Compilers	Lecture 3	Dr. Zainab Hashim

Lecture3: Lexical Analyzer Design
[image:]

	
[image:]

[image:]

[image:]

[image:]

[image:]

[image:]
[image:]

[image:]
[image:]

	

[image:]

	

[image:]

[image:]

[image:]
	

[image:]
	
[image:]

[image:]
1

image2.png
Menu Gy

Alltools Edit

e
yA
(‘)4

Convert Sign

H L Type here to search

A Retina Identification System B.

D2 ot st i b1 Dol pos sl B30 ESUFSC o] + Creste ® sign in

Find text or tools Q @

College of Education for Pure Seience
Thn-AL-Haithem/ Dep. Of Computer Science

CRapter Two

20212022
Third Stage

Example :- Having the following FSA representation shown below:-

Depending on the above representation, for 1.35 and 375 ,you asked to

recognize which one is aceepted and which one is not accepted?

Solution:-
The Transition Matrix for the above FSA:-

0-9

PO
a] e] o] ol
a| w] of |

For the String = 1.3§

W Input symbol
1 1

Itis accepted
because state
number 4 is a final
state

Es

Compilers

@& 74°F Partly doudy

A B E D B

2 @

&

949 PM

ENG

E

106

el 0 0 @ Q

10/23/2023

image3.png
= Menu (D ARetina Identification System B. A2 b last g bl pAfl ol st i35 ,b1 3-8 20 -wlen el + Creste @ Sign in - X

Alltools ~ Edit Convert Sign Find text or tools Q A= @ © K

4 =]

) Compilers

&, University of Baghdad M.Sc. Shaimaa Al-Obaidy oo

P College of Education for Pure Science 2021-2022 -

o Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
< Chapter Two
2, .
For the String =37 §

Input symbol

40
state and the expression is

finished

It is not accepted because
— state number 2 is not a final

106

c
This algorithm was slow and overlapping token, so a new algorithm can ®

be used to recognize the overlapping token.

™o _. -
& - L =
H A Type here to search B 8 @ m W@ @ & 74F Patlydoudy A T @ W 7z) NG 1072372023

image4.png
= Menu (D ARetina Identification System B...

Alltools Edit

D
®,
2,
GA

Convert ~ Sign

H L Type here to search

P2 sl clogs &5l

pdfl ol clast g bl Yy 3psd-siledl-cldjall X+ Create

Syntax Analyzer

When an input string (source code or a program in some
language) is given to a compiler, the compiler processes it in
several phases, starting from lexical analysis (scans the input and
divides it into tokens) to target code generation.

Syntax Analysis or Parsing is the second phase, i.e. after
lexical analysis. It checks the syntactical structure of the given
input, i.e. whether the given input is in the correct syntax (of the
language in which the input has been written) or not. It does so
by building a data structure, called a Parse Tree or Syntax Tree.

The parse tree is constructed by using the pre-defined
Grammar of the language and the input string. If the given input
string can be produced with the help of the syntax tree (in the
derivation process), the input string is found to be in the correct
syntax. If not, error is reported by syntax analyzer.

Example (1):-

Suppose Production rules for the Grammar of a language are:

S — cAd

A —bc|a

And the input string is “cad”.

Now the parser attempts to construct syntax tree from this
grammar for the given input string. It uses the given production
rules and applies those as needed to generate the string. To
generate string “cad” it uses the rules as shown in the given

diagram:-

71°F Mostly

®

Findtextortools Q| [B)

Sign in

]

3 @

@

~

48

image5.png
= Menu (D ARetina Identification System B...

Alltools ~ Edit Convert Sign

D
®,
2,
GA

P2 ol slash & bl pafl ol clost bl Y _3-psb-dlsedl-claiall X |+ Create

s
Compilers

University of Baghdad M.Se. Sheimea AL Obaidy

Colloge of Education for Pure Science 0212023

Thn-AL Hithem/ Dep. Of Computer Science Third Stage
Chapter Three

In the step (3) above, the production rule A—be was not a
suitable one to apply (because the string produced is “cbed” not
“cad”), here the parser needs to backtrack, and apply the next
production rule available with A which is shown in the step (4),
and the string “cad” is produced.

Thus, the given input can be produced by the given
grammar; therefore the input is correct in syntax. But backtrack
was needed to get the corect syntax tree, which is really a

complex process to implement.

