+9)(z) = (an+by)z" + -+ (a1 + b1)x + (ap + by)
(rf)(z) = (ra,)z" + -+ (ray)z + (rap)

So P, is a real vector space.

As we see more examples of vector spaces, we will be led to theorems
about their structure. Theorems are formed by considering examples. For
instance, in calculus after showing

d , 3 2
—x° =2z —x” =3z
dx dx
by using the definition of derivative, we can guess that
d 4 3
—x" =4z
dx

and so on until we formulate the theorem:

_xn — nxnfl
dx

In proving theorems we can use axioms, previous theorems, and facts from
earlier mathematics courses.

n > 1,n an integer
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Example 6. In E”, M,,,,, and P,,, what is the result of multiplying a vector
by the scalar » = 07 State a possible theorem.

Solution In E",
0(z1,...,2,) = (0xq,...,0x,) = (0,0,...,0) =46

In My,

And in P,
O(apx" 4+ -+ ax+ag) =0x"+---+0x+0=120

A possible theorem is: If V' is a vector space and x € V, then 0x = 6.
The guess in the solution to Example 6 is actually correct.

Theorem 3.2.2. IfV is a real vector space and x € V', then 0x = 6.

Proof.
0x = (0 + 0)x = 0x + Ox
6 = 0x + [—(0x)] = (0x + 0x) + [—(0x)]
= 0x + {0x + [—(0x)]}
=0x+0
= 0x
Therefore, § = 0x. ([l

Example 7. This is an important example because it shows that vector
addition need not be related to ordinary addition and the zero vector 6 need
not involve the real number 0. Let V' = {z|z € R,z > 0}. Define addition
and scalar multiplication as follows:

Addition. For z € V,y € V, define

rby= xy
——
/ /

Vector sum Ordinary
multiplication
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Multiplication. For r € R,z € V, define

rOor=_x
— =

N
Scalar/ Ordinary
multiplication exponentiation
Show that V with these operations is a vector space. We have used @& and ©®
to denote the vector space operations, to distinguish them from the ordinary

operations in the solution.

Solution Before showing that V' with these operations is a vector space, we
look at some specific vector sums and scalar multiples. First, note that the
vectors are just positive real numbers. So, for addition we have

203=2-3=6

AN
Vector Frorq .
sum definition
496=24 10610 =100
203=3"=9 -203=37%=3
Scalar From
Vector definition

Now to show that we have a vector space, we must show that all the
properties of the definition are satisfied.

Closure of addition. Let x € V,y € V. Then x & y = zy. Since x
and y are positive real numbers and the product of positive real numbers is
a positive real number, zy € V. Therefore, x & y € V, and we have closure
for addition.

Closure for scalar multiplication. Let r € R and x € V. Then
r ®x = x". Since x is a positive real number, any real power of it is also a
positive real number. Therefore r © x € V', and we have closure for addition.

1. Commutativity for addition. Let z € V,y € V. Then
ThY=zy=yr=y>ox

By definition / T \ By definition

By commutativity
of multiplication
for real numbers

Therefore @y =y @ .
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2. Associativity for addition. Let x € V,y € V, 2 € V. Then

(zoy)©z=(zy) 2= (2y)z =2(y2z) =20 (y2) =@ (Y ® 2)

I I

By definition / T By definition T
Associativity

for multiplication
of real numbers

3. Additive identity. To determine 6, we ask for the equation
r®l=c

to hold. The left-hand side is z6 by definition of &. Therefore, 6 = 1.
That is, the positive real number 1 is the only additive identity or
“zero” for this space. That is,

rdl==x

4. Additive inverse. For any xz € V,—z must satisfy z & (—z) = 6.
Now we must be very careful: —z is not “minus z”; it is the symbol
for additive inverse, and # is not the real number zero, it is 1. So the
equation is

By definition From 3 above

z-(—z)=1

Therefore the unique solution for —z is (—z) = 1/z. Since z > 0, we
know that 1/x > 0, so —x € V.

5. Associative law for scalar multiplication. Letr e R,s e R,x € V.
Then

(rs)@z=2" and reO(s@z)=ro(z°)=(z°)"

By laws of exponents, (z°)" = z°" = z"°. Therefore, (rs)©x =r® (s®
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6,7. Distributive laws. Let r e R,s € R,z € V,y € V. Then
(r+s)or=0=0"2"=20"92°=(roz)® (sO)

By definition = Properties Definition By definition
of scalar of exponents of addition of scalar
multiplication multiplication

rOEoy)=ro(y) =(ry) =2y =2"0y =(roz)d(roy)

8. Letz€V. Thenl®zx =z =2.
Therefore, V' with the operations as defined is a vector space.

Example 8. Let V = {z|z € R,z > 0}, and define addition and scalar
multiplication as follows:

1. Addition. Let x € V,y € V. Define

rT+y=x+y
/ AN

Vector Ordinary addition
addition of real numbers

2. Scalar multiplication. Let r € R,z € V. Define

re =Tr-o—

AN

Ordinary multiplication

Show that V' is not a vector space .

Solution To show that the structure is not a vector space, all we have to
show is that at least one of the axioms fails to hold true. In this case closure
for scalar multiplication fails to hold since if r < 0, rz =r-z < Oandrz ¢ V.
Again we see that the truth of the axioms depends on the set V' and the
operations.

Example 9. Regarding the mass spring apparatus in Fig. 3.2.1 and the
related discussion,

V ={f|f(t) = c1 coswt + casinwt, t € R}

with the usual definition of addition of functions and multiplication of func-
tions is a vector space.
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Solution Closure. Let f(t) = ¢ coswt + cosinwt and g(t) = c3 coswt +
ca sin wt. We have

(f+9)(t) = (c1 + c3)(coswt) + (c2 + c4)(sinwt)
(rf)(t) = req coswt + regsinwt

which are in V. Commutative and associative properties hold. The zero
vector is 0 coswt + Osinwt, which is the identically zero function. The
additive inverse of f is

—c1 coswt — ey sinwt

The other properties are left to the reader.

Complex Vector Spaces If in the definition of real vector space we replace
real numbers by complex numbers, we have the notion of a complex vector
space. The complex vector spaces we use most often in this text are C” and
Cmn, which are defined below.

Definition 3.2.2. Vector space C” is the complex vector space consisting of

n-tuples (21, 22, . .. , z,) of complex numbers with the operations
(21,0 y2n) + (W1, .oy wy) = (21 Fwry ooy 20+ Wy)
c(z1,y. ..y 2n) = (c21,... ,C2p)
where (wy,... ,w,) is a complex n-tuple and ¢ is any complex number.

Definition 3.2.3. C,,, is the complex vector space of m X n matrices with
complex number entries along with the standard matrix operations of addi-
tion and scalar multiplication.

The zero vectors for C™ and C,,, are, respectively, the same as the zero
vectors for £ and M,,,, as can be verified directly.

In the remainder of the text, the term vector space will mean the real
vector space unless we are working specifically with a complex vector space.
When you are working with complex vector spaces, it is important to remem-
ber that the vectors can be constructed by using complex numbers and that
the scalars for scalar multiplication can be any complex number.

Example 10. Let V' = {hermitian n X n matrices}, and give V' the usual
matrix operations. Is V' a vector space?
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Solution Since there is no restriction on the entries of the matrices, we are
checking to see whether V' with these operations is a complex vector space.
Recall that the main-diagonal entries of a hermitian matrix are real numbers.
Thus, in general, if A is hermitian, the scalar multiple ¢A is not hermitian.
Therefore V' is not closed under scalar multiplication and is not a vector
space.

Problems 3.2

In Probs. 1 to 20, a set V' and operations of scalar multiplication and vector
addition are given. Determine whether V' is a vector space. If V fails to be
a vector space, state an axiom which fails to hold. In a given problem, if the
objects in V' can be constructed by using complex numbers, the problem is
to determine whether V' is a complex vector space.

1. Let V' = {ordered triples (z1,22,0); 21,2z € R}, the operations as in
E3.

2. Let V = {ordered triples (z1,x2,1);x1,22 € R}, the operations as in
3.

3. Let V = {ordered pairs (z1, z2); 1, 22 € R} with the operations (z1, z2)+
(Y1, 92) = (z1 + Y1, Y2 + x2) and r(x1, 2) = (ra, 722).

4. Let V = {ordered pairs (1, 22); 21, £2 € R} with the operations (z1, x2)+
(y1,92) = (1 + y1, 22 + y2) and r(z1, 22) = (rz1, T2).

5. Let V = R, and let the operations be the standard addition and mul-
tiplication in R.

6. Let V = {n x n matrices with positive entries} with the usual matrix
operations. (Entries must be real to be compared to zero.)

7. Let V = {n X n real symmetric matrices} with the usual matrix oper-
ations.

8. Let V = {n x n real skew-symmetric matrices} with the usual matrix
operations.

9. Let V = {n x n upper triangular matrices} with the usual matrix
operations.
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Let V = {n x n diagonal matrices} with the usual matrix operations.

Let V' = {functions defined for all z in R with f(0) = 0} with opera-
tions (f + g)(z) = f(x) + g(z) and (rf)(z) = r[f(z)].

Let V' = {functions defined for all = with f(0) = 1} with operations as
in Prob. 11.

Let V' = {nxn nonsingular matrices} with the usual matrix operations.
Let V = {n x n singular matrices} with the usual matrix operations.

Let V' = {n x n nilpotent matrices} with the usual matrix operations.
Let V' = {nxn idempotent matrices} with the usual matrix operations.

Let V = {n x n matrices A with A? = I} with the usual matrix
operations.

Let V' = {real-valued functions defined on R with f(z) > 0, for all z}
with the usual operations.

Let V be as in Prob. 18, but give V' the operations (f+g¢)(z) = f(9)g(z)
and (rf)(x) = [f(z)]", for r a real number.

Let V' = {n X n matrices with sum of main diagonal entries equal to
zero} with the usual matrix operations.

Let C be a fixed n x n matrix. Let V = {A,«, such that AC = 0}.
Given the usual matrix operations, is V' a vector space?

Prove that in a real vector space V, rf = @ for all r € R. (Hint:
Mimic the proof of Theorem 3.2.2.)

Prove that in a real vector space V, (—1)x = —x for all z € V. (Hint:
Mimic the proof of Theorem 3.2.2.)

Prove that in a real vector space V,if x € V, r € R, and rx = 6 then
x=~60orr=0.
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25. Let V = {Z} (a set consisting of one element) and define

Z+7Z =7
r/ =/ Forallr e R

Is V' a real vector space?

26. Work Prob. 25 with the second operation being ¢Z = Z for all ¢ € C.
Is V' a complex vector space? (Check the vector space axioms.)

27. In the list of properties of vector space operations, could 3 and 4 be
reversed in order? Explain.

28. Let V. = {(zy,z0)|x1 + 22 = 1, 0 < 27 < 1,0 < 29 < 1} with the
operations (z1,22) + (y1,y2) = (3(x1 4 11), 3(22 + y2)) and r(z1, 22) =
(x1,22). Are the closure axioms satisfied? Is V' a real vector space?

3.3 THE SUBSPACE PROBLEM

Certain applications involve the use of subsets of vector spaces which are
vector spaces also. We will see an example from coding theory at the end of
the section. Another example is the set S,, of all n X n symmetric matrices
(used in least squares problems; see App III) with the usual matrix operations
which is a subset of M,,,. S, is a vector space (Prob. 7 of Sec. 3.2). In this
case we say that S, is a subspace of M,,,.

Definition 3.3.1. Let V be a real or complex vector space, and let W be
a subset of V' with W inheriting the operations of V. We say that W is a
subspace of V if W with the inherited operations is a vector space.

Given a subset of a real or complex vector space, we often need to know
whether the subset is a subspace. Thus we have the following.

Subspace problem.
Given a subset W of a vector space V', with W having the same
operations as V', determine whether W is a subspace of V.

Example 1. Let V = E3 and let W = {x € E°|x = (21, 22,0)}. Solve the
subspace problem for W and V.
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Solution By its definition W is a subset of V; we must determine whether
W with the operations inherited from E? is a vector space.

Closure. Let r € R,x € W,y € W. We check to see whether x +y € W
and rx € W. We have

X +y = (21,22,0) + (y1,¥2,0) = (1 + y1, 2 + Y2, 0)
Since the third component is 0, x +y € W. For the scalar multiplication
rX = (rey, ree,70) = (ray, ras,0)
and since the third component is 0, rx € W.

1. Community of addition. Let x € W,y € W. Then

x+y=(r1+y1,22+9,0) = (y1 + 21,9 +22,0) = y +x

2. Associativity of addition. This is similar to 1; see the problems.

3. Existence of zero. We let x € W and see whether there is any vector
in W which acts as an additive identity. Because (0,0,0) € W (the
last component is zero) and x + (0,0,0) = x, 6 = (0,0,0) acts as zero
for W.

4. Additive inverse. Let x = (z1,x2,0). Since (—z1, —22,0) is also in
W and
(l‘l, Ta, 0) + (—131, —XT2, 0) = (0, 0, 0) =0

we know that —x = (—x, —x2,0) is in W.
5-8. These are straightforward and left to the problems.

A close examination of Example 1 shows that most axioms actually are
true by “inheritance.” For example, in showing x +y = y + x, the fact that
x and y were in W was not important; since they were in V' and commuta-
tivity holds for all x and y in V', commutativity holds in any subset of V.
Thus it is the properties of closure and the existence of zero and additive
inverse in W that must be checked. However, we can show that closure leads
to the existence of zero and an additive inverse in W.

Theorem 3.3.1. Let V' be a real vector space and W a nonempty subset of
V. Then W is a subspace of V if and only if (1) x,y in W implies x +y is
in Wand (2) r in R and x in W implies rx is in W.
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This theorem contains the solution to the subspace problem. It is em-
phasized that the theorem holds for complex vector spaces with R replaced
by C. Before proving this theorem, we give some examples.

Example 2. Let V = E3 and W = {x|x = a(1,0,2) + b(1, —1,3)}, where a
and b can be any real numbers. Is W a subspace of V7

Solution Let x € W,y € W, and consider x +y. We have

x+y=(a(1,0,2) +b(1,-1,3)) + (c(1,0,2) + d(1,—1, 3))
=a(1,0,2) +b(1,-1,3) +¢(1,0,2) + d(1,-1,3)
=(a+¢)(1,0,2)+ (b+d)(1,-1,3)

Hence x + y is in the form of an element of W; that is, x + y € W. Consider
now rx = r(a(1,0,2)+b(1,-1,3)) = ra(1,0,2)+7rb(1,—1,3). Thus rx € W,
and W is a subspace by Theorem 3.3.1.

Example 3. Let V = E? and W = {x|x = (21, 2,1)}, and consider x +y.
Now
X+y= (x17$27 1) + (y17y27 1) = (371 + Y1, To +?Jz»2)

The last component of x + y is not equal to 1. Therefore x +y ¢ W, and
so W is not a subspace of V.

Example 4. Let V = C,,, and let W = {n X n hermitian matrices}. Is W a
subspace of V7

Solution From the solution of Example 10 of Sec. 3.2. We know that if A
is hermitian, then 7A need not be hermitian. For example,

1 i
A:(—i 2)
. i —1
ZA_(l 2@)

is not hermitian. Therefore, W is not closed under scalar multiplication and
is not a subspace of Cy,.

is hermitian, but

Proof of Theorem 3.3.1. This is an “if and only if” theorem: p holds if and
only if ¢ holds. To prove it, we must prove two things:
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1. If p holds, then ¢ holds.
2. If ¢ holds, then p holds.

Part 1. If W is a subspace, then x +y € W and rx € W for all r € R,
xeW,yeW.

If W is a subspace of V', then W is a vector space and all axioms hold.
In particular, closure holds. Therefore rx € W by closure for scalar multi-
plication, and x +y € W by closure for vector addition.

