Inner Product Spaces and Orthogonality

week 13-14 Fall 2006

1 Dot product of R"

The inner product or dot product of R” is a function (,) defined by
(u,v) = a1by + agby + - - + ayb, for u= [a17a2,...,an]T, v = [bl,bg,...,bn]T e R™.
The inner product (,) satisfies the following properties:
(1) Linearity: (au + bv, w) = a(u, w) + b(v, w).
(2) Symmetric Property: (u,v) = (v,u).
(3) Positive Definite Property: For any u € V, (u,u) > 0; and (u,u) = 0 if and only if u = 0.

With the dot product we have geometric concepts such as the length of a vector, the angle between two
vectors, orthogonality, etc. We shall push these concepts to abstract vector spaces so that geometric concepts
can be applied to describe abstract vectors.

2 Inner product spaces

Definition 2.1. An inner product of a real vector space V is an assignment that for any two vectors
u,v € V, there is a real number (u,v), satisfying the following properties:

(1) Linearity: {(au + bv, w) = a(u, w) + b(v, w).
(2) Symmetric Property: (u,v) = (v, u).
(3) Positive Definite Property: For any u € V, (u,u) > 0; and (u,u) = 0 if and only if u = 0.

The vector space V' with an inner product is called a (real) inner product space.

Example 2.1. For « = [;;], Y= [z;] € R2, define
(T, y) = 22191 — T1Y2 — T2y1 + 5T2Y2.

Then (,) is an inner product on R2. It is easy to see the linearity and the symmetric property. As for the
positive definite property, note that

(x,x) = 222 —2x 29 + 523

= (1‘1 + x2)2 + (1‘1 — ZIQ)Q > 0.

Moreover, (z,2) = 0 if and only if
T+x9=0, 1 —215=0,

which implies ; = 25 = 0, i.e., = 0. This inner product on R? is different from the dot product of R2.



For each vector u € V, the norm (also called the length) of w is defined as the number
[u == v/ (u,w).
If [Jul| = 1, we call w a unit vector and w is said to be normalized. For any nonzero vector v € V, we

have the unit vector 1

=-—
]l

S

This process is called normalizing v.
Let B = {u1, Us, . .. ,un} be a basis of an n-dimensional inner product space V. For vectors u,v € V,
write
U =T1U + To2Uz + - + TpUp,

V=91U1 + Yous + -+ YUy,

The linearity implies

n n
(u,v) = <inui,2yjuj>
_n -
Zmzyj Ui, Uj).

I
M:

=1 j=1
We call the n x n matrix
(wi,w1)  (up,u2) -+ (U1, Up)
(ug,u1) (ug,uz) - (uz,up)
A:
(U, 1)  (Up,u2) - (U, Up)

the matrix of the inner product (,) relative to the basis B. Thus, using coordinate vectors

[u]B: [‘Tlax%'-wxn]Ta [U]B: [ylay27"'ayn]T?

we have

(u,v) = [u]5Av]5.

3 Examples of inner product spaces
Example 3.1. The vector space R" with the dot product
u-v=aiby +asby + -+ ayby,

where u = [ay,az,...,a,]T, v = [b1,ba,...,b,]T € R", is an inner product space. The vector space R" with
this special inner product (dot product) is called the Euclidean n-space, and the dot product is called the
standard inner product on R"”.

Example 3.2. The vector space C[a,b] of all real-valued continuous functions on a closed interval [a, b] is
an inner product space, whose inner product is defined by

b
:/ F(g(t)dt, f.g € Cla,b.

Example 3.3. The vector space M,, ,, of all m x n real matrices can be made into an inner product space
under the inner product
(A, B) = tx(B" A),

where A, B € M, ;.