Example
G= ((<exp>, <operand>, <id>)(a, b, e+, -, (,)l<exp>, P)
T=fa,b,ec,+,-,(,)}
P
<exp> 1= <operand> | <exp> + <operand> | <exp> - <operand>

<operand>

Ible

<id> | (<exp>)

<id>

USD/GBP

Findtextortools Q| [B)

Sign in

@)

ENG

@ @ ¢ 8

49

9:54 PM =]
10/23/2023 4

image6.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
~
Q
D Compilers i
University of Baghdad M.Sc. Shaimaa Al-Obaidy =
@ College of Education for Pure Science 2021-2022
4 Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage 28
2 Chapter Three
Syntax analyzer utilizes syntax trees to determine whether a
<G, statement is accepted or not. Check if a-(b+c) accepted?
<exp>
<exp> <operand>
<operand> (1)
1 <exp>
<id>
1 <exp> <operand>
+
. | !
<operand> <id>
| | %
<id> c
l 106
667%
b U
-~
v
We can use another method to determine whether a statement is
accepted or not, this method is called (Derivation Method). Cc
There are two types of derivation:-)
1. Leftmost derivation “
2. Rightmost derivation O [c}
Q

H L Type here to search

image7.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in —

Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R

Chapter ’J'hree

Example (3):- Q=
Let G be a grammar with this components ({S,E,F,P,R,L},{a b, (,

), t,-,%, %, /}8.P) o8
P=

S=E S+ +E S=-E E-+T

N x o E

T>F F>P P>b R a(L)

E~ E+T E-TxF F-> F'P L=*s

S+ E-T EST/F P-a P (5)

Is aX(b+a) accepted or not?

Leftmost derivation :-

$= E-» TxF » FxF - PxF > axF - axP - ax (§) > ax(E)> ax(E+T) >
ax(T+T) = ax(F+T) =+ ax(P+T) > ax(b+T) = ax(b+F) » ax(b+P)

>ax(b+a) . ax(b+a) is accepted

Rightmost derivation :-
$ = E = TXF = TxP - Tx(S) » TX(E) > TX(E+T) » TX(E+F) *Tx(E+P)
Tx(E+a) » Tx(T+a) » Tx(F+a) » Tx(P+a) + Tx(b+a) *Fx(b+a) +

Px(b+a) »> ax(b+a) .. ax (b+a) is accepted

Context-Free Grammars:
The syntax of a programming language is described by

context-free grammar (CFG). CFG consists of a set of terminals, a

set of non-terminals, a start symbol, and a set of productions.

957 PM
H L Type here to search 10/23/2023

image8.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
College of Education for Pure Science 2021-2022 ~
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage Q)
Chapter Three
Ambiguity I
A grammar that produces more than one parse tree for some EH]

sentence is said to be ambiguous.

Example:-

N x o E

consider a grammar
S—as|Sa|a

Now for string aaa, we will have 4 parse trees, hence ambiguous

3 957 PM
H L Type here to search 71°F Mostly clear W B 10/23/2023

image9.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
University of Baghdad - M.Sc. Shaimaa Al-Obaidy ~
College of Education for Pure Science 2021-2022 Q
“ Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three "
@, Parser Techniques ag
2 Types of Parsers in Compiler Design:-
The parser is that phase of the compiler which takes a token
G, string as input and with the help of existing grammar, converts it
into the corresponding Intermediate Representation. The parser
is also known as Syntax Analyzer.
a, Types of Parser:
The parser is mainly classified into two categories, i.e. Top-
down Parser, and Bottom-up Parser. These are explained below:-
Parser (Syntax Analyzer)
Top-down parser Bottom-Up parser
(Predictive Parser) (Operator-Precedent
Parser)
(_)ﬁ 53
With Without 106
Backtracking Backtracking
-~
v
1-Top-Down Parser:
The top-down parser is the parser that generates parse for c
the given input string with the help of grammar productions by
expanding the non-terminals i.e. it starts from the start symbol @,
and ends on the terminals. It uses left most derivation. Q
Q

3 1000 PM
H L Type here to search 71°F Mostly clear 10/23/2023

image10.png
= Menu | ¥ ARetina Identification System B... pdf2 o clasts &g bl pdfl ol clast g bl Yy 3psd-siledl-cldjall X+ Create

Alltools ~ Edit Convert Sign

compiuers
University of Baghdad M.Sc. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three

Further Top-down parser is classified into two types: Recursive
parser, and Non-recursive parser.

1. Recursive parser is also known as the backtracking parser.

N x o E

It basically generates the parse tree by using backtracking.
2. Non-recursive parser is also known as LL(1) parser or

predictive parser or without backtracking parser. It uses a parsing

table to generate the parse tree instead of backtracking.