Part 2. f x+yeWandrx e Wforallr e R, x € W,y € W, then
W is a subspace of V.

We must check all the vector space axioms for W, keeping in mind the
hypothesis that x +y € W and rx € W forallr e R, x € W,y € W.
As we have mentioned, all axioms except closure, zero, and additive inverse
follow by the heredity. The closure is just restatement of our hypothesis for
this part of the theorem. Now let x € W and r = —1. Then by hypothesis
(—)xeW,so (—1)x+x € W. But

(—Dx+x=(—-1)x+1x

= (—1 + 1)X (Distributive law)
=0x
=0 (Theorem 3.2.2)

Therefore § € W. (We note that Theorem 3.2.2 holds for all of V' so we can
apply it to W.)

To show additive inverses are in W, let x € W and r = —1. We have
(=1)x € W and

X+ (-Dx=[1+(-Dx=0x=0cW
Therefore, additive inverses are in W. Il

Example 5. Let V' be any vector space. Then V itself is a subspace.

Example 6. Let V' be any vector space, and W = {f}. Then W is a
subspace because 8 = 6, § + 0 = 0, for r real or complex.

Because any vector space V has V and {0} as subspaces, these are called
the trivial subspaces of V. All other subspaces of V' are called proper
subspaces, or nontrivial subspaces, of V.



3.3. THE SUBSPACE PROBLEM 191

Example 7. For the real case: Let x = aju+ a2z, and y = byu + byz, so
that x and y are in V. Let W = {x|x = ¢ju + c2z, where ¢; and ¢, can be
any real (complex) numbers}. Show that W is a subspace of V.

Solution For the real case: Let x = aju + asz, and y = bju + bz, so
that x and y are in W. Consider x + y:
X+y= (a1+b1) u+ (a2~|—b2) zeW
N—— N——

Real numbers Real numbers

Closure for scalar multiplication is similar. By Theorem 3.3.1, W is a sub-
space of V.

Example 8. Let V = {z € C?|z has purely imaginary components}. Now
V is not a subspace of C? because i(i,i) = (—1, —1) which is not in V.

Example 9. Let V = My, and W = {invertible 2 x 2 matrices}. Determine
whether W is a subspace of Mas.

Solution 1 If W were to be a subspace, 6 would have to be in W. But

=6 o)

is not invertible and cannot be in W. So W is not a subspace.

Solution 2 Let f
a b e
X = (c d) and y = (g h)

be invertible, and consider x +y. Now

_f(a+e b+ f
X+y_<c+g d+h>

which is invertible if and only if its determinant is nonzero, that is, if and
only if
(a+e)(d+h)—(c+g)b+f)#0
ad+de+ah+eh —bc—gb—cf —gf #0
(ad — bc) +(de + ah — gb — cf) + (ef — gh) #0
#0 #0

It is not clear that the sum on the left-hand side should be nonzero. This
solution shows that testing x + y may be tedious. The first solution is prefer-
able in this case.
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Example 10. Let A € M,,,. Show that the set W (C M,,;) of all solutions
t0 AnxnXnx1 = Opx1 is a subspace of M,,;.

Solution Let U,x; and V,y; be solutions of the homogeneous equation
ApxnXnxi = Onxi1. To check the closures, let r € R and calculate

AU+V) =AU+ AV =0+0=0
A(rU) =rAU =r0 =0

Therefore U + V and rU are solutions in W; W is a subspace.

Example 11. Let W be the subset of C,,, defined by W = {Z|7 =7} Is
W a subspace of Cp,,,? (Note that W is not W,,, because our “scalars” for
scalar multiplication come from C now.)

Solution First we check for closure of addition. Let Y and Z be in W. We
have

Y+Z=Y+Z=Y+7Z

T

Previous
property

Y, ZeW

so W is closed under addition. Now check multiplication by letting ¢ € C and
Z € W; we must see whether ¢Z = c¢Z. However c¢Z = ¢Z = ¢Z. Because
¢ # c unless c is real, closure of multiplication fails and W is not a subspace.

Table 3.3.1

ADDITION AND MULTIPLICATION

FOR F ={0,1}
+10]1 -10]1
01011 0(0]0
11110 1101

The idea of subspace has important applications. In fact, subspaces are
used to define certain concepts in coding theory.
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Example 12. (Linear codes) This example is of an unusual vector space
for which subspaces have applications in coding theory. First, consider F' =
{0,1} with the operations of multiplication and addition defined as in R
except that we define 1+ 1 = 0 (see Table 3.3.1). The set F' along with these
operations is called a commutative field. This just means that it enjoys
the properties of the real number system. For the vector space let F™ be the
set of n-tuples of elements of F' with operations

(CLl,... ,an)—i—(bl,... ,bn):(a1+bl,... ,CLn—i-bn)
r(ay,...,a,) = (ray,... ,ray,)

Note that ag, b, and r can be only 0 or 1. F™ with these operations is a
vector space. How is it used in coding theory? Well, in this case we have
what is called a binary channel because the components of the vectors in
F™ can be chosen from a set of only two symbols. A subset of F™ is called a
linear code if and only if it is a subspace of F™. For example, F* contains
eight possible vectors. The subset V' = {(0,0,0),(1,0,0)} is a linear code
because we have closure: we can just check all possible sums and scalar
products. Note that (1,0,0) + (1,0,0) = (0,0, 0).

Problems 3.3

In Probs. 1 to 14, a vector space V' and subset W are given. Determined
whether W is a subspace.

1. V= Mpn, W = {z € M, with nonnegative entries}
2. V = My, W = {symmetric n x n matrices}

3. (Define the trace of an n x n matrix A as tr A = ay; +ax+ -+ apy.)
Let V = M,,, and W = {A € M,,, with tr A =0}

4.V = B3 W = {(x1, 32, 3)|ax; + bxy + cxz = 0, where a, b, ¢ are fixed
numbers }

5. V. = May, W = {noninvertible matrices}
6. V= EQ, W = {(1‘171’2”1‘12 + 1'22 = 1}

TV = Mun, W = {A € My,|A=—AT}
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V = E3 W = {x € E3|x is perpendicular to (a,b,c)}
V' = Cpn, W = {n x n matrices with real entries}

V = C", W = {n-tuples with real entries}
V=P W = {f in P,lf(0) =0}

V=P, W={finP,|f(0)0 # 0}

V=P, W={fin P,|f(1) =0}

V=P, W={finP,|f(1) # 0}

Consider the system of equations AX = 0, where A is in Cp,. Show
that the set of all solutions of AX = 0 is a vector space under the usual
operations.

If B,x1 # 0 in the system of equations AX = B, where A is n x n show
that the set of solutions cannot be a vector space, given the standard
matrix operations.

Let A and B be square matrices. Show that tr(A+ B) =tr A+ tr B,
tr(rA) = r(tr A), tr(AB) = tr(BA). (See Prob. 3 for the definition of
tr A.)

Using the terminology of Example 12, show that
Vv ={(0,0,0,0),(1,1,0,1),(1,0,0,1),(0,1,0,0)}
is a linear code.

Let V = E?, which can be associated with the plane. Show that W =
{(x1,x9)|z2 = mx;} is a subspace of V. Show that U = {(x122)|xs =
maz1 + b,b # 0} is not a subspace of V. This shows that if a straight
line is to represent a subspace of the plane, the line must pass through
the origin.

Let V = E3. Show that W = {(x1, s, z3)|ax; + bxy + cx3 = d} is a
subspace of V' if and only if d = 0. This shows that if a plane is to
represent a subspace of three-space, it must pass through the origin.
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21. Let V = E3. Show that W = {(z1, 2o, 23)|71 = at = ky, x5 = bt + ko,
x3 = ct+ ks, t real} is a proper subspace of V' if and only if there exists
T such that a4+ k1 = b1 + ks = &I+ ks = 0. This shows that a
line represents a subspace of three-space if and only if the line passes
through the origin.

22. Fill in the details for the solution of Example 1.

3.4 LINEARLY INDEPENDENT SETS OF
VECTORS

The equation = + 2y — z = 0 has general solution (z,y,2) = (s — 2r,1, s),
where r and s are any numbers. Any solution can be written in terms of the
vectors (1,0,1) and (—2,1,0) from E® as

(s —2r,rs)=s(1,0,1) +r(—2,1,0)

That is, an infinite number of solutions can be constructed in terms of just
two vectors, and analysis of the solutions can be performed by considering
just these two vectors. To use similar methods of analysis in vector spaces,
we will need the concepts of span and linear independence of sets of vectors.
Both concepts involve linear combinations of vectors.

Definition 3.4.1. Let v{,va, ..., Vv, be vectors in a vector space V. A lin-
ear combination of the vectors vi,vs, ..., Vv, is any sum of the form

C1V1+ vy + - -+ ¢V

where the numbers ¢y, cs, ... , ¢, are called the coefficient of the linear com-
bination.

Example 1. Write five linear combinations of the vectors (1, —1), (1,2), and
(3,0) in E2.

Solution Five possibilities are

0(1, 1) + 0(1,2) + 0(3,0) = (0,0)
3(1,—1) — 1(1,2) + 7(3,0) = (23, —5)
1(1,—1) + 0(1,2) + 0(3,0) = (1, —1)
2(1,—1) + 1(1,2) + 5(3,0) = (18,0)
2(1,—1) + 1(1,2) — 1(3,0) = (0, 0)



196 CHAPTER 3. VECTOR SPACES

Note that the first and last linear combinations yield the same vector (0,0),
even though the coefficients are not the same. The last four linear combina-
tions are called nontrivial because in each at least one coefficient is nonzero.

Example 2. Write (7, —2,2) in E? as a linear combination of (1, —1,0), (0,1, 1),
and (2,0,1).

Solution We want to find ¢y, ¢o, ¢c3 so that

(7,—-2,2) = ¢1(1,—-1,0) + ¢2(0,1,1) + ¢3(2,0,1)
or

(7,—2,2) = (c1 + 2¢3, —¢1 + €2, 2 + ¢3)
which yields equations

7= c1 + 203

—2=-c+ac
2= Co + c3
The solution is ¢; = 1,0 = —1,¢3 = 3, so

(7,—-2,2) = (1,-1,0) — (0,1,1) + 3(2,0,1)

Example 3. Can (3,—1,4) be written as a linear combination of (1, —1,0),
(0,1,1), and (3,—5,—2)7

Solution We check to see whether the equation
(3,—1,4) = ¢1(1,-1,0) + ¢2(0,1,1) 4+ ¢3(3, =5, —2)
has a solution. This is equivalent to

3= ¢ + 3c3
-1 = —C1 + ¢y —563

4 = 62—263

In reduced form this is

and there is no solution. Hence (3,—1,4) cannot be written as a linear
combination of the given vectors.
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Definition 3.4.2. Let {vq,va,...,Vv,} be aset of vectors in the vector space
V. The span of {vy,va,...,v,} is the set of all possible linear combinations
of vi, vy, ... ,v,. The notation is span {vy,va,... ,v,}.

The span of a set of vectors from V' is actually a subspace of V.

Theorem 3.4.1. If S = {vy,va,... ,vp,} CV with V a vector space, then
span S is a subspace of V.

Proof. Let x and y be in span §. Then x and y are linear combinations:

X=aVy+- -+ a,vy,

y:b1V1+"'+ann

Now
x+y= (a1 +b)vi+--+(a,+b,)vy,

and
rx = (ra;)vi + -+ (ray)vn 7 a scalar!

which are also in span §. Therefore, span S is a subspace of V. It is called
the subspace of V' spanned by S. ([l

Example 4. Example 2 could have been worded as follows: Show that
(7,—2,2) is in span {(1,—1,0), (0,1,1), (2,0,1)}. The solution would be
exactly the same.

Example 5. Example 3 could have been worded as follows: Is (3,—1,4)
in span {(1,—1,0), (0,1,1), (3,—5,—2)}7 The solution would be exactly
the same. The answer is that (3,—1,4) is not in span {(1,—1,0) (0,1,1),
(3,—5,—-2)}.

Example 6. We have already seen that the solutions of x + 2y — z = 0 can
be written as
s(1,0,1) +r(—2,1,0)

for all complex s and r. Another way to say this is that all solutions form
the subspace span {(1,0,1),(—2,1,0)}.

In some instances span S may be all of V.

IThe statement of the theorem is for any vector space. In the real case the scalars
would come from R; in the complex case, from C.
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Example 7. Let S = {1, x, 2%}, which is a set of vectors in P;. Then span
S ={apl+ajz+ asx?, where ag, a1, as can be any real numbers}. Thus span

S = Po.

Example 8. Let S = {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)} C E*.
Span S is all £*, since span S is all vectors of the form

.’L‘l(l, O, O, 0) + CCQ(O, 1, 0, O) + .’Eg(o, O, 1, 0) + 564(0, 0, O, 1) = (561, T3, 564)
where x1, x5, 3, and x4 can be any real numbers.
Example 9. Show the span {(1,0,1),(—1,2,3),(0,1,—1)} is all of E3.

Solution We must show that any vector (a,b,c) in E® can be written as a
linear combination of the three given vectors. That is, we must show that
there are constants ¢y, co, c3 so that

(CL, b? C) = 01(1707 1) + 62(_17273) + 03(07 17 _1)

regardless of what real values a, b, and c take. The last equation is equivalent
to

a=C — C
b= 2co + c3

CICl+3CQ—Cg

which has solutions

_5a~|—b~|—c _b+c—a _a—|—2b—c
B 6 n 6 B 3

Therefore (a,b,c) € span {(1,0,1),(—1,2,3),(0,1,—1)}, and the span is all
of E3.

&1 Co C3

Example 10. Determine whether span {(1,—1,0),(0,1,1),(3,=5,—2)}, is
all of F3.

Solution Let (a, b, ¢) be an arbitrary vector in £3. We want to know whether
it is possible to write

(a'a b: C) = 01(17 _]-7 0) + 02(07 17 1) + 03(37 _57 _2)
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The last equation is equivalent to

1 0 3|a
-1 1 -5]|b
01 —2|c¢
which reduces to
10 3 a
01 —2 a-+b
0 0 O|lc—a-—20

Therefore a solution exists only if ¢ — a — b = 0; but this places a restriction
on (a,b,c), and so the very first equation cannot be solved for an arbitrary
vector (a, b, c). Therefore the span of the given vectors is not all E3.

The question in Example 10 could have been asked in a slightly different
way.

Example 11. Describe span S, where S = {(1,—1,0),(0,1,1), (3,—=5,—2)}.
Solution Suppose (a,b,c) is in span S. Then the equation
(a,b,¢) = c1(1,—1,0) + c2(0,1,1) + ¢3(3,—5, —2)

must be solvable. Working as in Example 10, we conclude that ¢c—a —b = 0.
Thus span S = {(a, b, c)|c = a+b}. That is, the span of S is all vectors whose
third component is the sum of the first two components. So, for example,
(1,3,5) ¢ span S and (1, 3,4) € span S.

The vector space E? is spanned by S = {(1,0), (0,1)}. It is also spanned
by a larger set S’ = {(1,0),(0,1),(1,1)}. As we will see later, E? and
functions on E? can be analyzed by using spanning sets; hence for economy’s

sake, we want to be able to find the smallest possible spanning sets for vector
spaces. To do this, the idea of linear independence is required.

Definition 3.4.3. A set {vy,...,v,} of vectors in a vector space V is called
linearly independent if the only solution to the equation

v+ covo + -+ e vy, =0

iscp =cy=---=c¢, =0. If the set is not linearly independent, it is called
linearly dependent.
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To determine whether a set S = {vy,va,...,v,} is linearly independent
or linearly dependent, we need to find out about the solution of

avitceve+ -+ epvy, =10

If we find (by actually solving the resulting system or by any other technique)
that only the trivial solution ¢; = ¢y = -+ = ¢, = 0 exists, then S is linearly
independent. However, if one or more of the ¢;’s is nonzero, then the set S
is linearly dependent.