For instance, when m = 3,n = 2, and for

a1 Q12 bi1 b2
A= | ay axp |, B=| by by |,
asy as b3 b3
we have
BT A — bi1a11 + ba1ag1 + bziazi  biiaiz + barage + bziass
bi2a11 + bazagi + bzzazi  biaaiz + bagage + bzaazs
Thus
(A,B) = biian +boia + bsras
+bi2a12 + bagags + b3aaszs
3 3
= DD aibi.
i=1 j=1

This means that the inner product space (M3’2, {, )) is isomorphic to the Euclidean space (R3X2, )

4 Representation of inner product

Theorem 4.1. Let V be an n-dimensional vector space with an inner product (,), and let A be the matric
of {,) relative to a basis B. Then for any vectors u,v € V,
(u,v) =z Ay.
where © and y are the coordinate vectors of w and v, respectively, i.e., x = [u|g and y = [v]z.
Example 4.1. For the inner product of R? defined by
(T,y) = 2z1y1 — T1y2 — T2y1 + D222,
where x = [fc;],y = [Zﬂ € R?, its matrix relative to the standard basis £& = {el, 62} is
e { (e1,e1) (e1,e2) ] _ { 2 -1 }
(ea,e1) (e, ea) -1 5
The inner product can be written as
@) e ay =l [ 3 L]0 ].

We may change variables so the the inner product takes a simple form. For instance, let

{ z1 = (2/3)x1 + (1/3)a5
wy = (1/3)zy — (1/3)x5
{ y1=(2/3)y1 + (1/3)ys
y2 = (1/3)y1 — (1/3)yz

/
1
/
1

1/3)y; — (1/3)y
We have
2 1 2 1
@y = 2(Get+ gob) G+ )
2 1 1 1
(Bt + gub) (5o - )
(L LN (L L
3¥1 7 3%2 (3%~ 3b
1 1 1 1
+5(3$'1 3$l2> <3y'1 —3 é)

_ /! P 0T,
= Y1ty =T Y.



This is equivalent to choosing a new basis so that the matrix of the inner product relative to the new basis
is the identity matrix.
In fact, the matrix of the inner product relative to the basis

- (8w [ 2}

3 -l

<’LL1,’U,2> <’LL2,’U,2> 0 1

Let P be the transition matrix from the standard basis {e;, es} to the basis {u1, us}, i.e.,

2/3  1/3
[u1, us] = [e1, es] P = [e1, €3] { 1§3 _1§3 ] .

is the identity matrix, i.e.,

Let ' be the coordinate vector of the vector x relative the basis B. (The coordinate vector of @ relative to
the standard basis is itself «.) Then

T = [e1, es]T = [ug, uz]x’ = [e1, ex] Px’.
It follows that
r = Px’.
Similarly, let ¢’ be the coordinate vector of y relative to B. Then
y=Py.
Note that 7 = /T PT. Thus, on the one hand by Theorem,
(@,y) =2 Ly =y

On the other hand,
(x,y) =T Ay = 2’TPT APy,

Theorem 4.2. Let V be a finite-dimensional inner product space. Let A, B be matrices of the inner product
relative to bases B, B’ of V', respectively. If P is the transition matriz from B to B'. Then

B=PTAP.

5 Cauchy-Schwarz inequality

Theorem 5.1 (Cauchy-Schwarz Inequality). For any vectors w,v in an inner product space V,
(u,v)? < (u, u)(v,v).

Equivalently,
[(w, 0)| < [|ull[|v]]

Proof. Consider the function
y=y(t) = (u+tv,u+tv), teR.

Then y(t) > 0 by the third property of inner product. Note that y(t) is a quadratic function of ¢. In fact,
y(t) = (u,u+tv) + {tv,u + tv)
= (u,u) + 2{u,v)t + (v,v)t%.
Thus the quadratic equation
(w,u) + 2(u, v)t + (v,0)t* =0
has at most one solution as y(¢) > 0. This implies that its discriminant must be less or equal to zero, i.e.,

(2<u,v>)2 — 4w, u)(v,v) <0.
The Cauchy-Schwarz inequality follows. O



Theorem 5.2. The norm in an inner product space V satisfies the following properties:
(N1) |lv]| 2 0; and ||v|| =0 if and only if v =0.
(N2) [lev]| = || [Jv]]-
(N3) [Juw+ vl < Jlul + [[v].

For nonzero vectors u,v € V, the Cauchy-Schwarz inequality implies

< WY
[[wl v
The angle 6§ between u and v is defined by
cosf = {u,v) .
[[w] [l

The angle exists and is unique.