2-Bottom-up Parser:

Bottom-up Parser is the parser that generates the parse tree
for the given input string with the help of grammar productions
by compressing the non-terminals ie. it starts from non-
terminals and ends on the start symbol. It uses the reverse of the
rightmost derivation. Further Bottom-up parser is classified into
two types: LR parser, and Operator precedence parser.

LR parser is the bottom-up parser that generates the parse
tree for the given string by using unambiguous grammar. It
follows the reverse of the rightmost derivation.

LR parser is of four types:-

(a) LR(O)

(b) SLR(1)

(¢) LALR(1)

(d) CLR(1)

Operator precedence parser generates the parse tree form given

grammar and string but the only condition is two comsecutive

H L Type here to search 7

®

Findtextortools Q| [B)

Mostly clear

Sign in

]

3 @

@

image11.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X

Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
~

non-terminals and epsilon never appear on the right-hand side of Q

any production.

N x o E

Steps of parsing in LL(1) parser or predictive parser with or

without backtracking:-
1- Remove left recursion, because ambiguous not allowed in
Ly1).
2- Compute FIRST and FOLLOW sets. 55
3. Construct the predictive parsing table using algorithm.
4. Parse string or statement using parser. 106
N
v

1002 PM
H L Type here to search 10/23/2023

image12.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X

Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
Chapter Three ~

Q

Backtracking manipulating (Removing Left
Recursion)
Left-Recursion Elimination o3l bl)Ly wusdl gé jusisll 1, <lal] L
E > E+A

N x o E
=

Left Recursion E|

ation :-

Left Recursion Elimination is of two types:-
1. Immediate Left-Recursion Elimination.

2. Not-Immediate Left-Recursion Elimination.

Immediate Left-Recursion Elimination
A grammar is left recursive if it has a nonterminal
(variable) S such that there is a derivation
S—Sa|p
Where a and B (sequence of terminals and non-terminals

that do not start with §)

Due to the presence of left recursion some top-down 6
parsers enter into an infinite loop so we have to climinate left
recursion. 100
If we have a production of the form- ~
A~ Ax | Ady| Acy]...| A0y, | B, | B,...| B, v
Where no fi begins with an A. The main rule for removing the
immediate backtracking is by gencrating two rules as follows:- ¢
)

H L Type here to search

image13.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
Cnuprer rnree N
" " Q
A+ 3 B,A|..| BA [the first one depends on the part

of the previous rule exactly on the
part that not begins with A)]

A A |0,A |0A |...|0 A |€ (the second one depends on
the part of the initial rule exactly
on the part that begins with A)

N x o E
=

Example (1):- Example (2):
N
S—>sSab|Scd|Sef|g|h E>abe|def[Exx
Sol.
Sol. > |
E-abc|defE
s—gs'|hs'

E-+rxE|E

s'—>abs'|cds' |efs' | &

Example (3):- Example (4):-

S (L) |a (No left recursion) | exp - exp orterm|term

L—LcS|S (left recursion) term - term and factor | factor 5

Sol. factor - not factor| (exp) | true | false

L— sL Sol. 10

L' —esL | exp > termexp” ~
exp’ > ortermexp | € v
term - factor term’
term > and factor term” | € c
factor - not factor | (exp) | true | false [}

3 10:06 PM
H L Type here to search 71°F Mostly clear W B 10/23/2023

image14.png
ForI:=2tondo

= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
College of Education for Pure Science T T 20212022 ~
Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage Q
“ Chapter Three
® Not Immediate Left-Recursion Elimination
7 oo
P Algorith; o8
T4 Arrange NT in any order;
GA

ForJ:=1toildo
Begin

Replace each production of the form A; Aj & by the production

Ai? 3 /30 /330 /[&
Where
Ay~ 31/3,/33/--/ 3y, are the current Ay productions;

End;
Eliminate the immediate left recursion among the Ai productions;
End;{of algorithm}

Example (1):-

B+Ac/d .
A~ Br/x
106
Solution:-
ATB A=A ~
Replace:- i > Ay
A A P MY v
By: A 9100 /3 X /33 0/ 3 &
A Ar/x Using:- Ay a1/a2/a3/ -/ ow c
A, *Ar a=r ®,

H L Type here to search 71°F Mostly clear

image15.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
(S .
University of Baghdad M.Sc. Shaimaa Al-Obaidy Q
College of Education for Pure Science 2021-2022 J
u Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
Chapter Three [
N APy /e X 88
ZA A1 *a/az
e, A Ac/d o a1=Ayc and g =d
1=2 J=1 || a=r 01= A 0= d
a, Aoz

o Ap>Acr/dr/x

These two rules are converted to
immediate backtracking which can be
eliminated by the following rules:-