Example 12. Determine whether S = {(1,0),(0,1)} is linearly indepen-
dent.

Solution Consider
01(1, 0) + CQ(O, 1) =0= (0, 0)
This equation is equivalent to

(clv 62) = (07 O)

which has only ¢; = 0, co = 0 as a solution. Therefore, S is linearly indepen-
dent.

Example 13. Is S = {(1,0),(0,1),(1,—1)} linearly independent?
Solution Consider
c1(1,0) + ¢2(0,1) + ¢3(1,—-1) = 6 = (0,0)

which is equivalent to

c1+c3 = 0
Cy — C3 = 0
This system has solution c3 = k,c; = —k,co = k; if £ # 0, then we have

a nontrivial solution, and so S is not linearly independent—it is linearly
dependent.

Example 14. Determine whether S = {1 + z,z + 22,1 + 2%} is linearly
independent in Ps.
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Solution Consider
ci(14z) + co(w + 2°) + c3(1 + 2°) = 6 = 0 + Oz + 02

By collecting terms on the left-hand side, this equation can be rewritten
(c1+c3) + (e1+ )7 + (ca + e3)2® =0+ 0x + 02° = 0

From algebra we know that a polynomial is identically zero only when all the
coefficients are zero. So we have

C1 +03:0
1+ ¢ =0
CQ+63:0

which has only the trivial solution. Therefore, S is linearly independent.

Example 15. The set S = {6} is linearly dependent in any real or complex
vector space because ¢10 = # has nontrivial solution ¢; = 1.

Linear dependence of a set of two or more vectors means that at least one
of the vectors in the set can be written as a linear combination of the others.
Recall Example 13 and the set S = {(1,0),(0,1),(1,—1)}. In Fig. 3.4.1 we
have shown geometrically the dependence of the vectors in S. A general
statement of this situation is as follows:

Theorem 3.4.2. Let S = {vi,va,...,v,} be a set of at least two vectors
(n > 2) in a vector space V. Then S is linearly dependent if and only if one
of the vectors in S can be written as a linear combination of the rest.

Proof. (=) 1If Sislinearly dependent, then there are constants ¢, ca, . . . , ¢y,
some of which are nonzero, such that

v+ covo + -+ e vy, =0

Suppose ¢ (1 < k < n) is a nonzero coefficient in the linear combination.
Then

CkVE = —C1V1p — CVy — =+ — Cp,—1VEk—1 — Ck41VE41 — =" — Cp'Vp

and since ¢ # 0,

! Co Ck—1 Ck+1 Cn
Vik=—"V1i— —Vy— = —— Vi1 = Vi1 — "= —Vp

Ck Ck Ck Ck Ck
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Therefore, vy is a linear combination of the other vectors in S.
(<) Suppose vi = divi+davo+ -+ dp_1 Vi1 +dpp1 Vi 0+ dp V.
Then, adding (—1)vy to both sides, we have

0= divy+ oo+ (“1)Vi+ -+ dyvy
Because the coefficient of vy, is nonzero, the set S is linearly dependent [
Example 16. Show that
s {11 10 ~1 2
~1\0 3/’ 2 1)’ 6 9
is linearly dependent in Mqs. Write one of the vectors as a linear combination
of the others.

Solution Consider
Ly (10N (=12, (00
“Alo 3)72 21 )73 69)7"7\0 0
This equation is equivalent to

cp— cp— c3=0
c1 —2c3=0

2cy 4+ 6c3 =0
3c1+ co+9c3=0

which reduces to

1 -1 —1]0
0 3|0
0 0 0]o0
0 0 o0]o
Therefore ¢; = —2k,co = —3k,c3 = k is a solution, where k is arbitrary.

Thus the set S is linearly dependent. Choosing k& = 1, we have

2s) (1) (65)=00)
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and we can write

(-2 (h )l

Of course, we could also write

(3 ()
(103633 3)

Some Geometry of Spanning Sets in £? and E® The span of a single
nonzero vector is a line containing the origin. Span {v} is all multiples of v,
which is all position vectors in the same direction as v (see Fig. 3.4.2). The
terminal points of these vectors form the line with vector equation

r=tv+40

The span of two independent vectors is a plane containing the origin. To see
this in E®, let v and w be given by (a,b,c) and (d, e, f), respectively. The
plane containing v and w has normal vector v x w and vector equation

(vxw) (x—0,y—0,2—0)=0
If we calculate v x w and write the vector equation, we find
(bf —ce)x + (cd —af)y + (ae — bd)z =0

where (z,y, ) is a vector in the plane. However, if (z,y, 2) is to be a linear
combination of v and w, we must have

r =ca-+ ng
y=c1b+ coe

z=cic+ef

This system reduces to (a # 0)

1 d/a x/a
0 1 (ay — bz)(az — cd)
0 0 |(az—czx)(ae —bd)— (ay — bz)(af — cd)
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which has a solution if and only if
(az — cx)(ae — bd) — (ay — bx)(af —cd) =0

which holds if and only if the vector equation holds. So the span of two
independent vectors is the plane containing the vectors. See Fig. 3.4.3.

The span of three nonzero vectors in E? can be a line, a plane, or all of
E3, depending on the degree of dependence of the three vectors. If all three
are multiples of each other, we have only a line. If two of the vectors vy
and vy are independent but the entire set is linearly dependent, then vs is a
linear combination of v; and v, and vj3 lies in the plane defined by v; and
vy. That is, the vectors are coplanar. Lay three pencils on a tabletop with
erasers joined for a graphic example of coplanar vectors. If {vy,vg, v} is
linearly independent, then the span is all £3. This can be verified directly in
individual cases; to show it in general requires methods of the next section.

Linear combinations in complex vector spaces have important applica-
tions, as the next examples illustrate.

Example 17. The set of Pauli spin matrices, used in the study of electron
spin in quantum chemistry, is

{00 (00

Show that S is linearly independent in Cyy. Discuss the importance of the

independence.
Solution We consider the equation
00
00

0 1 0 —i 1 0
(o) (F ) e (o 1)

because the zero for Cyy is
00
00

just as for M. The matrix equation gives us

|
<>
|

63:0
C1—’iCQ =0
Cl+i02 =0

63:0
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which reduces to

1 —i 010
1 4 0|0
0O 0 1(0
And
1 —2 0
det|{ 1 i 0] =2#0
0 01

so we have only the trivial solution, and S is a linearly independent set. The
importance of the independence is that none of the matrices can be written
in terms of the others; so the study of electron spin by Pauli matrices cannot,
in general, be conducted with a proper subset of S.

Example 18. Let

s={(00)-(0 )0 )6

Show that S spans all Co5. Show that S is linearly independent. Note that
S is the set of Pauli spin matrices with I adjoined.

Solution Consider the equation

211 <12 —c 01 +e 0 —2 +e 1 0 +e 1 0
Z z2) A\l 0 2\ i 0 Lo —1 o 1
which is equivalent to

Z11 = C3 + 4
219 = C1 — iCQ
291 = €1 +iCo

299 = —Cc3+cy

which has solution ¢; = (2124 221)/2, ca = (221 — 212)/(21), ¢3 = (211 — 222) /2,
and ¢4 = (211 + 222)/2. Therefore S spans Cos. For the independence, note
that if 217 = 212 = 291 = 299 = 0, we have only the trivial solution.
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Problems 3.4

In Probs. 1 to 9, a set S of vectors in a vector space is given. (a) Describe
span S (see Example 11); (b) determine whether S is linearly independent;
and (c) if S is linearly dependent, write one vector as a linear combination
of the others.

1' S = {(17 270)7 (0737 2)} in E3
2. §= {17562} in PQ
3. 8 =1{(1,4,0),(0,1,9), (4, — 1,—-1)} in C°

5= 0) (0 1) (o)
5. 8 ={(1,1),(2,6),(7,12)} in E?

6. S =1{(1,0,2),(3,2,—7),(~1,-2,11)} in E3
7. 8 ={(1,-1,2),(0,0,0)} in E?

8. S={z+1,22—2,2—1,3} in P,

s {3 )6 ) ne

10. Which of the following sets of vectors span E??

(a) {(1,—1,1),(2 0,3),(3,=1,4)}
(b) {(0,0,0),(1,0,0), (1,1, )}
(c) {(1,0,0),(1,1,0), (1,1, )}
(d) {(1,-1,1),(1,0,1), (3, -1,2)}

11. Show that a set of two vectors from E® cannot span E3.

12. Write any three distinct vectors from E?. Show that they are linearly
dependent.

13. Show that, in general, any three vectors from E? must be linearly
dependent.
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Show that any set S of vectors which contains 6 is linearly dependent.

A polynomial is called even if its terms are constants and constants
times even powers of z. Show that span {1,z?} is all the even poly-
nomials in Ps.

A polynomial is called odd if its terms are only constants times odd
powers of . Show that span {z,z%} is all the odd polynomials in Ps.

{00 (6 )

is the set of real Pauli spin matrices used in the study of electron spin.
Show that span S is the set of all 2 x 2 symmetric matrices with trace
Z€ero.

The set

Let S be a linearly independent set of vectors from a vector space V.
Show that any subset of S is linearly independent.

Let S be a linearly dependent set of vectors from a vector space V.
Show that any set 7" with S C T is a linearly dependent set.

Matrices A and B are said to anticommute if AB = —BA. Show that
any pair of the Pauli spin matrices (see Example 17) anticommute.

The commutator of two square matrices of the same size is defined
to be AB — BA and is denoted [A, B]. Let

2 1 1 5
A—<1 _1> and B—(4 1)

Calculate [A, I],[A, B],[B, A, and [A, A].

For any square matrix A, what are [A, I], [A, A],[A, O], and [A, A?%]? If
A is invertible, what is [A, A7'|?

Show that A and B commute for multiplication if and only if the com-
mutator of A and B is 0.

Show, for n x n matrices A, B, and C and any scalar r, that

(a) [A,B+C]=[A,B]+[AC]
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(b) [rA, B = r[A, B] = [A,rB]

(c) [4,B] = =[B, 4]

(d) [A,[B,Cl + [B,[C, Al + [C, [A, Bl = 0
(e) [A,B|" = [B", A"]

(f) tr[A,B] =0

3.5 BASES OF VECTOR SPACES; THE
BASIS PROBLEM

The set of vectors S = {(1,1),(1,—1)} spans E?. That is, any vector in
E? is a linear combination of (1,1) and (1,—1). The set of vectors T =
{(1,1),(1,-1),(1,0)} also spans E2. Sets S and T differ in that S is linearly
independent while 7 is linearly dependent. This makes a difference in writing
a vector as a linear combination of vectors in the set. For example, writing
(2,4) in terms of the vectors in S, we have for the only possibility

(274) = 3(17 1) - 1(17 _1)
However, in terms of vectors from 7', we have several possibilities:

(2,4) = 3(1,1) — 1(1,—1) 4+ 0(1,0)
(2,4) = 0(1,1) — 4(1,—1) + 6(1,0)
(2,4) = 4(1,1) 4+ 0(1, —1) — 2(1,0)

Or, in general
(2,4)=(k+4)(1,1) + k(1,-1) 4+ (=2 — 2k)(1,0)

The point is: If a set S of vectors spans V' and S is linearly dependent,
then representation of a vector x in terms of vectors in S is not unique. If we
want uniqueness, the spanning set must also be linearly independent. Such
a set is called a basis for V. Bases are used in coding theory, as we see later
in this section.

Definition 3.5.1. A vector space V is said to be finitely generated if
there exists a finite set of vectors S = {vy,va,... ,v,} in V such that span
S = V. If the set S is also linearly independent, then S is called a basis for
V.

This definitions say the following
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A finite set is a basis of V if it (1) spans V and (2) is linearly
independent.

Example 1. S = {(1,2),(3,—1)} is a basis of E2.

Solution We must show that the set is linearly independent and spans EZ.
That is, we must show that

01(1, 2) + 02(3, —1) = (CL, b)
has a solution for any (a, b) and that
01(1, 2) + 02(3, —1) = (0, 0)

has only the solution ¢; = ¢ = 0. These equations, respectively, in aug-

mented form are
1 3la d 1 3|0
2 —1lp ) " 2 —110

Instead of solving both sets of equations separately, we solve both at once
by working with the doubly augmented matrix

1 3 0
2 -1 0

Doing this, we find that this matrix reduces to

a
a

Check linear
independence
with this part

A

~

=
HEE
—b+ 2a
0
7

N———

Check span
with this part

] )—‘}
i—lw\

We find for the span that co = (2a — b)/7,¢1 = (a + 3b)/7; for linear
independence we find that ¢; = ¢ = 0. Since S is linearly independent and
spans F?, it is a basis for F?.

In Example 1, the coefficients in the linear combination of basis elements
were unique for any given vector (a,b). This is true in general.
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Theorem 3.5.1. Let S = {vy,...,v,} be a basis for a vector space V. Let
v be in V. The coefficients in the representation

V=cCV]+- -+,
are unique.

Proof. Suppose we have two representations

v=aivyi+ - --+a,vy
v=>b0vi+- - +byvy,

for v; we will show that the coefficients are actually equal. To do this, form
v + (—Vv), which equals #, and combine terms to obtain

0 = (a1 —bl)Vl ++(an—bn)vn

Since S is a basis, it is a linearly independent set. Thus, the coefficients in
the last linear combination must all be zero. That is, a1 = by,... ,a, = b,,
and the original linear combinations are the same. O

Example 2. S = {(i,1+1),(2,1—1)} is a basis for C2.

Solution Proceeding as in Example 1, we form the doubly augmented matrix
and row-reduce:

1 2 |al|0 —iR1 1 -2t | —a1 |0
1+4 1—=4]b]0 1+¢ 1—42| b |0
—(14i)R1+R2 1 -2z —at 0
0 —14¢|b+ai—a|0

This system has a unique solution. Therefore, S' is linearly independent and
spans C?; it is a basis for C2.

Example 3. Show that the set S = {(1,2),(3,—1),(1,0)} is not a basis for
E?2.

Solution The set S is linearly dependent because, for example,
(17 2) + 2(37 _1) - 7(17 0) = (07 0)

So S cannot be a basis for EZ.
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Example 4. The zero vector space has no basis, because any subset contains
the zero vector and must be linearly dependent.

Example 4 shows that a vector space may fail to have a basis. We need
to decide whether a given vector space has a basis or not. Spanning sets of
vectors help us answer the question.

Theorem 3.5.2. If S = {vy,...,vn} is a set of nonzero vectors which
spans a subspace W of a vector space V', then some subset of S is a basis for
W. (Note: This means V itself, being a trivial subspace, has a basis if it is
spanned by S.)

Proof. 1f S is a linearly independent set, then by definition S is a basis for
W. If S is linearly dependent, then one of the vectors can be written as a
linear combination of the others. Suppose v, is such a vector (if not, shift
the vectors in S around and relabel so that this is true). We claim that
S"={v1,...,Vp_1} still spans W. To see this, let x be in W with

X=CVi+ +Cm1Vm-1+tCnVm

Now v,, =divi+ -+ dpn_1Vm_1, SO we can substitute this expression into
the former linear combination to obtain

X = (01 + Cmd1)V1 +--+ (Cmfl + Cmdmf1)me1

Thus S’ spans W. If S’ is linearly independent, S’ is a basis for W. If S’
is linearly dependent, one of the vectors in S’ is a linear combination of the
others. Now we argue as before. In this way we must arrive eventually at
a linearly independent set which spans W. (If we reduce to a set with a
single vector, that set is linearly independent because S was a set of nonzero
vectors.) The resulting set is a basis of W. O

Thus we have the following fundamental result:

Any finitely generated vector space, generated by a set of nonzero
vectors, has a basis.

Example 5. Let V' be the set of all polynomials with the usual operations.
The vector space V' is not finitely generated. In fact, if we take any finite
subset S of V, then there will be a term of maximum degree, say z”, in the
set. The polynomial 2P*! is not in span S, and S cannot span V.