6 Orthogonality
Let V' be an inner product space. Two vectors u,v € V are said to be orthogonal if
(u,v) =0.

Example 6.1. For inner product space C[—m, 7], the functions sint¢ and cost are orthogonal as

s
(sint,cost) = / sint costdt
—T
Lan2e|" =0-0=0
= —sin =0-0=0.
2 -7
Example 6.2. Let u = [a1,as,...,a,]7 € R™. The set of all vector of the Euclidean n-space R™ that are

orthogonal to w is a subspace of R™. In fact, it is the solution space of the single linear equation
(u, ) = a1x1 + agwo + -+ - + apxy, = 0.

Example 6.3. Let u = [1,2,3,4,5]7, v =[2,3,4,5,6]1, and w = [1,2,3,3,2]7 € R%. The set of all vectors
of R® that are orthogonal to u, v, w is a subspace of R?. In fact, it is the solution space of the linear system

T1 + 229 + 3x3 +4x4 + 525 =0
221 4+ 3xo +4x3 4+ Sxry + 625 =0
T, + 229 + 323+ 324 + 225 =0

Let S be a nonempty subset of an inner product space V. We denote by S+ the set of all vectors of V
that are orthogonal to every vector of S, called the orthogonal complement of S in V. In notation,

St.= {v€V|<U,u> =0 for alluES}.
If S contains only one vector u, we write
ut = {veV’(u,w :0}.

Proposition 6.1. Let S be a nonempty subset of an inner product space V.. Then the orthogonal complement
St is a subspace of V.



Proof. To show that S+ is a subspace. We need to show that S+ is closed under addition and scalar
multiplication. Let u,v € S* and ¢ € R. Since (u,w) = 0 and (v, w) = 0 for all w € S, then

(u 4 v, w) = (u, w) + (v, w) =0,
(cu, w) = c{u,w) =0
for all w € S. So u + v, cu € S*. Hence S+ is a subspace of R”. O

Proposition 6.2. Let S be a subset of an inner product space V.. Then every vector of S+ is orthogonal to
every vector of Span (5), i.e.,

(u,v) =0, forall u € Span(S), ve St
Proof. For any u € Span (.5), the vector w must be a linear combination of some vectors in S, say,
U = a1 + aguz + -+ ApUL.

Then for any v € S+,
(u,v) = ar{ug,v) + az(ug,v) + - + an(up, v) = 0.

O

Example 6.4. Let A be an m X n real matrix. Then Nul A and Row A are orthogonal complements of each
other in R™, i.e.,

Nul 4 = (ROW A)L, (Nul A)L = Row A.

7 Orthogonal sets and bases

Let V be an inner product space. A subset S = {ul,uQ, . ,uk} of nonzero vectors of V is called an
orthogonal set if every pair of vectors are orthogonal, i.e.,

(s, u;) =0, 1<i<j<k.
An orthogonal set S = {'u,l, Ug, ... ,uk} is called an orthonormal set if we further have
ui| =1, 1<i<k.
An orthonormal basis of V is a basis which is also an orthonormal set.
Theorem 7.1 (Pythagoras). Let vy, va, ..., v be mutually orthogonal vectors. Then
lo1 + w2+ o2 = ol + o2l + -+ (o]
Proof. For simplicity, we assume k = 2. If w and v are orthogonal, i.e., (u,v) = 0, then

||u—i—v||2 = (ut+v,u+v)
= (u,u)+ (v,v)
ull® + [Jv]|>.

Example 7.1. The three vectors
v =121, ve=02,1,-4", v3=[3-21"

are mutually orthogonal. Express the the vector v = [7,1,9]7 as a linear combination of vy, v, v3.
Set
T1V1 + ToV2 + X303 = V.



There are two ways to find x1, 22, x3.
Method 1: Solving the linear system by performing row operations to its augmented matrix

[’1)1,’!)2,’03 | /UL

we obtain 1 = 3, z9 = —1, z3 = 2. So v = 3v; — vy + 2v3.
Method 2: Since v; L v; for ¢ # j, we have

(v,v;) = (101 + T2V2 + 23V3, V;) = x;(V;, V;),

where 7 = 1,2,3. Then

; = i =1,2,3.
Ty <’U7j,'U»L>’ 1 ) <y
We then have
o T+24+9 18 3
L VI
o - 14+1—36_—21__1
7 441416 21 7
21-249 28
r3 = —F— = —=
9+4+41 14
Theorem 7.2. Let vi,va,...,v; be an orthogonal basis of a subspace W. Then for any w € W,
w — <U1,w>v1+ <v27w>,u2_~_._._~_ <vk’w>
(v1,v1) (v2,v2) (vk, Ok)
Proof. Trivial. O

8 Orthogonal projection

Let V be an inner product space. Let v be a nonzero vector of V. We want to decompose an arbitrary
vector y into the form
y=ov+z, where zeuvt.