A>Ac/d
Ay Aycr/dr/x

B~ Ac/d A~ AR,/ AQ, / AQy/... /A0, /B, / B, [.../B,
A->Acr/dr/x A>BA/BA/./BA

The result will be:-
B+ Ac/d
A-+>drA/xA 106

A~ oA /oA j0GA . 0 A E 59

A->crA/e

Example (2):-
S+ Ab/b

c
A>Ac/Sd/e (&)

H L Type here to search 71°F Mostly clear

image16.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
Chapter 'Inree ~
“ Another method to convert not immediate left recursion to ®
immediate left recursion is by using substitution, as shown in the Q=
3, following example:- .
88
2 S+Ab/b
A->Ac/sd/e
e, The values of prameters i,j,a,d1,02,03, ...
« Usually, (i) refers to the rule that contains the not immediate
left recursion (rule no. 2), while (j) refers to the first rule
(rule no.1).
« (%) represent the element next to the non terminal that
causes the not immediate left recursion.
« (910293, -) these values can get them from rule no.1 (the
first rule), through taking the right hand side of the rule.
Now, depending on the notes above,
Ruleno.1 S-Ab/b (j=1) from this rule we can get
the values of (91,02,03,...),s0 d1=Ab and d2=b
Ruleno.2 A-Ac/Sd/e (i=2), from this rule we can get the .
value of a =d
106

=2 j=1 01=Ab d2=b «a=d
S>Ab|b ~
A>Ac|sd|e
S>Ab|b
A->Ac|(Ab|bld|e

10:11 PM
H L Type here to search 10/23/2023

image17.png
= Menu | | ARetina Identification System B._ pdf2 o closds bl pdfl solclas &gkl Yy _3-pala-dlaedl-cle2iall X | 4+ Creste ® Sign in — X
Alltools ~ Edit Convert Sign Find text or tools Q B & @3 @ @ R
~
Compilers =
“ University of Baghdad Asst. Prof. Shaimaa Al-Obaidy
College of Education for Pure Science 2021-2022 DE
@ Ibn-AL-Haithem/ Dep. Of Computer Science Third Stage
7 Chapter Three oo
88
N
z‘ S*>Ab|b w in this step, the not immediate left recursion
A->Ac|Abd|bd|e converted to immediate left recursion
e

S>Ab|b

Now in this step, eliminate the immediate left
recursion

A-+pbdA' |eA

a,

A" »>cA | bdA' |«

Example (2):-
B—*>Acld rule no.1
A->Br|x rule no. 2
i=2 j=1 091=Ac 02=d a=r
B—>Acld
A=+ (Acldrlx

: 106

B-Acld yrv—,

A->Acrldrlx o immediate left recursion N
v

B-Acld

A-drA'|xA’ :::u .; ::i- step, climinate the immediate left Cc

A'»>cra | e

1011 PM
H AP Type here to search 71°F Mostly clear W ENG 1030003

image1.png
= Menu (¥ ARetina Identification System B.

Alltools Edit Convert Sign

e
&4
GA

PAF2 ol s i3 1 el b st i ! ESRSICII o] + Crese
compuers
University of Baghdad M.Se. Shaimaa ALObaidy
College of Education for Pure Science 2021-2022
Ibu-AL-Haithem/ Dep. Of Computer Science. Third Stage

Chapter Two

[FSA Accepter (Recognizer):-

This will represents the final sub-phase for the lexical analyzer by using
a specific algorithm shown below we can specify the input string or
statement is accepted ox not depending on a given grammar.

Never can apply the algorithm unless the grammar will be in minimized
form.

First, a transition matrix must be created for a given FSA, then doing a
table having two columns, the first represents the number of states while

the other represents the symbols for a given input string.

Algorithm :-
Begin
State = Start State of the FSA;
Symbol = First Input Symbol;
1f Matrix [State, Symbol] # Exror Indication then
Begin
State = Matrix [State, Symbol];
Symbol = Next Input Symbol;
End
Else Input is not accepted
If State is a Final State of FSA then Input is accepted
Else Input is not accepted

End;

£

®

Find text or tools Q

@ 74°F Patlycoudy A~ & B

Sign

® =

W 7z 9 ENG

® & ®

38

106

B Q

Q

9:48 PM
10/23/2023 &)