212 CHAPTER 3. VECTOR SPACES

We are particularly interested in bases of finitely generated vector spaces.
Example 3 illustrated the fact that any set of three or more vectors from E?
cannot be a basis for 2. After all, these vectors would be coplanar and form
a linearly dependent set. A set of only one vector cannot be a basis for E?
because it spans only a line through the origin. Thus it appears that any basis
for £ must contain exactly two vectors. This follows from Theorem 3.5.3.

Theorem 3.5.3. If S = {vy,Va,... ,Vv,} is a basis for V, then (a) any set
of n+ 1 (or more) vectors is linearly dependent and therefore is not a basis
for V and (b) any set of n— 1 (or less) vectors fails to span V' and therefore
s not a basis for V.

This theorem means that the number of vectors in a basis is unique. If we
find a basis S for V and S has eight vectors in it, then every basis has eight
vectors in it. Because of this we can define the dimension of a vector space
V' to be the number of vectors in a basis for V. If a basis S has n vectors
in it, the dimension of V (dimV) is n, we write dimV = n, and we say
V' is finite-dimensional. More particularly, V' is called an n-dimensional
vector space when a basis for V has n vectors in it. Example 1 shows that
dim E? = 2. The dimension of the zero vector space is defined to be zero.

Proof. (a) Let T'= {wy,Wa,... , Wy, W,1}. That is, let T" contain exactly
n + 1 vectors. We will show that T" cannot be a basis by showing that T is
linearly dependent. To do this, we consider

C1W1 + CoWo + « - - + Cp, Wy, + Cnt1Wnpi1 = 0 (351)
Now each w;, can be written as
Wi = Q1pVi + a Vo + -+ apevy, kE=1,2,... ,n+1

since S spans V. Substituting this into the Eq. (3.5.1), we have

n+1 n+1 n

E CLWE = E Ckg ALV
k=1 k=1 =1
n n+1
:5 E ajrcr | v; =10
k=1

j=1
Since S is linearly independent

n+1

Zajkck:() forall j=1,... ,n
k=1
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That is,

ai1¢1 + a12¢2 + -+ - + A1 p41Cny1 = 0
a21C1 + A22C2 + -+ + A2 p41Cny1 = 0

Ap1CL + p2C2 + *+* + ppy1Cry1 = 0

This last homogeneous system has fewer equations than unknowns; so
there exists a nontrivial solution for ¢y, co, ... , ¢,y 1. This means that T is
linearly dependent. Now suppose 7' contains more than n + 1 vectors. Let
T be a subset of n + 1 vectors. It must be linearly dependent (as was just
shown). Since T c T, set T' contains a linearly dependent subset and must
itself be linearly dependent (see Prob. 19 of Sec. 3.4).

(b) Suppose T contains n — 1 vectors and spans V. Then by Theo-
rem 3.5.2 T must contain a basis 7 for V. If 7 contains r vectors, we must
have r < n — 1. Since 7 is a basis and S has r + 1 or more vectors in it, it
follows from part (a) that S is linearly dependent. This contradicts the fact
that S is a basis.

We now know that finitely generated vector spaces which are generated
by a set of nonzero vectors have bases and are finite-dimensional. Clearly,
finite-dimensional vector spaces are finitely generated by a basis. Now we
give several examples. O

Example 6. (Standard basis) Show that E™ has the (standard) basis & =
{ei1,eq,... ,e,}, where

e; = (0,0,...,0,1,0,...,0)
/

jth component

Solution For the span consider any x = (z1,%2,...,T,) € E™ and note
that

x =x1(1,0,...,0) +22(0,1,0,...,0) +--- + z,(0,...,0,1)

=1x1€e1 + x9€es + - - - + T e,
For linear independence consider

clel—{—chg—{—---—{—cnen:G:(0,0,... ,0)
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so that ¢y = ¢ = --- = ¢, = 0. Therefore, £ is a basis for E”, and
dim £ = n. This is reasonable since we associate (see Fig. 3.5.1)

E' Line One-dimensional object
E? Plane Two-dimensional object
E3 Space Three-dimensional object

Comparing Examples 1 and 4, we see that £? has more than one possible
basis. In general, a vector space (nonzero) has an infinite number of bases.
However, the number of elements in any basis is always the same: Remember,
this number is the dimension of the space

Example 7. Show that M3 has dimension 6.

Solution A basis is (in fact, this is the standard basis)

g_ 1 00 010 0 01 0 00 000 0 00
- 0 00/)’\OO0OO0O/)’\0O 0O0/’\1 00/’\0 1 0/’\0 01
so dim M3 = number of vectors in S = 6.

Example 8. The vector space P,, has dimension n + 1.

Solution A basis is

S={1,z,...,2"}
To see this, we check first for linear independence. The equation
a1l 4 aor + azz® + -+ ap 2" =0

holds only if the polynomial on the left is zero for all real . From algebra
this occurs only if all the coefficients are zero, that is, only if a; = as = --- =
ant1 = 0. Therefore, S is linearly independent. That S spans P, follows
from the fact that any polynomial in P, is of the form

ap+ a1x + -+ + a,z”

Example 9.

s={(10) (7 %) (o 1)-G V)]

is a basis for Co2. Example 18 of Sec. 3.4 showed that § is linearly independent
and spans Cas.
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Now that we know what a basis of a vector space is, we can state the
second fundamental problem of linear algebra.

Basis Problem
Let V be a vector space. The basis problem may take one of the
following forms.

Problem 1. Construct a basis for V', by choosing vec-
tors from V.

Problem 2. Given a set S of vectors in V', construct
a basis for V' by enlarging S, or deleting some (but not
all) vectors from S, or both.

Before we try to solve this problem, we might ask, Is a solution even
possible? Theorem 3.5.2, which tells us to “throw” out dependent vectors
from a spanning set” to get a basis, helps us here.

Problem 1. If we can pick a set of vectors from V' which spans
V', then by throwing out dependent vectors we will arrive at a
basis for V.

Problem 2. If the given set S spans V', we proceed as in problem
1. If not, we enlarge S by putting in more vectors until a spanning
set is achieved. Then we proceed as in problem 1.

Example 10. (Problem 2 of the basis problem) Let S = {(1,0,3),(2,1,4)}.
Find a basis T for E? containing S.

Solution 1 Since E? has dimension 3, we know that 7" must contain exactly
three vectors. Set S is already linearly independent, so we have to add only
one more vector to S. However, we must be careful. The new vector we join
to the set S must not make the set T linearly dependent. So the new vector
must not be in the span of the vectors already in S.

Now span {(1,0,3),(2,1,4)} = {x|x = a(1,0,3) + b(2,1,4)} = {x|]x =
(a + 2b,b,3a + 4b)}. We must make sure that the new vector is not of the
form (a+2b, b, 3a+4b). To do this, we suppose our new vector is (z1, 2, T3),
and we force the equation

(a+ 2b,b,3a + 4b) = (x1, T2, x3)
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to have no solution for @ and . Matching components yields the equations

1 2 T
01 i)
3 4 3
which reduces to
1 2 T
01 i)

00 .’E3—3IE1+2!L‘2

So if we choose z1, x9, x3 with 3 — 3x1 + 225 # 0, we have a vector not in
span {(1,0,3),(2,1,4)}. Therefore, x = (0,1,0) works and

T = {(1, 0, 3), (2, 1,4), (0, 1, 0)}
is a basis for E3.

Solution 2 If the third vector (z1, 2, z3) were to make {(1,0,3),(2,1,4),
(x1,x2,23)} linearly dependent, then

1 0 3
det| 2 1 4| =0
r1 T2 I3

since one of the rows would be a linear combination of the others. So we
require

1 0 3
det[2 1 4] +#£0
1T T2 I3

Calculating the determinant, we have
133—{—21‘2—31’1 7&0

which is the same condition obtained in solution 1. Possible third vectors
are (1,0,0), (0,1,0), (0,0,1), (0,1,1), or (1,1,0); actually there are an infinite
number of choices.

Solution 3 (Trial and error) We just try standard basis vectors until one
works. Try first (1,0,0) and check for linear dependence:

Cl(]-v 07 3) + 02(27 174) + 02(17 070) = (07 07 0)
1 2 110 1 2 1]0
=1010|0}|—={0T1SO0|0

3 4 010 00 10
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Therefore, the vectors are linearly independent and form a basis
T =1{(1,0,3),(2,1,4),(1,0,0)}.

In Example 10 we have implicitly used the following theorem.

Theorem 3.5.4. Let dimV = n, and let S = {vi,...,v,} be a subset of
V. The following are equivalent:

1. Set S is a basis for V,
2. Set S is linearly independent,
3. Set S spans V.

Proof. (1 = 2) This follows from the definition of basis.
(2 = 3) Suppose S is linearly independent and S does not span V. Then
there is a vector v, .1 € V which is not in span S. That is,

T ={vi,Vo,... ,Vp, Vpi1}

is a linearly independent set from V. But then dimV > n + 1, which con-
tradicts the hypothesis that dim V' = n.

(3 = 1) Suppose S spans V and is not a basis for V. Then it must be
linearly dependent. By Theorem 3.5.2 there is a subset of S which is a basis
of V. However, this subset must have less than n vectors in it, which implies
that dim V' < n, a contradiction. O

Note that had Theorem 3.5.4 been available prior to Examples 1 and 2,
the solutions would have required half the work. Showing linear independence
would have sufficed.

Example 11. (Problem 1 of the basis problem) Find a basis for the solution
space of

T+ To— x3+214=0
To+ X3 — 56420
3r1 +4x9 — 223 + 524 =0

Solution The equation in augmented matrix form are

1 1 -1 210 . 1 1 -1 210
0 1 1 —110 Row reduction 0 1 1 —110
3 4 -2 510 0 0 0 0(0
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and we can let x4 = k,x3 = j to find the solutions

($1,£L‘2,£L‘3,I’4) = (2.7 - 3k>k _jv k:])
=7j(2,-1,0, 1) +k(-3,1,1, 0)

Since S ={(2,—-1,0,1),(—3,1,1,0)} spans the solution space and is linearly
independent, S is a basis for the solution space. Therefore the dimension of
the solution space is 2.

Examples 10 and 11 show that solution of the basis problem is usually
not found by formula or rote methods. It requires thought, versatility, and
the ability to use almost all the preceding material.

Example 12. The set
span S = span{(1, —1,2), (0,5, —8),(3,2,-2),(8,2,0)}
is a vector space. Find a basis for it.

Solution We delete vectors which are linear combinations of the others. To
see the dependencies, we consider

c1(1,—1,2) + c2(0,5, —8) + ¢3(3,2, —2) + c4(8,2,0) = (0,0,0)

which is equivalent to

1 0 3 8]0 , 10 3 8|0
—1 5 2 2|0 | Dewrdton g 11 2|0 (3.5.2)
2 -8 -2 0|0 000 0]0

Solutions are ¢y = k,c3 = j,co = —j — 2k,c; = —3j — 8k. Choosing k = 1,
j =0, we have
8(17 _17 2)7 +2(07 57 _8) = (87 27 0)

Choosing £ = 0 and j = 1, we have
3(17 _17 2) + (07 57 _8) = (37 27 _2)
Thus (8,2,0) and (3,2, —2) depend on (1,—1,2) and (0,5, —8), and

T =1{(1,-1,2),(0,5,—8)}
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is a basis for span S. The dimension of span S is 2.

In Example 12, the augmented matrix on the left-hand side of Eq. (3.5.2)
has columns consisting of the vectors from S. Also the number of rows (two)
in the row-reduced form is equal to the dimension of span S.

In general, for problems in E™ of the type in Example 12, we have a
helpful theorem. Before stating it, we note that for an m x n matrix A, if we
consider the rows as vectors from E” then the span of those vectors is called
the row space of A.

Theorem 3.5.5. If S = {vy,..., v} is a set of vectors from E"™ and A is
the matrixz formed by putting vi in row 1, vy in row 2, and so on, and if B is
the reduced row echelon form of A, then the nonzero rows of B form a basis
for the row space of A. That is, the nonzero rows of B form a basis for span

S.

Proof. Let the matrix be
Vi
Vo

Amxn =

Vm

By the definition of row operations, if a row of zeros is obtained, that row
was equal to a linear combination of other vectors in the set. The remaining
rows are therefore all linear combinations of the independent vectors from the
original set. Thus the span of the nonzero rows is equal to span S. Thus the
nonzero rows, being independent, form a basis for span S and dim(span S) =
number of nonzero rows. ([l

Example 13. Work Example 12 by using Theorem 3.5.5.

Solution Form A and row-reduce.

1 -1 2 — 1 -1 2
A 0 5 -8 . — . 0 5 =8
3 2 =2 0 10 —16
8 2 0 0 5 =8

OO = TN N =
I

O Oulo o 0 O NN

SO O~ O 00w
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By Theorem 3.5.5, T = {(1,-1,2),(0,1,—£)} is a basis for span S, and
dim(span
S)=2.

Theorem 3.5.5 can be stated in terms of the rank of a matrix A.

Definition 3.5.2. Let A be an m x n matrix. The row rank of a matrix
is the number of nonzero rows in the reduced row echelon form of A. The
column rank of a matrix is the number of nonzero rows in the reduced row
echelon form of AT. The row and column ranks of the zero matrix are defined
to be zero.

Example 14. Calculate the row and column ranks of

1 -1 2
0 5 -8
3 2 =2
8 2 0

Solution In Example 13 we found the row rank to be 2. For the column rank
we can do column operations or form A", do row operations, and transpose.
We will use column operations.

1 -1 2 1 0 0 1 00
0 5 -8 C14+C2 0 5 -8 £02+03 0 50
3 2 2 —2C1+4C3 3 5 =8 3 50
8 2 0 8§ 10 —16 8 10 0

1 00

$C2 010

310

8 2 0

The column rank of A is 2 also.

The column rank and row rank of A in Example 14 were equal. This is
always true.

Theorem 3.5.6. For any matrix A

row rank A = column rank A
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Proof. Let vi,...,Vy, be the rows of A5, After reduction a basis {wy, wo, . ..

k < m, is found for span {vy,... ,v,,}. Thus

Vi = a11W1 + a12W2 + -+ - + Q1p Wy
Vo = a1 W1 + Q2W2 + - - - + Qo Wy (3.5.3)

V2 = Qm1W1 + GmaWa + -+ + QW
Now writing

v; = (bj1,bj2,... ,bjn) 1<7<n
and

w; = (Ci1,Ci2y - -+ 4 Cin) 1<i<n

we find after substitution into Eq. (3.5.3) that

by a1 a1k

boj 21 Aok
= C15 . + -+ Ckj

bmj am1 Amk
This is jth \k: of these/

column of A

This means that the transpose of each column is a linear combination of k
vectors; therefore the column rank of A is less than or equal to k. That is,

column rank A < row rank A

In the same way, we find now rank A < column rank A. Therefore the ranks
are equal. O

As a result of this theorem, we define the rank of a matrix A as just
the row rank of A.

Now results regarding linear equations and matrices can be concisely
stated.

1. ApxnXnx1 = Bmx1 has a solution if and only if rank A =
rank (A|B)
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2. Matrix A, x, is invertible if and only if rank A = n. Also
det A,«n # 0 if and only if rank A = n.

3. AmxnXnx1 = Onx1 has a nontrivial solution if and only if
rank A < n.

Now let us return to coding theory to see another way that bases are
used.