Since z 1L v, we have
(v,y) = (av,v) = a(v,v).

This implies that

Y )
(v,v)
We define the vector ( >
. v,Y
Proj, (y) = <v,v>v’

called the orthogonal projection of y along v. The linear transformation Proj,, : V' — V is called the
orthogonal projection of V onto the direction v.

Proposition 8.1. Let v be a nonzero vector of the Fuclidean n-space R™. Then the orthogonal projection
Proj,, : R®™ — R" is given by
. 1 T
Proj, (y) = ool Y

and the orthogonal projection Proj,. : R™ — R™ is given by

v-v

1
Proj, . (y) = <I — 'v'vT> Y.



Write the vector v as v = [ay, as, ..., a,|T. The for any scalar c,

cay aic
cas asC

v = = = v,
can, anC

where [¢] is the 1 x 1 matrix with the only entry c¢. Note that
vyl =v"y.

Then the orthogonal projection Proj, can be written as

Proj,(y) = <> (v-y)v

This means that the standard matrix of Proj,, is

1
(55 ) oo
v-v

Indeed, v is an n x 1 matrix and v7 is a 1 x n matrix, the product vv
The orthogonal projection Proj,. : R® — R" is given by

T is an n X n matrix.

1
Proj, (y) = y — Proj,(y) = (I - Mva) y.

This means that the standard matrix of Proj,. is

1
I - () voTl.
v-v

Example 8.1. Find the linear mapping from R3 to R? that is a the orthogonal projection of R ont the
plane x1 + o + 3 = 0.

To find the orthogonal projection of R? onto the subspace v+, where v = [1, 1, 1], we find the following
orthogonal projection

1
roty) = (LY} Btitm |
v-v 3 1
[ n
= g1 11 Yo
1 1 1 Y3
Then the orthogonal projection of y onto v is given by
. . 1 T
Proj,,y = y—Proj,(y)=(1—-—vv' |y
Vv
2 -1 -1 Y1
= - | -1 2 -1 Yo



Let W be a subspace of V', and let v1,vs,..., v, be an orthogonal basis of W. We want to decompose
an arbitrary vector y € V into the form
y=w-—+=z

with w € W and z € W+. Then there exist scalars ay, as, ..., oy such that
Y = a1v1 + oV + - - - + Qi Ug.
Since z L vy, z L v, ..., z L vi, we have
(vi,y) = (v, V1 + -+ g+ 2) = @ (vi, ;).

Then
<Ui7 y>
(vi, v;)

o; =

b —

We thus define
(ny) oy 2y) o (Ony)
<’U13 Ul> <'U2, U2> <'Uk;7 U}C>

called the orthogonal projection of v along W. The linear transformation

Projy (y) =

Projy, : V=V

is called the orthogonal projection of V' onto W.

Theorem 8.2. Let V be an n-dimensional inner product space. Let W be a subspace with an orthogonal
basis B = {vl,vg, e 7vk}. Then for any v € V,

. _ <vlvy> v <1~727y> » <’Ukay>
Projy, (y) = (o1, 01) 1+ (02, v2) 2+ + (or, O8)

Vg,
Projy, . (y) = y — Projy (y).
In particular, if B is an orthonormal basis of W, then
Projy (y) = (v, y)v1 + (v2,y)v2 + -+ + (Vk, Y) V.

Proposition 8.3. Let W be a subspace of R™. Let U = [ul, U, ..., uk] be an n X k matriz, whose columns
form an orthonormal basis of W. Then the orthogonal projection Projy, : R — R™ is given by

Projy, (y) = UU"y.
Proof. For any y € R”, we have

Projy, (y) = (u1 - y)ur + (uz - y)ug + - - + (up - y)uy.

Note that
uf uly Uy
T UQT UQT@/ uz -y
ul uly uy -y
Then
u -y
Uz -y
UUTy = [ul,u2,...,uk} .
U -y
= Projy (y).



Example 8.2. Find the orthogonal projection
Projy : R® — R3,
where W is the plane 1 + 2 + x3 = 0.