Example 15. As defined in Sec. 3.3, a binary channel linear code V is a
subspace of F™. Code V, being finitely generated by nonzero vectors, has a
basis. When the elements of a basis of V' are arranged in rows of a matrix, the
matrix is called the generator matrix of V. The span of the rows, therefore,
is the entire code; the matrix furnishes a compact storage mechanism for a
code. For example, the matrix

10 1
M_(011)

generates the code in this table:

VECTOR IN CODE GENERATION
(0,0,0) 0(1,0,1) +0(0,1,1)
(0,1,1) 0(1,0,1) + 1(0,1,1)
(1,0,1) 1(1,0,1) + 0(0, 1, 1)
(1,1,0) 1(1,0,1) + 1(0,1,1)

A 30 x 20 matrix (30 vectors of 20 elements each) generates a code of more
than 10° code vectors. After all, each element of the code is a sum of 30 basis
vectors, and there are 2 choices for each of the 30 coefficients. Thus there
are 20 = 1,073,741, 824 > 10° code vectors in V.

Example 15 raises an important question for decoding: Is each code
vector a unique linear combination of the rows of the generator matrix? The
answer is yes and was proved in Theorem 3.5.1.

Another question generated by the coding example is: If a code C' in
F™ is “smaller” than another code D in F™, in the sense that C' is a proper
subspace of D, then is a basis for C' “smaller” than a basis for D? This seems
reasonable, and the answer is yes, as shown in Theorem 3.5.7.

Theorem 3.5.7. IfV is finite-dimensional vector space and W is a subspace
of V, then dimW < dim V.
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Proof. If W = {60}, then the result is true. Suppose W # {6}. We first show
that W is finitely generated. Since W # {0}, there is a nonzero vector in vy
in W. Now either span {vi} = W or not. If so, W is finitely generated by
{v1}. If not, there is a vector v, not in span {v; } which is still in W. The set
{v1,va} is linearly independent; otherwise, vo would be in span {v;}. Now if
span {vy, vy} = W, then we are done; if not, we continue to add vectors and
check linear independence. This process must stop at some point because if
V has dimension n, then any set of n+ 1 vectors from V' (and therefore from
W) must be linearly dependent. Say that the process stops after k steps.
Then we have W = span {vy,va,... ,vi} and k < n. O

Problems 3.5
1. Which of the following sets are bases for £??

(a) {(1,-3),(=17,54)} (b) {(1,
(d) {(1,-1 {(1

0), (0
d) {(1,-1),(2,-2)} (e) {(1,0),(0

2. Which of the following sets are bases for £37?

(a) S={(1,-1,2),(2,3,5),(~3,0,2)}
(b) S ={(1,2,4),(—6,2,3), (—4,6,11)}
(C) S = {(17 _172)7 (0737 6)}

(d) S=1{(1,0,1),(0,1,1),(1,1,0),(1,0,0)}

In Probs. 3 and 7, a set S and a vector space V are given. Find a basis for
V' containing S.

3.V =FES={(1-11),(0,1,-1)}

4.V =E'S=1{(1,0,2,2),(1,1,0,0)}

s {0 0) (006 )

6. V="Py,S={1l—x+2%x— 2%}
7.V =C% 8 ={(i,1,0),(0,4,1)}
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In Probs. 8 to 12, a set .S and a vector space V' are given. Find a basis for
V by deleting vectors from S.

8. V=F8S={(1,-1),(1,2),(3,4)}

9. V =span{(1,2,0),(1,5,6),(2,13,18)} = span S
10. V= E3 S = {(1,-1,2), (4, -3,7), (2,0,5), (1,2,6)}
11. V=Py,S={l+x,0+2%1+2% 1 — 2%}

12. V=C35=1{(1,0,0),(s1,0),(1,4,0),(0,0,1)}

In Probs. 13 to 18, a vector space V' is given. Find a basis and state dim V.

13. V=F°
14. V=P,
15. V =My

16. V = span{(1,-1,2),(5,5,5),(0,6,3)}
17. V = 632
18. V = solution space of

r|1— X9+ .’L‘3:0
r1+ To9— $3:0
:c1+3a:2—3333:0

19. Show that dim M,,, = n?. What is the dimension of the subspace of
symmetric matrices?

20. Show that dim P, = n + 1. What is the dimension of the subspace of
even polynomials (polynomials with even exponents)?

21. What is dim M,,,,,? What is dim C,,,,?

22. Show that
dim P,, = dim (subspace of even polynomials) + dim (subspace of odd
polynomials)
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23.

24.
25.

26.

27.

28.

Calculate the rank of the given matrices.

(a) A=[4 5 6 (b) A=
-8 g 1 2 43
1 2 -1 2
1 2 3 4
5 6 7 8
() A=1 9 10 11 12
13 14 15 16

Show that the standard basis for E™ is also a basis for C™.
Show that dim C" = n.
Show that

M =

—_ =
o O =
— o O
O = =

generates the linear code

V :{(07 0707 0)7 (17 17 07 1)7 (17 07 07 1)7 (17 07 170)7 (07 17 07 O)?
(0,1,1,1),(0,0,1,1),(1,1,1,0)}

1101
N‘(1001)

generates a subcode W of V. What are dim W and dim V'?

Show that

Compare rank A and rank (A|B) to determine whether the following
systems have solutions

(a) z— y+ z=2 b)) x4+ y+ 22=3
224+ y— z=3 —x—3y+ 4z=2
T+2y+42=7 —x—=5y+10z=7

(¢) x4+ y+ 2z= 3
—x—3y+ 4z= 2
—x—doy+ 10z =11

Find bases for the row spaces of the matrices in Prob. 23.
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3.6 PERPENDICULARITY IN VECTOR
SPACES

E? has a standard basis of £ = {(1,0,0), (0,1,0),(0,0,1)} which can be pic-
tured as in Fig. 3.5.1. These vectors have length 1 and are perpendicular
to each other. Such a basis is called orthonormal: ortho for orthogonal
(perpendicular) and normal for normalized (length 1). To discuss orthonor-
mal bases for other vector spaces, we must extend the idea of dot product to
what is called an inner product.

Definition 3.6.1. Let V be a real or complex vector space. An inner prod-
uct on V is a function which associates with each pair x, y of vectors a
number (x,y) and satisfies the following properties. (On the right-hand side
we list the situation in E2. The overbar denotes complex conjugate.)

Let r be a scalar, x,y,z €V In E*{xy) = x'y x =
(21, 22)y = (41, 92)
L (x,y) = (y,%) 1. (x,y) =x-y =21y + T2y

=T +Ypre =y -x=(y,X)

2. (x+z,y)=(x+2)y

2. (x+zy) = (xy)+(xY) = (21 +20)y1 + (22 + 22)ys
= T1Y1 + T2y + 21Y1 + 222

= (x,y) +(z,y)
3. (rx,y)=(rx)-y
= (rz1,rz2) - (y1,92)
=TTy + rrays
= r(z1y1 + T2y2)
=r(x,y)

3. (rx,y) =r(x,y)

4. (x,x) = x - x = 21% +15% which
4. (x,x) >0 unless x =0 is a sum of nonnegative terms.
The sum can be zero if and only
if xt1y = 0 and zo = 0, that is,
when x = 0.

Example 1. In ", if x = (zy,... ,2,) andy = (y1,-.. ,Yn), then an inner
product can be defined as

(X,y) = 2101 + ToYo + -+ + TnYn
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This inner product reduces to the ordinary dot product in E? and E?. It is
called the standard inner product for E”.

Example 2. In C", if x = (xy,... ,z,) and y = (y1,... ,Yn), then an inner
product can be defined as

(X,yY) = 19 + oo + -+ + TnTn

This is the standard inner product for C”. Note that (cx,y) = ¢(x,y),
but <X7 CY> - 1'1@1 + 3320_92 +-+ xn@n = E<X7 Y>

Example 3. In Moys if
A— a11 a2 a3 and B — bii b2 b3
G21 G222 0A23 ba1 bao b3
then we can define an inner product as

(A, B) = a11b11 + a12b12 + a13b13 + a21b91 + agebos + assbas

Example 4. In E? let x = (z1,72),y = (y1,%2), and define (x,y) = 2219, +
2x9y2(x,y) is an inner product.

Example 4 shows that there may be more than one inner product defined
on a vector space; E? also has the standard inner product.
In E? and E?, we have

ol = V&R = Vo

so that it is natural to define the length of a vector x in any vector space
with an inner product as /(x,x). Vector spaces with an inner product are
also called inner product spaces.

Definition 3.6.2. Let V' be a vector space with inner product (-,-). If x,y
are in V/,

1. The norm (length) of x is denoted by ||x|| and is defined as
1[I = v/ (x,%)

2. The distance between x and y is defined as ||x — y||.
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3. Nonzero x and y are defined to be orthogonal if (x,y) = 0.

Note that ||z| may be different for different inner products, as the next
example shows.

Example 5. In E? let x = (1,1) and y = (2, 3). Calculate ||x|| and ||x — y]||
for norms generated by the standard inner product and the inner product in
Example 4.

Solution
Standard inner product Inner product from Example 4
((1,1),(2,3)) =5 ((1,1),(2,3)) =10

Ixll = /(x,x) = v2 x| = /{x,x) = v2+2=2
Ix =yl ==, -2)=V5 [x—yll=[l(-1,-2)] =10
Several properties of inner products are generalizations of properties of
the dot product in E? and E?. Some of these are stated in Theorem 3.6.1.

Theorem 3.6.1. Let V' be a vector space with inner product (-,-). The fol-
lowing properties hold for all x andy in V.

(a) (x,0) =0

b) [1x| > 0, ||| = 0 if and only if x = 0

(c) Xy +2z)=(xy)+(x,2) and (x,1y) =T(X,y)

(d) |lkx]| = [k [Ix]]

(e) [(x,y)| <|x|llyll (Cauchy-Schwarz inequality)

®) lIx+yl < [x[|+ [yl (triangle inequality)
Proof. (a) We have

(x,0) = (x,0+60) = (x,0) + (x,0)

The only solution to the equation ¢ = ¢ + ¢ is ¢ = 0. Thus (x,6) = 0.

(b), (c) See the problems .

(d) |lkx|| = (kx, kx) = \/Ek(x,x) = /[k[>\/(x,x) = /]k]?[[x]].
Since the radical signifies the positive square root, VA2 = |E|.

(e) See the problems.
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(f) Ix+ylP=&x+y,x+y) =xx+y)+(y,x+y)

(
é x) +(z,y) + (x,¥) + ({y,y)
|

Al

X, >2<> +2[|x||[ly |l + (¥, 2}’> by (e)
x|* + 2||x||[ly[| + ¥

(Il + lly11?)
Taking the square root of both sides gives

I+ yll < [kl + [lyll

O

If x and y are vectors in a real vector space, we can define the angle
between x and y. Notice that the Cauchy-Schwarz inequality allows us to
define
(x,y)
x|/

cosf =

because |(x,y)| < ||x/||||y| implies that

—1< <1

Now that orthogonality and norm have been defined, we can discuss bases
of

orthonormal vectors. A set O = {v,...,v,} of vectors is an orthonor-
mal set in a vector space V' with inner product (-,-) if

|vel]| =1 k=1,2,....,n
and
That is,

<Vk37 Vj> = 6kj

One of the most important results of linear algebra is that orthonormal
sets are always linearly independent. Consider

avi+cvet ooVt eV, =10
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Even though we do not know what V' is or what the v;’s look like, we can
solve for the coefficients. We use the important technique of taking the inner
product of both sides with a particular vector, in this case vi. We have

c1(v1, Vi) + ca(Va, Vi) + - 4 Ve, Vi) + - + oV, Vi) = (0, Vi) =0
(3.6.1)

and since (vg,v;) =0, for j # k, Eq. (3.6.1) becomes
C = 0

Since this works for any k =1,2,... ,n,¢; =cy =--- = ¢, = 0, and the set
O is linearly independent.

The fact that orthonormal sets are always linearly independent makes
them nice to work with when we are finding bases for vector spaces with
inner products. All we have to worry about is spanning V. Thus in E” the
standard basis is an orthonormal basis. If a basis is made up of orthogonal
vectors but not all are of norm 1, then the basis is an orthogonal basis.

Example 6. Let V = Py, p(z) = ap+ a1z +asz?, and g(x) = by + by + baz”.
Define (p,q) = agby + a1b; + asbs. Show that (-, ) is an inner product. Give
an example of two orthogonal vectors from P,. Find an orthonormal basis

for Ps.

Solution Verifying properties 1 to 4 of the definition of inner product (De-
finition 3.6.1) is straightforward. The vectors

p(z)=1+2% and q(z) =2

are orthogonal. The vector r(z) = 1 — 2? is orthogonal to both p and q. The
set

S={1+2%z,1-2"
is orthogonal and linearly independent. Since dim Py = 3, set S must be a
basis. However, S is only an orthogonal basis. To make it an orthonormal
basis, the vectors must normalized. We put

p 1+ z? 1+2* 1 1,
Il /(T + 22,1+ 22) V2 V2 V2
Up=q =21 (q is already of norm 1)
r 1 — a2 1 1,
Uus

BRI
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Now
2

1 N 1 1 1 2}

— + —=z"r,— — —=x

V2 V2 V2 V2

is an orthonormal basis for P,. O is not the only orthonormal basis for
P, with this inner product; the standard basis S = {1,z,z%} is also an
orthonormal basis.

O = {ul,UQ,’U,g} = {

Problems 3.6

1. Which of the following are inner products on E*? Let x = (x1,z2) and

y = (yh y2)

(a) (x,y) = 4z1y1 + 2292 (b) (x,y)=x1+u

() (x,¥) =z1y1 — T202 d) (x,y)= $12y1 + ToYyo
() (x,¥) =z1y2 + T2l () (x,y) = z122012

(g8) (xy)=21+22+y1 + o (h) (x,y) = |z1y1 + 2230

2. Using the inner product from Prob. 1(a) on E?, show that O = {(3,0), (0,1)}
is an orthonormal basis for E? with that inner product.

3. In E? let x = (71, 29) and y = (y1,%2). Show that the function
(x,y) = ar1y; + bxays where a > 0,b > 0
is an inner product. What happens if either a < 0 or b < 07

4. Difficulty norm. Consider a way of “norming” a hike up a mountain.
Difficulty indices are as follows.

CATEGORY ANGLE OF CLIMB DIFFICULTY INDEX

1 0° —10° 1
2 10° — 20° 2
3 25° — 45° 4

A difficulty norm for a trip of 7 mi in category 1, z2 mi in category 2,
and x3 mi in category 3 is

(1, T2, 23) || = /212 + 2292 + 4252
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which is generated by the inner product

(1, 22,23), (Y1, Y2, ¥3)) = T1y1 + 2T2ys = 4x3Y3

Which of the following hikes is most difficult (has the largest difficulty
norm)?

MILES IN
TRIP CATEGORY 1 CATEGORY 2 CATEGORY 3
T 3 2 1
15 0 6 0
15 5 0 1

Note that all hikes are 6 mi long.

Let V' be a vector space with inner product (x,y). Let a new function
(, )k be defined on V by (x,y)r = k(x,y), where k > 0. Show that
(', )k is also an inner product. Define ||x||x = 1/ (X, x)r. Compare ||x||¢
with ||x||; (the original norm) for £ > 1 and k < 1.

11 0 0
A= <0 1) and B = <1 0>
in My, with standard inner product. Calculate (A, B), [|A|], || B|, ||A—
B||, and cos 6, where 6 is the angle between A and B.

. Let

Consider E? with the standard inner product.

(a) Find a vector orthogonal to both (3,—1,0) and (1,2,3).

(b) Find vectors x and y orthogonal to (1, —1,2) and independent of
each other.

Let V' be a vector space with inner product ( , ). Let x 1 y mean that
(x,y) = 0. Show that

(a) If x Ly and x L z, then x L (ay + bz) for all a and b.

(b) If x L vi,x L x9,...,x L v,, then x is orthogonal to any vector
in span {vi,va,...,V,}.

Furnish details for verifying the inner product in Example 1.
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10. Furnish details for verifying the inner product in Example 2.
11. Prove part (b) and (c) of Theorem 3.6.1.

12. Prove part (e) of Theorem 3.6.1 for real vector spaces by following these
steps

(a) Show that the inequality is true for x = 6.
(b) Assume x # 6 and use

0<({rx+y,rx+y) rreal
to find

[\

0 < Jlz)®+2(x,y) r + ||yl
N N — N~
Call A Call B Call

Q

(c) Recall that a quadratic
Ar* + Br+C (1)

which is greater than or equal to 0 has either no or one real root.
Calculate the discriminant (from the quadratic formula) for Eq.
(1). It must be less than or equal to zero.

(d) Use B* —4AC < 0 to obtain the Cauchy-Schwarz inequality.
13. Show that if x Ly, then ||x +y||* = ||x[|* + [|y||*

14. Show that if S = {v1,va,...,v,} is an orthogonal set, then

Vit Vot vall® = Vil + vl + -+ v

15. In M,,1,(X,Y) = XY is an inner product. Calculate XY for

1 -2
X = 2 Y = 4
-1 -3

16. In C,1, (X,Y) = X*Y is an inner product (recall X* = XT). Calculate

X*Y for ‘
X:<1.> Y:<1_Z).
7 2
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Calculate U*V for

17. Let A and B be matrices in M,,, and define (A, B) = tr A" B.

(a) What choice of m and n makes (A, B) equivalent to the inner
product in Example 37

(b) Show that (A, B) as defined is an inner product on M.

3.7 THE BASIS PROBLEM REVISITED

We consider in this section the following form of the basis problem:

Given a basis S = {vi,...,v,} of a vector space V with inner
product ( , ) find an orthonormal basis O = {uj,uy,... ,u,} of
V.

One reason for wanting an orthonormal basis for V' is that for any vector
x € V it is easy to calculate the coefficients of x in the linear combination

X =cu +cus+---+cyu,
In fact,

(x,u,) = cr(ug,ug) + -+ - + cp{ug, ug) + - - + cp(uy,, ug)

Example 1. Theset O = {u17 Ua, u3} = {(1/\/57 07 1/\/5)7 (07 ]-7 0)7 (1/\/57 07
—1/4/2)} is an orthonormal basis for E3. Write (2, —1,4) as a linear combi-
nation of the basis elements.

Solution We have

X = <X7 111>111 + <X7 112>112 + <X7 u3>u3
6 —2
= —uw + (—1)uy + —=us

V2 V2
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A solution of the basis problem stated above involves what is known as
the Gram-Schmidt procedure.

To get an idea of this procedure, consider the problem in E% and let
S = {v1,va,vs}, as pictured in Fig. 3.7.1. What we can do is to first obtain
an orthogonal basis T' = {w1, wo, w3} and then to normalize all the vectors
to obtain O. For the first vector wy in 7', choose w; = v;. Now wy must be
perpendicular to wy. That is, it must lie in the plane P; shown in Fig. 3.7.2.
We see that there are an infinite number of choices of ws. The idea in the
Gram-Schmidt process is to choose wy as a linear combination of w; and
vy. Since span {wy, vy} is the plane containing w; and v, we know that wy
must lie in the intersection of the plane P; and span {wy, vy} (see Fig. 3.7.3).
Once ws is chosen, w3 must be found perpendicular to w; and wy. In the
Gram-Schmidt process, wj is required to lie in span {w;, ws, v3} and to be
perpendicular to wy and wy (see Fig. 3.7.4). Finally then

w w w
(’):{ 1 7 2 7 3 }
[wa ™ [lwa " [ws]]

Let us actually carry out this process in E? before stating the general
result.

Example 2. Using the procedure just outlined, construct an orthogonal ba-
sis from S = {(1,1,0),(1,3,1),(2,2,3)} = {v1, V2, v3} in E? with the stan-
dard inner product.

Solution We choose w; = (1,1,0) and require of wy that

<W2, W1> = 0

W9y = C1W1 + Co2Vo (371)
Now take the inner product of both sides of Eq. (3.7.1) with w; to find
0= (wa, w1) = c1(W1, W1) + c2(Vva, W1)

which is one homogeneous equation in two unknowns. The solutions are

c1 = —co{va, wi)/|[[wi]||?. Choosing ¢, = 1, we have
—(vo, W Vo, W
Wy = <#20‘7\71 + Vo = Vy — @Wl (372)
[[wi [

\Projection of vo on w1y

= (1,3,1) — 4(1,1,0) = (—1,1,1)
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Now having w; = (1,1,0) and wo = (—1,1, 1), we require of ws that

(wi,w3) =0
<W2,W3> = O

W3 = C1W1 + CaWa + C3V3 (373)

Now take inner products of both sides of Eqs. (3.7.3) with w; and wy to find
equations for ¢y, ¢, c3:

0= (Wi, w3) = c1(W1, W1) + c2(Wa, W1) + c3(W1, V3)

0= (W2, W3) = c1(W2, W1) + Ca(W2, Wa) + c3(W2, V3)
Since (wy, wy) = 0, these last equations reduce to

0261||W1||2 +63<W1,V3>

0= Cg||W2||2+63<W2,V3>

Putting c3 = 1, we have

o — —<W17V3> o — —<W2,V3>
1= 710 2 = T 1o
[[w[? [[w2|?
Projection of Projection of
<v3 on w2> l <v3 on w1> l
W2, V3 Wi,V3
W3 = V3 — Wo — W1 (374)
w2 [[w[?
=(2,2,3),—2(—1,1,1) — 4(1,1,0)
=(1,-1,2)

Thus an orthogonal basis is
T=1{(1,1,0),(-1,1,1),(1,-1,2)}
By normalizing each vector in 7', we find an orthogonal basis
() () G )
V2'V2 )T\ VBTVBTVE) TAWVET V6 VG
Graphs of S and O are shown in Fig. 3.7.5.

The method of Example 2 actually furnishes a method of proof for a
general result.
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Theorem 3.7.1. (Gram-Schmidt procedure) Let S = {vi,va,...,v,} be a

basis for a vector space V with inner product ( , ). The setT = {wy,... ,w,},
where
W1 =V,
- <v27 W1>
W2 =V — 5 W1
[[w ]
(v3, wa) (v3, wi)
W3 =V3 — ——twy — ——Lw, (3.7.5)
[[w2l|? w2
o <Vn7 Wn71> <V7’L7 W2> <V7’L7 W1>
Wp=Vp— Wy = — ——— Wy — ————— W]
W1l [[wa| [

s an orthogonal basis for V. The set

_ { W, Ws W, }
[wll” lwal ™7 [[wnl

is an orthonormal basis for V.
Equation (3.7.5) are a generalization of FEqs. (3.7.2) and (3.7.4) in Ex-
ample 2.

Example 3. Find an orthonormal basis for V' = span{(1, —1,0, 2), (3,2,1,2),
(=2,1,0,1)} in E* with the standard inner product.

Solution Let vi = (1,—1,0,2),vo = (3,2,1,2), and vy = (—2,1,0,1).
Using the formulas from Theorem 3.7.1, we have

wi = (1,-1,0,2)
wa =(3,2,1,2) — 5(1,-1,0,2) = (&, %,1,1) = 1(13,17,6,2)
1

1 _
W3 = ( 27170 1)_498<6 671’§)_?(1’_17072)

(822,534, 42, 678)

An orthonormal basis is

{ W1 Wo W3 }
[will” [wall" [|ws]
1 1 1
= {_(17_17072)7— y T BEE RS
V6 /498 /355,572

Now that we know what an orthonormal basis is, we can describe an
important class of matrices which we will use heavily later on.

(13,17,6,2) (—411,267,21, 339)}
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Definition 3.7.1. A square matrix A is called orthogonal if AT = A1,
that is, if AAT = ATA = 1.
A - (

Example 4. Show that

v

ol otw

is orthogonal.

Solution

)= 9)

The rows of A in Example 4 are, as vectors, v; = (%, %) and vy = (—%, %)
Notice that in the standard inner product on E?, vi L v, ||vi|| = || v2|| = 1.
That is, {vi,va} is an orthonormal basis for £2. In fact, the same can be
said for the columns of A. This observation carries over to all orthogonal
matrices, as the next theorems show.

ATA = (

Therefore AT = A~! and A is orthogonal.

SRS
SN—
Y

(S Pe ] UV}

SRS

Ot ot

Theorem 3.7.2. A matriz A,xn is orthogonal if and only if the rows of A
form an orthonormal basis for E™ with the standard inner product.

Proof. (<) Suppose the rows of A form an orthonormal basis {v1, va,... ,v,}.
Then
v,
AAT = B ‘tQ B Vi Vi Vi
v,

Given the definition of matrix multiplication, the ij entry of the product is
(vi,v;), which is 1 if 4 = j and 0 if ¢ # j. Therefore AAT = I.

(=) Suppose A is orthogonal. Then AA™ = I. Then ¢;;, the ij entry of
AAT is 1if i = j and 0 if i # j. By the definitions of matrix multiplication
and the transpose of a matrix, we see that (row i, row j) is 1 if i = j and is
0 if 4 # j. Therefore the rows of A, form an orthonormal basis for E”. [

Theorem 3.7.3. Matriz A is orthogonal if and only if AT is orthogonal.
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Proof. If A is orthogonal, then AAT = ATA = I. Thus
ATANT = ATA=1

and
(AT)TAT =AAT =1

Therefore AT is orthogonal. The argument is reversible (see the problems).
O

Theorem 3.7.4. A matrix A, xn is orthogonal if and only if the columns of
A form an orthogonal basis for E™ with the standard inner product.

Proof. Matrix A is orthogonal if and only if AT is orthogonal. The columns
of A are the rows of A", which form an orthonormal basis for E™. O

Example 5. The identity matrix is an orthogonal matrix.
Example 6. Give an example of a 3 x 3 orthogonal matrix (not ).

Solution There are an infinite number of possibilities. By using the standard
basis for E® we can obtain

1 00 010 001 0 01 010
00 1]}, 1 0 0], 100),10 1 0}, 0 01
010 0 01 010 1 00 1 00

Another possibility is

1/vV2  1/v2 0
A=[1/V2 -1/vV/2 0
0 0 1

Notice that AT = A, so that A% = I. Such matrices are called involutory.

In the complex case, a square matrix A is called unitary if A*A = I. For

example,
0 —i
(7 3)

is unitary. We have virtually identical theorems for unitary matrices, and
their proofs are virtually the same.
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Theorem 3.7.5. A square matriz A is unitary if and only if its rows and
columns are mutually orthogonal with respect to the standard inner product
in C".

Example 7. The matrix

(ive vz)

is unitary.
Orthogonal Projections If W is a subspace of E” with an orthonormal
basis {vi,Vs,...,V,}, then the orthogonal projection of v onto W is
defined as

projw v=(v-v)vi+ -+ (V- V)V,
where the dot product is the standard dot product on E™. For example, if v =
(1,2,2) and W = {(x1,x%2,X3)|x3 = 0} with basis S = {(1,0,0),(0,1,0)},
then projw(1,2,2) = (1,2,0) (see Fig. 3.7.6). From Fig. 3.7.6 it is not too
hard to see that projy v is the vector in W “closest” to v, in the sense that
the distance from the “end of v’ to the “end of projy, v” is the smallest
compared to all other vectors from W. That is,
[V = projw v|| < [lw —v||

for all vectors w in W. Although this is true in general, we do not prove
it here. We note that if nonstandard inner products are used, the norms
generated need not represent distance in the usual way.

Problems 3.7

1. Verify that the following are orthogonal bases of E3. Convert them to
orthonormal bases.

(a) {(1,1,0),(0,0,1),(—1,1,0)}
(b) {(17 17 1)7 (07 17 _1)7 (17 _%7 _%)}

2. Use the Gram-Schmidt procedure to construct orthonormal bases for
the following subspaces of E*.

(a) span {(1,0,0,0),(1,0,1,0),(1,0,1,1)}
(b) span {(1, 0,-1,0),(1,0,1,1),(1,-1,0, O)}

3. Which of the following are orthogonal matrices?
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w () o (09
5 8 Ve e

0 0
© % 50 @ | TR
L 1

0 0 0 0

O = O O

4. Which of the following are unitary matrices?

@ (i 1) (513

1 i 34
© (i ° @ - -1 2-2
0 1 3—i 242 2

5. Let O = {vq,va,...,v,} be an orthonormal basis for V. Let x € V.
Show that if X = vy +cava+- - - +c,vy, then [|x||? = c12c2+- - -+ ¢,2.

6. Let S = {vy,Va,...,vi} be a linearly independent set of vectors in a
vector space V' of dimension n,n > k, with inner product. Show that
if x is orthogonal to all the vectors in S, then T' = {vy, v, ..., Vi, x}
is also linearly independent (x # 6).

7. Show that

o={(60) 6 3Gz %67 e 0]

is an orthonormal basis for Msy, with the inner product

<<‘CL 2)(; £)>:ae+bf+cg+dh
2 1
(52)

as a linear combination of the basis vectors.

Write

8. Use the Gram-Schmidt procedure to transform the given bases to or-
thonormal bases in the spaces given. (Use the standard inner product.)
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10.

11.

12.

13.

14.

15.

16.

17.
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(a) {(1,1),(1,2)} in E?

(b) {(1,0),(3,7)} in E?

(c) {(1,1,—1),(0,1, 1),(1,1,0)} in E3
(d) {(1,2,3),(4,5,6),(1,1,0)} in E3

Reverse the argument in Theorem 3.7.3 to complete the proof.

Use the Gram-Schmidt procedure to find an orthonormal basis for span
{(1,3,1),(1,2,1)} in E? with the standard inner product. Do the same
in E3 with the inner product (x,y) = 3z1y1 + 222> + T3Y3.

Find an orthonormal basis for £% which includes v = (1/v/2,1//2,0)
(do this by inspection).

Find an orthogonal basis for E* which includes v; = (1,1,1). First
find any basis which includes y; as the first vector; then use the Gram-
Schmidt procedure, but do not normalize v;.

(a) Let A be a unitary matrix. Show that |det A| = 1.

(b) Show by example that for a unitary matrix A, det A need not be
1 or —1. (Note: Remember that A can have complete entries.)

(c) Let A be an orthogonal matrix. Show that det A = £1. In general,
a matrix A with det A =1 is called unimodular.

What conditions on a and b guarantee that

O Q O
QOO
o O o

O O

is orthogonal? Is there a condition which will make A unitary?

Is the square of an orthogonal matrix orthogonal? Is the square of a
unitary matrix also unitary?

If A is orthogonal, is A orthogonal (n > 2)?

(a) Show that if U is orthogonal and B = UT AU then det B = det A.
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18.

19.

20.

21.

22.

23.

24.

25.

26.
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(b) Show that if U is unitary and B = U*AU ,then det B det A.
If A and B are orthogonal what about A + B? What about —A?
Let A be involutory. Show that if n is odd, then A" = A.

If A is unitary, is —A unitary?
If A is idempotent, must A be symmetric?

Show that if S = {vy,...,v,} is an orthogonal basis for V, then for
any x in V|

X,V X,V X,V
X:< ) 12>V1+< 9 22>V2+"'+< ) n2> "
[Vl [[v2]l [[Vall

Develop a proof of Theorem 3.7.5 by mimicking the proofs of Theo-
rems 3.7.2, 3.7.3, and 3.7 .4.

Show that the rotation matrix
cosa —sinao
sin av COS &
is orthogonal. Is the matrix unitary?

Let a and b be real numbers. Under what conditions is

0 a 0 b
a 0 b 0
0 b 0 a
ib 0 a O

unitary? (This is an example of a scattering matrix.)