By inspection, the following two vectors

1 1
v=| —1 and vy = 1
0 -2
form an orthogonal basis of W. Then
. V1Y V2 Y
P =
rojy (y) (v1~v1)v1+ (vg-UQ)v2

_ 1

= - . 21 4

0
+yp =2 !
+y1 Y2 Y3 1
6 —2

o2 -1 n
= 3|1 2 -1 Vs
~1 -1 2 Y

Example 8.3. Find the matrix of the orthogonal projection

Projy, : R3 — R3,

where
1 1
W = Span 11, -1
1 0
The following two vectors
1/V3 1/vV2
wi=| 1/V3 |, us=1| -1/V2
1/V3 0
form an orthonormal basis of W. Then the standard matrix of Projy; is the product
1/vV3  1/V2

) VB VB 1/V3

which results the matrix
5/6 —-1/6 1/3
-1/6 5/6 1/3

1/3 1/3 1/3
Alternatively, the matrix can be found by computing the orthogonal projection:
Y1+Y2ty ! Y1~y !
Projp(y) = U1 | M
1 0
oY1 — Y2 + 2ys3

1
5 —y1 + Y2 + 2y3
2y1 + 2y2 + 2y3
5/6 —1/6 1/37 [ wn
16 5/6 1/3 | | v
13 1/3 1/3 | | v

10



9 Gram-Schmidt process

Let W be a subspace of an inner product space V. Let B = {vh V2, ..., vk} be a basis of W, not necessarily
orthogonal. An orthogonal basis B’ = {w17 wo, ..., wk} may be constructed from B as follows:
w; = v, W1 = Span {wl},
wy = vy — Projy, (v2), Wy = Span{wi,ws},
w3 = w3 — Projy,(v3), Ws = Span{w:,ws, w3},
w1 = Vg1 —Projy,  (ve—1), Wi_1 =Span{ws,...,wp_1},
wr = v, — Projy, | (vk).

More precisely,

w1 = 7,
o <wla 'U2>
Wy = V2 — 15
<w17 ’UJ]_>
_ (w1, v3) (w2, v3)
w3y = V3 — 1 2,
(w1, wr) (w2, w2)
B (w1, vy) (wo, vg) (Wp—1, V1)
wy = v — wy — Wy — ++— ——————— W1
(w1, wy) (wa, wy) (wp_1, wg_1)
The method of constructing the orthogonal vector wi, ws, ..., wy is known as the Gram-Schmidt process.
Clearly, the vector wi,ws,...,w; are linear combinations of vy, wvs,...,v,. Conversely, the vectors
v1,Va,. ..,V are also linear combinations of w1y, wo, ..., ws:
U1 = wq,
w1,V
vy = (wy 2>’w1 + wa,
(w1, wr)
w1, Vs Wa, U
S I B O B
(w1, wr) (w2, w2)
w1, Vg w2, Vi Wk —1, Uk
v = {wy >w1+< 2 >w2+~-~+¥wk,1+wk.
(w1, wr) (w2, wa) (Wg—1,wg1)
Hence
Span {’Ul,’Ug, e ,'uk} = Span {wl,wg, ey wk}.
Since B = {vy,vs, ... ,vk} is a basis for W, so is the set B’ = {wl,wg, . 7wk}.
Theorem 9.1. The basis {wl, wa, ... ,wk} constructed by the Gram-Schmidt process is an orthogonal basis
of W. Moreover,
I:vla'v27v37"-a'vk} = [w17w2;w37"'7wk]R7
where R is the k X k upper triangular matrix
i (w1,v2) (w1,v3) {w1,v)
(wi,w1)  (wi,wr1) (w1, w1)
(wa2,v3) - (w2,vk)
S R (wa-w2)
0 0 1 - (w3,vk)
(w3, ws)
| 0 0 0 1 i

11



Example 9.1. Let W be the subspace of R* spanned by

v = , U2 = , U2 =

— =
O =
OO - =

Construct an orthogonal basis for W.