The set S = {(1/v/2,—1/+/2,0),(0,1,0)} does not span E. Find the
orthogonal projections of the following vectors on span S. Sketch span
S and the vector. (a) (1,0,0) (b) (1,-1,0) (c) (1,1,2)
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3.8 CHANGING BASES IN VECTOR SPACES

Ask several people directions to a certain location, and the instructions may
sound different yet be equivalent. In Fig. 3.8.1 we see a map of a small town
with an origin 0, where we ask directions to the corner of McDaniel and
Walker streets, marked by an X. Two possible sets of directions are

1. Go 8 blocks east and 6 blocks north.
2. Go 6 blocks north and 8 blocks east.

Both sets of directions are correct. What is the difference? Each set is related
to a different basis of £?! In Fig. 3.8.2 we have drawn two bases S; and S,

FIGURES

which correspond to cases 1 and 2 respectively, above. We have in units of
blocks

Sy = {(170)7 (07 1)} Sy = {(Ov 1)7 (170)}

The order of the basis vectors is switched in S; and S;. The corner is at
(8,6), yet in terms of the different bases (8,6) has different coefficients, in
terms of order

(8,6) = 8(1,0) +6(0,1)

(8,7) =6(0,1) + 8(1,0))
Note that the coefficients in the linear combinations above are actually
the “directions” in terms of the given basis. Comparing S; and Ss, we see

that order is important in a basis when we are using the basis to describe
vectors. We also note that the “direction” vectors

8 6
Y
can be related by means of matrices:
8\ (0 1\ (6
6/ \1 0/)\8

In this section we analyze the problem of describing a given vector in
terms of different bases. This type of problem is of interest in mechanics.
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Consider a guy wire, as shown in Fig. 3.8.3. The vector F represents a force
acting horizontally on the wire. In terms of the standard basis (with z; and
xo axes as shown), F = 2(1,0) + 0(0,1). Of interest are the normal and
tangential forces, T and N, on the wire. In terms of the basis {U;, Uy} =

{(1/v2,-1/V/2),(1/v/2,1/3/2)}, however, F = v/2U; + v/2U,. That is, the

tangential and normal components are both /2.

Definition 3.8.1. An ordered basis is a basis S = {vi,va,...,v,} of
vectors along with an ordering? of the vectors in the basis.

Definition 3.8.2. Let S = {vy,vy,...,v,} be an ordered basis for a vector
space V, and let x € V. If

X =c1Vy+cavy + -+ vy, (3.8.1)

then the coefficients ¢y, cs,... ,c, are called the coordinates of x with
respect to S. The matrix

1
(x)s =
Cp,

is called the coordinate matrix of z with respect to S.
A coordinate matrix of x for a given ordered basis is unique, because the
linear combination in Eq. (3.8.1) is unique (by Theorem 3.5.1).

Example 1. Let x = (2,3) in E?. Find the coordinate matrix for x with
respect to (a) S = standard basis, (b) S = {(1,1),(1,-1)}, (c¢) S =
{(1,0),(1,1)}, and (d) S = {(1,1),(1,0)}.

Solution

(a) Since (2,3) =2(1,0) = 3(0,1),

3= (3)

2 An ordering of a set S of n objects is a function from the set {1,2,... ,n} onto S. It
is simply a rule for telling which object of S is to be called the first, the second, and so
on.
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(b) Since {(1,1),(1,—1)} is an orthogonal basis,
<(273)>(171)> <(2>3)7(17_1)>
1L, DI 11, =1)]?

(see Prob. 22 of Sec. 3.7). Thus

(2,3) = (L,1)+

(17_1)

(c) We solve (2,3) = ¢1(1,0) 4+ c2(1,1) to find ¢4 = —1 and ¢, = 3, so

@ms=( )

(d) In this case (2,3) = ¢1(1,1) + c2(1,0). Solving, we find ¢; = 3 and

cy = —1.
CEI

Notice in (c) and (d) that the reversal of the order of the basis elements
resulted in a reversal of the elements of the coordinate matrix.

Example 2. S ={(1,0,1),(0,1,1),(1,2,4)} is a basis for E*. Suppose

Therefore

-1
X)s=1| 2
4
Find x.
Solution In terms of the basis S,
-1
2 | = —1(1,0,1) +2(0,1,1) + 4(1, 2, 4)
4

= (3,10, 17)
The arrow simply replaces the word “represents.”

From Example 1 we see that if we change the basis for a vector space V,
then the coordinate matrix for a vector changes. This poses the problem:
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Given a vector space V' with basis S, we can calculate (x)g. If
we give V' a new basis T, can we calculate (x)r by using (x)s?
That is, is there a simple relationship between (x)s and (x)r?

Let us consider the problem in E?. Let S = {vi,vo,v3} and T =
{w1, Wy, w3} be two bases for E3. Suppose x € E? and

(&1
(X)S = Co
C3
This is,
X = C1V] + CaVay + C3V3 (3.8.2)

Now we want to “convert the v’s to w’s.” Since T is a basis, there are
coefficients a1, ais, ... ,ass such that

Vi = a11W1 + 21 W3 + a31W3
Vo = Q19W1 + A29Ws + A30W3 (383)

V3 = @13W1 + G23W2 + a33W3
Substituting these into (3.8.2), we find

X = (ancl “+ a1aco + CL1363)W1 -+ (a2101 + a92Co + CL2303)W2

+ (CL31C1 + a32Co + a3303)W3

and so
a11C1 + Q12C2 + @13C3 a1 a2 a13 C1
(X)r = | a21¢1 + a9aca + agscs | = | amr ax ass Co
a31C1 + a32C2 + a33C3 az1 a3z 33 C3
By Eq. (3.8.3) = ((v1)r(v2)r(va)r)(x)s
Therefore,

(x)7 = ((vi)r(v2)7r(vs)7)(X)s

Coordinate matrix ~ Columns are coordinate matrices Coordinate matrix
of x in new basis T' of old basis vectors with of z in old basis

respect to new basis
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In an n-dimensional vector space V, if S = {vy,...,v,} is the
old basis and 7' is the new basis, then
(x)r = ((vi)r(va)r - (Vo)1) (X)s (3.8.4)

This can be derived in the same way as in the E® case. The matrix in Eq.
(3.8.4) is called the transition matrix from S to 7', and it is customarily
denoted P. Thus we have (x)r = P(x)g. Occasionally we write Pr..¢ when
it is necessary to emphasize the fact that P is the transition matrix from S
to T

These are two important facts about transition matrices:

1. Matrix P is invertible, and P! is the transition matrix from 7" to S.

2. If S and T are orthonormal bases, then P is an orthogonal matrix.
The proofs of these facts are outlined in the problems.
Example 3. Consider E? and bases S = {(1,1), (1,—1)} and 7' = {(1,0), (1,1)}.
(a) Find the transition matrix from basis S to basis 7T
(b) Find the transition matrix from basis 7" to basis S.
(c) Show that the matrices found in (a) and (b) are inverses of each other.
(d) Find ((3,—5))7.
(e) Find ((3,—5))r by using the transition matrix from (a).
Solution

(a)
P = ((vi)r(v2)r) = (L, ))r((L, ~1))7).

Since
vy =(1,1) =0(1,0) + 1(1,1)
and

vy = (1,—1) = 2(1,0) — 1(1,1)

0 2

we have
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(b) Let @ = ((w1)s(wa)s) = (((1,0))s((1,1))s). Since

wi = (1,0) = 4(1,1) + 3(1,-1)

and
wo = (1,1) = 1(1,1) + 0(1, —1)
we have
(1)
ST — % 0

(c) Since

0 2 3
PQ = ( 1 -1 ) ( i
2
10 —1 —1
weknowthatP™ = () and Q" = P.

01
d) Now (3,—5) = —1(1,1) +4(1,-1), so

(3,5))s = ( - )
((3,-5))7 = P((3,-5))s = < 02 ) ( ! ) _ < E >

We can check our answer by computing
8wy — bwy = 8(1,0) — 5(1,1) = (3, -5)
/

(),

Example 4. Consider E* with orthonormal bases (in the standard inner
product)

‘e) Now

S ={(1/v2,-1/v/2,0),(1/v2,1//2,0)(0,0,1)}
T ={(1/v2,0,1/3/2),(0,1,0), (—1/v/2,0,1/v/2)}

Show that the transition matrix P from S to T is orthogonal. Write the
transition matrix ) from 7" to S.
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Solution Using inner products

<V1,W1> %
(v)r = | (vi,wa) | = | —1/V/2
(v, w3) -1
<V2,W1> %
(v2)r = §V27W2§ = 1/\/?
(Vs, w1) 1/v2
('Ug)T = <V3,W2> = O
<V37W3> 1/\/§

we know that
P=1 -1/y2 1/v/2 0

Matrix P is orthogonal since its columns are orthogonal and have norm 1.
Since P! is the transition matrix from T to S, we know that Q = P!
However, P is orthogonal so P~! = PT and

_1/\/5 —
1/v2 -
1/vV2 0 1/V/2

Example 5. In Example 4, if the first and second vectors in S are inter-
changed, how is P changed?

O — BO|—
O — BO|—

Q=P"=

Solution Examining the solution to Example 4, we see that the roles of v;
and vy are reversed. So the transition matrix is

S Ve
P=11/V2 -1v/2 0
4 4 UVl

That is, the first and second columns are interchanged.

Example 6. In Example 4, if the first and second vectors in 7" are inter-
changed, how is P changed?
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Solution Examining the solution of Example 4, we see that since the roles
of wi and wy are reversed, the first two entries in each coordinate matrix
(vi)r, (vo)r, and (v3)r are reversed. Therefore the transition matrix is

—1/v/2 1/v2 0
1/v2

1
2
L uyE

That is, the first and second rows are interchanged.

M= N~

Examples 5 and 6 illustrate the general principle that if vectors in basis
S are interchanged, then corresponding columns in Pr—g are inter-
changed. If vectors in basis T are interchanged, then corresponding
rows in Pr—g are interchanged.

Example 7. Consider the basis T = {(—1/v/2,1/v2)(—=1/v/2,-1/v/2)} in
E? obtained from the basis S = {(0,1), (—1,0)} by rotating the vectors in S
by 7/4 radians (Fig. 3.8.4). Find the transition matrix from S to 7'

Solution Since the bases are orthonormal, we can calculate the coordinate
matrices by using inner products:

(vi)r = ((0,1))r = ( _% )

(va)r = ((=1,0))7 = @g)

Therefore

(VAN

Incidentally P7T is

( cosm/4 —sinm/4 )

sinw/4  cosm/4

Example 7 illustrates the general form of a rotation as discussed in Chap. 2.
In general, rotations have orthogonal transitions matrices.

Example 8. Recall the example of the guy wire in Fig. 3.8.3. Find the
transition matrix from the standard basis for E2.
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Solution We have

1 1 1 1
(1, 0) = ﬁUl + EUQ and (0 1) \/§ EUQ
so that 1/\/§ 1/\/§
P=(1jv -1z )

Thus, if F = (a,b), its normal and tangential components are given by

p(5) = (WVBart)) — Romal |

PROBLEMS 3.8

In Probs. 1to 4, let S = {(1,3),(-2,1)},T = {(1/¢§ —1/v/2),(1/v/2,1/v/2)},
U=1{(-2,1),(1,3)}, and Z = {(v/3/2,1), (—%,V/3/2)} be bases for E? with

the standard inner product.

1. Find the transition matrices (a) from S to 7', (b) from 7" to U, and (c)
from S to U. Multiply the matrices from (a) and (b) in both ways. Is
either product related to the matrix from (c)?

2. Let x = (1,1). Find (x)g. Using the matrices from Prob. 1, find (x)r
and (x)g.

3. Find the transition matrices from 7" to Z and Z to T.

4. (a) Find the transition matrices from S to Z. (b) Find the transition
matrix from U to Z by using interchanges in the matrix from (a).

In Probs. 5 to 10, let S = {( ,1,0),(0,1,1),(1,0,1)}, T = {(1/v2,—1/+/2,0),
(1/v2,1/4/2,0),(0,0,1)}, U = {(1,0,1),(0,1,1),(1,1,0)} and Z = {(1,0,0),
(0,1/v/2,-1/+/2),(0,1/v/2,1/+/2)} be bases for E* with the standard inner
product. Let x = (1,—1,2).

5. Find the transition matrices (a) from S to 7', (b) from 7" to U, and (c)
from S to U. Multiply the matrices from (a) and (b) in both ways. Is
either product related to the matrix from (c)?

6. Find (x)s. Using the matrices from Prob. 1, find (x)r and (x)y.
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10.

11.

12.
13.

Find the transition matrices from 7" to Z and from Z to T

(a) Find the transition matrix from S to Z. (b) Find the transition
matrix from U to Z by using interchanges in the matrix from (a).

If
3
(X)S = —2
4
what is x?
If
0
(X)T = 0
0
what is x7?
If S is any basis for V' and
0
0
(x)s = | .
0

what is x7
If S is any basis for V and x = 6, what is (x)g?

Show that if P is the transition matrix from S to 7" in the vector space
V, then P~! exists and P! is the transition matrix from 7 to S, by
completing the following steps.

(a) Let S ={vy,...,v,}and T'= {wy,... ,w,} and @ be the tran-
sition matrix from 7" to S. Write QP is

a1 A2 -+ Qin
QP = | @21 022 QA2p,
an1  Ap2 Ann
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(c) Substitute the result from (b) into (x)s = Q(x)r to obtain
(x)s = QP(x)s (1)

(d) Let x = vy in Eq. (1), and show

1 a1
0 a921
0 Qnl

(e) Let x = vy in Eq. (1), and show

0
: a1k
0

kth place — | 1 | = | aw
0
Qnk
0

(f) Conclude that QP = 1.

14. Show that if S = {vq,...,v,} and T' = {wy,... ,w,} are orthonormal
bases of a real vector space V', then the transition matrix from S to T’
is orthogonal by completing the following steps.

(a) Show that transition matrix from S to T is

(vi,wi) (vo,wi) -+ (Vp, W)
P=| VW) (vowz) oo (Vo W)
<V17 W?’L> <V27 Wn> <V7’L7 Wn>

(b) Show that the transition matrix from 7" to S is

(wi,v1) (wo,vi) -+ (W, V)
Q= (W1,ve) (Wo,va) -+ (W, Vy)
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15.

16.

17.

18.

19.

20.
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(c) From Prob. 13 we know that Q = P~!. Use (a) and (b) to show
that Q = P”.
(d) Conclude that P~!' = PT and so P is orthogonal.

Show that if P is the transition matrix from S to T, and @ is the
transition matrix from 7" to U, where S, T, and U are bases for V', then
QP is the transition matrix from S to U.

Let S={l1+z,1+2%1—2%}and T = {1,1 + 2% 1 + 2} be bases for
P,. Find the transition matrix from S to 7.

Show that a transition matrix for an n-dimensional vector space V' is
n xn.

In C%let S = {(4,0),(0,7)} and T = {(1,0),(0,1)}. Calculate the
transition matrices from S to T and from 71" to S.

Consider the guy wire as shown. Compute the transition matrix from
the standard basis for E? to {U,, Uy}, where U; and U, have unit
length.

Consider the guy wire at angle o as shown. Compute the transition
matrix from the standard basis for E? to {U;, Uy}, where U; and U,
have unit length.

3.9 CALCULUS REVISITED

Vector spaces, bases and orthogonality can be used to discuss many topics
from calculus. We mention a few here.

Vector Spaces

Recall the theorem about sums and multiples of continuous functions: If f
and ¢ are continuous on an interval [a,b] and ¢ is any real number, then

and

f + g is a continuous function on [a, 0]

cf is a continuous function on [a, b
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This theorem says that the set of functions continuous on [a,b] is closed
under sums and constant multiples. Thus we have a situation which may
yield a vector space. With this in mind, we define Cla,b] as the set of
functions continuous on [a, b] along with addition of functions and constant
multiplication of functions defined in the usual way. To see whether C|a, b]
is a vector space, we must check the vector space axioms. Closure holds by
the theorem stated above. The properties

frg=g9+f (f+g)+h=f+(@+h) c(f+g)=cf+cg
(b+c)f =bf +cf 1f=f (be)f =b(cf)

are easily checked. The zero vector is the constant function (it is continuous)
which is identically zero on [a,b]. Given f, the function —f is continuous
and is the additive inverse of f. Therefore, C|a,b| is a vector space.
Differentiable functions are another important set of functions in calculus.
If we define C[a, b] as the set of functions f defined on [a, b] with f’ € Cla, b]
(that is, f’ is continuous) and give C'[a,b] the same operations as Cl[a, b],
then C'[a, b] is a subspace of C[a, b]. To see this, we need only check closure.
Since a theorem from calculus tells us that the sum and constant multiples
of differentiable functions are differentiable, we have the necessary closure.
So C'a, b] is a vector space in its own right as well as a subspace of C|a, b].

Example 1. Give an example of a function in C[—1,1] which is not in
C'[—1,1]. This shows that C'[—1,1] is a proper subspace of C[—1,1].

Solution A continuous function which is not differentiable will be sufficient.
The function y = |z| is continuous on [—1, 1] but fails to have a derivative at
x = 0.

Several functions from calculus are differentiable an infinite number of
times. For example, y = €”, y = sinxz, y = cosz, and all polynomials are
infinitely differentiable over all R. Thus we can define vector spaces

C*a,b],C%[a,b],... ,C"a,b],...

and even

C*|a, b

Definition 3.9.1. C"[a,b] is the set of all functions f defined on [a, b] with
£ ff" ..., f™ being continuous on [a,b]. (Right- and left-hand deriva-
tives are used at a and b.) With the standard operations of addition and
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multiplication by a constant, C"[a, b] is a vector space. C*|a, b] is the set of
all fin C”[a,b] for all n. C*[a,b] is a vector space.

Example 2. Give a example of a function which is in C'[—1,1] but is not
in 02[-1,1].

Solution Let y = 2°/?. Then y' = 22%/% and y” = 2z~ '/3. Although ¥/’ is
continuous on [—1,1],4” is not, because y”(0) is undefined.

Examples 1 and 2 illustrate the subspace relationship
Cla,b] D C'[a,b] > C*[a,b] D --- D C™[a,b]

among these vector spaces.

The vector space C|a, b] differs from the vector spaces we have been study-
ing in that Cfa,b] is not finite-dimensional. To see this, suppose that
dim(C[a,b]) = n. Then a finite basis S = {fi(x), fo(z),. .., fu(z)} of con-
tinuous functions in C[a, b] would exist, and any set of n+ 1 functions would
have to be linearly dependent. However, T = {1,z,2% ... 2"} is a set of
n + 1 functions in Cla, b] which are linearly independent. So it is impossible
to have dim(C[a,b]) = n for any n. Since polynomials are infinitely differ-
entiable, the same argument shows that C*[a, b] is not finite-dimensional for
any k.

Although Cla,b] is not finite-dimensional, there are important finite-
dimensional subspaces of C|a, b].

Example 3. Show that the set of all solutions to the equation® 3/ = ay is a
one-dimensional subspace of C(R)

Solution We recall that the functions® satisfying ¢’ = ay are y(z) = Ce®?,
where C' is arbitrary. That is, W = {y|y(z) = Ce**}. To show that W
is a subspace of C(R), we first note that since €” is a continuous function,
W C C(R). Now closure of W under the operations must be shown. Since
16" + 2™ = (1 + )€™ = 3™ and c¢1(c2e™) = (c1¢2)e™®, we have the
closure, so W is a subspace of C(R). A basis for W is S = {e**}. Thus
dimW = 1.

3Recall that the equation 3’ = ay is important in the study of population growth,
radioactive decay, and other areas.

4That these are all the functions satisfying ¢’ = ay is a theorem of ordinary differential
equations.
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Example 4. Show that the set of all solutions to the equation 3’ = —a?y

is a two-dimensional subspace of C'(R).

Solution The solutions of the equation are of the form A cos ax + B sin aux.
Showing that W = {y|y(x) = Acos azr+Bsinax} is a subspace is done in the
same way as Example 3. A basis for W is S = {cos ax,sin ax}. That S spans
W is easy. For the linear independence consider ¢; cos ax + cosinax = 0.
The equation must hold for all z. Substitute z = 0 to find ¢; = 0. Substitute
x = m/(2a) to obtain ¢y = 0.

Linear Independence

Linear independence of a set of functions in Cfa,b] is not always easy to
show.

Example 5. Consider the set S = {sin2z,sinzcosz} in C(R). Is S a lin-
early independent set?

Solution We could look at
c18in2z + cpsinzcosx =60 =0 (3.9.1)

as in the definition. The difficulty here is that since the vectors are functions,
we do not obtain a set of linear equations with constant coefficients. The co-
efficients of the linear equation involve the variable x, and the equation must
hold for all z. In this example, we rely on our knowledge of trigonometric
identities and recall that

3 sin 2x = sinx cosx

So the set is linearly dependent.

There is another method available if the functions in a set of functions
are differentiable enough times, that is, the method of the wronskian. For
two functions the basic result is as follows:

Functions f and g in C'[a,b] are linearly independent if

f(@)  g(z) :
det (f’(ﬂi) g’(33)> # 0 for some z in [a, b]

The determinant is called the wronskian of f and g and is denoted W(f, g).
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Example 6. Show that S = {sinx,cosz} is linearly independent in C'(R).

Solution We have

sin & COS &
cosx —sinx

W (sinz, cosx) = det ( ) = —sin’z — cos’z = —1

Since W (sinx, cosz) # 0 for all z, set S is linearly independent.

Let us show why W(f, g) # 0 is sufficient for linear independence. Con-
sider the usual equation in checking for independence

crf(z) + cag(z) = 0
Now we have, after differentiating the equation, the system
(f(:v) g(éﬂ)) (cl) _ (0)
f'x) g(x)) \c 0
and by Cramer’s rule the system has only the zero solution when
e (7)) #0

For larger sets of functions we have this result:
The set {f1, f2,..., fn} in C"]a, b] is linearly independent if

ho  fo o fa
/ f’ T’L
W(fl:"' 7fn):det f{ll f;’ T/L’ 7£0

for some z in [a, b].

Orthogonality
An inner product on Cf|a, b] can be defined by

(f. ) = / f(@)g(@)w(z)dz

where w(z) is a fixed continuous function, positive on [a,b]; it is called a
weight function. The simplest choice for w(z) is w(z) = 1. Once (f,g) is
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defined, we can say, “f is orthogonal to ¢ if (f,g) = 0” and “The norm of
fis \/(f, f),” or we can make any other statement which makes sense in a
vector space with inner product. We can even speak of the “angle” between
two functions.

Example 7. If C[—1,1], let (f, g) f f(z)g(z)dz. Calculate (x,z?), (1+
2%,z — 2%), |1 + 2|, and (2™, ™), where n is even and m is odd.

Solution

2n-+1

since n+m-+1 is even. With this inner product x and 2™ are orthogonal.

Example 8. In C]0,1] with inner product (f, g) fo x)dz, find an
orthonormal basis for span {1, z, z*}.

Solution Since the Gram-Schmidt procedure works for any vector space
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with an inner product, we use it. We have

wy(z) =1
(z,1)
wy(z) = —
11]]2
B fola: de 1
flll dx 2
(2%~ 3) ( 1) (a?,1)
ws(z) =a? — ——2 (g — = | — 1
2 — 512 2 1112
1
= 1 1
:.TQ—%(CC——) [ —
= 2 3
1
2
=l -+ =
T -rt o
Finally, we normalize and obtain
1 1 ]
Ul = = =
P~ 1
1 1
T — 35 T — 5
up = T——7 = =2V3(z — §)
Iz = 5l 1
1
-z 43 2 — x4
U
Yl gl

\/fol(m4 — 223 + 32° — 37+ 55)dw

=6V5(22 — x4 1)
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We still have not verified that (f,g) = ff f(z)g(z)w(z)dr is an inner
product on Cfa, b]. We do that now, by showing the four axioms for an inner
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product hold.

1 ()= [ f@gtaula) da
= [ o)t de = (0.

) eh.9)= [ erotaut)
= [ St dr = clf.g

3 (HM>KWHWMW@W
=/¢<mm> (@) + hl2)g(@)w()] do

/ f@ dw+/abh( Yg(@)w(x)de
f.9) + (h.g)
4 Positivity o f) = / b[f(:c)]Qw(:c) do

Since w > 0 and f?(x) > 0 on |a, b], f;[f(x)]Qw(x)dx > 0. Thus (f, f) >0
The definite integral of a nonnegative continuous function is zero if and only
if the function is identically zero. Therefore, (f, f) = 0if and only if f(z) =0
on [a,b].

Although the vector space structure of spaces such as Cfa,b] is not ab-
solutely necessary in beginning calculus courses, it is an important tool in
advanced calculus and advanced engineering mathematics. In particular
C|—m, ] has an infinite orthonormal basis

0 —{ = Jzsine. Jzcosa, sin2e, —os2 .

These wave-type functions can then be used to represent functions in C[—, 7]
in a definite way. This fact is the basis for Fourier analysis, which is suc-
cessful in analyzing problems in heat conduction, wave propagation, and
electrostatics.
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PROBLEMS 3.9

1.

Let (f,g) fo ) dz n C[0,1]. For the given pairs of functions
calculate (f, g).

— T

Let (f,g) = fo x)x? dx in C[0, 1]. For the given pairs of functions
calculate (f, g).

(a) f(z)=1,9(z) =

(b) f(z) =19(z) =V=

(c) f(z)=1,9(z) =1/(z*+1)
For the inner product in Prob. 1, calculate || f|| for f(z) =

For the inner product in Prob. 2, calculate || f|| for f(x) = «.

. In C'[a,b] define

(fg) = / F@)g(@) + f(@)d(x)] do

Show that this is an inner product.

In C'[a,b] define (f, g) f f(z ) dz. Show that this is not an
inner product.

In C*(R), determine linear independence or dependence of the following
sets of functions.

(a) 5= {1L,z}
(b) S= {617671:}
(c) S = {sinz,2sinz}

Show that {e®, e**} is a linearly independent set in C(IR) by considering
c1€® 4 cpe?® = 0 and putting = 0 and = = 1.
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9. Why can the wronskian not be used to determine the linear dependence
or independence of S = {2%3, 22} in C*(R)? Use the direct method to
determine linear independence.

10. Recall the Cauchy-Schwarz and triangle inequalities
[y = Il Iyl and - [[x 4yl <[] + [yl

Using the inner product (f, g) fo ) dx in C]0, 1], rewrite the
inequalities above, replacing x and y by f and g, respectively.

11. Using the inner product in Prob. 1, find the angle between z and .
[Remember: If u and v are vectors, then cosf = (u,v)/(||u] ||v|]).]

12. Consider V span {1,z,z*} in C[—1,1] with inner product (f,g) =
f f(z ) dz. Find an orthonormal basis for V. The basis consists
of the ﬁrst three Legendre polynomials.

13. Show that the set of solutions to y” = y forms a subspace for C'(R).
Show that the dimension is at least two.

14. Consider the subspace W of C( +oo) consisting of all polynomials.
Define the inner product (f,g) fo “® dx. let V = span
{1,z}. Find an orthonormal basis for V. T he ba81s consists of the first
two Laguerre polynomials.

SUMMARY

Vector spaces are one of the most important structures in applied mathe-
matics; they were defined and developed in this chapter. Some, such as E",
are direct generalizations of two- and three-space, while others such as vector
spaces of polynomials, functions, or matrices are generated by problems in
calculus, differential equations, and applied mathematics. Regardless of
their appearance, finitely generated vector spaces have common
attributes such as the defining axioms, subspace structure, bases,
and dimension.

The basis problem was posed as one of the fundamental problems of
linear algebra. Its solution becomes extremely important in Chap. 5 when
diagonalization of matrices is discussed. At this point its importance lies
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in analysis of applied problems (analysis of electron spin and resolution of
forces into tangential and normal directions are two examples).

The fundamental theorem of this chapter guaranteed the existence
of a basis® for any finitely generated vector space V. In fact, the
proof demonstrated that a basis could be “built” from any set of vectors
that spans V. For a given basis, the representation of a vector x in V is
unique, and the coefficients in the linear combination of basis vectors for x
are called the coordinates of x inn the basis. The development of these
concepts depended heavily on the concepts of linear dependence and lin-
ear independence. Orthonormal bases have some “nice” properties; we
exploit them in Chap. 5.

Bases are not unique. If S and 7" are two bases for a vector space V
and x is in V| then the coordinates of x in S and in T are related by the
transition matrix. Transition matrices are used in Chap. 4 to aid in the
representations of important functions, called linear transformations.

In calculus, the structure of the real numbers had to be developed before
the concept of a function could be defined. Accordingly, because the linear
functions we study have domains and ranges which are vector spaces, we are
now ready to proceed to the definition of linear transformations in Chap. 4.

ADDITIONAL PROBLEMS
1. Let V = {(z,y,2) in E® with 3z —y + 2 > 0}. Is V a vector space?
2. Let V = {(z,y,2) in E3 with z —y + 2z > 0}. Is V a vector space?

3. Let {vi,vq,...,v,} be a basis for a complex vector space V. Is
{ivi,ive,... ,iv,} a basis for V?

4. Let {v1,Vva} be a basis for E2. Let Aaxs be a real matrix. Is { Avy, Avy}
a basis for E?? Does it make any difference whether A is singular?

5. Let {v1,va,...,v,} be a basis for a complex vector space V. Is {¢yvy,
CoVa, ... ,CyVy,} a basis for V7?7 Assume ¢ #0 for k=1,2,... ,n.

6. If {(a,b), (c,d)} is to be an orthonormal basis for E?  what are ¢ and d
in terms of a and b7 What must be true about

a c
det(b d>

Where the generating set contains nonzero vectors only.
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10.

11.

12.

13.
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Let A be an m x n matrix, m # n. Leg P = A(ATA) 'AT. Show that
P is symmetric and that P? = P.

Find a first column that will make

SSILSIL
S-S5

an orthogonal matrix.

. Is the set of all orthogonal n x n matrices a subspace of M,,,,?

Let A be a fixed n x n matrix. Let V be the set of all matrices of
the form P~'AP, where P runs through the set of all n x n invertible
matrices. Is V' a subspace of M,,,,?

Let V' be the set of solutions of A,x,X.x1 = ¢X,x1, where c is a
complex number. Give V' the operations of C,;. Is V' a vector space?

Show that if A and B are n X n hermitian matrices, then i(AB — BA)
is hermitian.

Approximation of a given function by other functions is a common tool
of applied mathematics. Let the given function be g(z), z in [a,b].
To carry out the approximation, one must set up a finite-dimensional
vector space V' of functions defined on [a,b] and make sure the vector
space has an inner product (which generates a norm). The function g
must have ||g|| a finite number. Then if S = {f1, fo,..., fn} is a basis
for V', we try to find constants ¢y, co, ... , T, so that

|(crfi +cafot+---+cnfn) — 9l

is as small as possible. This process of minimization is simplified if .S
is an orthonormal basis, for then the best approximation is

Approximate g(x) = e” by a quadratic polynomial. Use the vector
space Po with inner product defined by

(a1$2 + axx + as, b1x2 + box + b3> = a1b; + asby + asbs
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14.

15.

16.

Suppose in a real vector space V' with basis S = {vi,va,...,v,} we
define an inner product for which the basis is not orthogonal. Define
Gnxn = ((Vi, Vj))nxn. Show that G # I. Show that G is symmetric.
In mathematical physics, G is called the metric of the vector space.

Regarding Prob. 14, show for vectors x and y in V, with x = a;v| +
ot apv, and y = byvy + - - - + b, vy, that

(x,y) = (x)s"G(y)s
Use the result of Prob. 15 to show that for any nonzero vector X in E™

XTGX >0

This means that the metric of a vector space is a positive definite
matrix.
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