Set wy; = vy. Let W = Span {w;}. To find a vector wo in W that is orthogonal to W7, set

wy = vz — Projy, ’UQZ’UQ—MUH
! <'LU1,’LU1>
1 1 1
_ 1 31 1] 1 1
B I T I O I B |
0 1 -3

Let Wy = Span {w;,ws}. To find a vector w3 in W that is orthogonal to W3, set

w3 = w3 — Projy,vs
_ (wy,v3) (wo, v3)
= V33— 57— W — T w2
<w1,w1) (wg,w2>
[ 1 1 1
Y N
0 211 % 4 1
_O 1 -3
1/3
B 1/3
- | —2/3
0

Then the set {wy, wsy, w3} is an orthogonal basis for W.
Theorem 9.2. Any m x n real matriz A can be written as
A=QR,

called a QR-decomposition, where () is an m X n matrix whose columns are mutually orthogonal, and R
is an n X n upper triangular matrix whose diagonal entries are 1.

Example 9.2. Find a Q) R-decomposition of the matrix

1 1 2 0
A=10 1 1 1
1 01 1
Let vq,v2,v3, v4 be the column vectors of A. Set
1
w| =1 = 0
1

12



Then v; = wy. Set

_ (wy,v9)
wy = V3 — 1
<'l,U1,’UJl>
1 1 1 1/2
0 1 -1/2
Then ve = (1/2)w; + ws. Set
ws = wvg— (w1, v3) (wa, v3) )
<w1,w1> <w2,w2>
2 3 1 1/2
= 1| - 3 0] — 1| =0.
1 1 —1/2
Then vz = (3/2)w; + wy + w3. Set
S ) VCT) B TG,
<w1,w1> <'IU2,’IU2>
[0 [ 1/2
= 1| - 3 0] —-= 1
|1 1 -1/2
[ —2/3
= 2/3
2/3

Then vyq = (1/2)w; + (1/3)ws + wy. Thus matrixes Q and R for @ R-decomposition of A are as follows:

1 1/2 0 -2/3
Q=10 1 o0 2/3 |,
1 -1/2 0 2/3
1 1/2 3/2 1/2
o 11 13
B=19 0o 1 o0
0o 0 0 1

10 Orthogonal matrix

Let V' be an n-dimensional inner product space. A linear transformation T': V' — V is called an isometry
if for any v € V,
1T ()]l = [lv]l.

Example 10.1. For the Euclidean n-space R™ with the dot product, rotations and reflections are isometries.

Theorem 10.1. A linear transformation T : V. — V is an isometry if and only if T preserving inner
product, i.e., for u,v €'V,
(T'(w), T(v)) = (u,v).

Proof. Note that for vectors u,v € V,

I (w + )|

(T(u+),T(u+v)) = (T(u),T(u)) + (T(v), T(v)) + 2(T'(u),T(v))
IT()|* + 1T () |* + 20T (), T'(v)),

lu+[* = (u+v,u+v) = (u,u) + (v,0) + 2(u, v) = [Ju]* + [[v]]* + 2(u, v).

It is clear that the length preserving is equivalent to the inner product preserving.

13



An n x n matrix @ is called orthogonal if QQT =1, i.e.,
o '=qT.
Theorem 10.2. Let @ be an n x n matriz. The following are equivalent.
(a) Q is orthogonal.
(b) QT is orthogonal.
(c)
(d)

Proof. “(a) < (b)”: HQQT =1I,then Q= = Q7. So QT(QT)TQTQ = I. This means that QT is orthogonal.
“(a) & (¢)’: Let @Q = [ug,uz, ..., uy,]. Note that

The column vectors of @ are orthonormal.

The row vectors of Q) are orthonormal.

uf ufu;, wluy - ufu,

- ul ulu; wluy - wlu,
Q Q: . [u13u2)"'7un]:

ul ufu; wluy - ulu,

Thus QTQ = I is equivalent to w! u; = 1 for i = j and u] u; = 0 for i # j. This means that @ is orthogonal
if and only if {u1, us,...,u,} is an orthonormal basis of V. O

Theorem 10.3. Let V' be an n-dimensional inner product space with an orthonormal basis B = {ul, Us, . . . ,un}.
Let P be an n x n real matriz, and

[vl,vg, .. .,vn] = [ul,u%...,un}P.
Then B' = {vl,vg, . ,vn} is an orthonormal basis if and only if P is an orthogonal matriz.
Proof. For simplicity, we assume n = 3. Since
[vl,vg,vg] = [ul,ug,uﬂP, ie.,
V1 = pr1ui + P21z + P31us,
V3 = p12U1 + P22Uz + P32Us3,

V3 = p13U1 + P23U2 + P33us.

We then have

(vi,v5) = (pru1 + P2tz + P3iUs, P1jUl + P2jUs + P3jUs)

= D1iP1j + P2iP2; + P3iP3;-
Note that B’ is an orthonormal basis is equivalent to
(i, ;) = 045,
and P is an orthogonal matrix if and only if
DP1iP1j + P2iD2; + P3iP3j = 0ij-
The proof is finished. O

Theorem 10.4. Let V be an n-dimensional inner product space with an orthonormal basis B = {ul7 U, ... ,un}.
Let T :V — V be a linear transformation. Then T is an isometry if and only if the matriz of T relative to
B is an orthogonal matriz.
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Proof. Let A be the matrix of T relative to the basis 5. Then
[T(u1), T(uz),...,T(uy,)] = [u1,usg, ..., u,]A.

Note that T is an isometry if and only if {T'(u1), T(u2),...,T(uy)} is an orthonormal basis of V, and that

{T(u1),T(uz),...,T(uy)} is an orthonormal basis if and only the transition matrix A is an orthogonal
matrix. O
1 -1 1
Example 10.2. The matrix A= | 1 1 1 | is not an orthogonal matrix. The set
1 0 -2
1 -1 1
B={|1]|,] 1/|,] 1
1 0 -2

of the column vectors of A is an orthogonal basis of R3. However, the set of the row vectors of A is not an
orthogonal set.
The matrix

1/vV3 —1/vV/2  1/V6
U=|1/v/3 1/V/2 1/V6
1/v3 0 —2/V6

is an orthogonal matrix. For the vector v = [3,0,4]7, we have

1/V3 -1/vV2  1/V6 3 V3+4/V6
Uv= | 1/V/3 1/vV2 1/V6 0|=| V3+4/V6
1/V3 0 —2/v6 | |4 V3 -8/V6

The length of v is
vl = V32 +02+42 =25 =5

and the length of Uwv is

U] = \/2(\/§+4/\@)2 + (\/g, 8/\/6)2 = 5.

11 Diagonalizing real symmetric matrices
Let V' be an n-dimensional real inner product space. A linear mapping 7' : V' — V is said to be symmetric
if

(T(u),v) = (u,T(v)) foral u,veV.
Example 11.1. Let A be a real symmetric n X n matrix. Let T : R™ — R™ be defined by T'(x) = Az. Then
T is symmetric for the Euclidean n-space. In fact, for u,v € R™, we have

T(u) - v = (Au) -v=(Au)lv=uTATv
= wAv=u- Av=u-T(v).

Proposition 11.1. Let V' be an n-dimensional real inner product space with an orthonormal basis B =

{ur,ugy...,up}t. Let T : V =V be a linear mapping whose matriz relative to B is A. Then T is symmetric
if and only the matriz A is symmetric.

Proof. Note that

ailp a2 - Qin

a21 Q22 -+ G2pn
[T('U/l),T(UQ), .. ,T(un)] = [ul,uQ, ce un]

ap1 Qp2 - Anpn
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Alternatively,
n
T(u;) = Zaijui, 1<j<n.

i=1

If T is symmetric, then
ai; = (ui, T(u;)) = (T(ui), u;) = aji.
So A is symmetric.
Conversely, if A is symmetric, then for vectors w =Y. | a;u;, v =Y ., bju;, we have

(T(w),v) = Y ab(T(w),u;) =Y abjaj
ij=1 ij=1
= Y abjay =Y aibj(ui, T(uy))
ij=1 ij=1
= (u,T(v)).
So T is symmetric. O

Theorem 11.2. The roots of characteristic polynomial of a real symmetric matriz A are all real numbers.

Proof. Let A be a (possible complex) root of the characteristic polynomial of A, and let v be a (possible
complex) eigenvector for the eigenvalue A. Then

Av = M.
Note that
Mol = Mo =(Av) -9 = (Av)To = v Ao

= v'Av = v Ap = vT Av = v o

= vI'(\0) = o= v v =\|v|?
Thus B

(A = NJv|* = 0.

Since ||v]| # 0, it follows that A = A. So X is a real number. O

Theorem 11.3. Let A and p be distinct eigenvalues of a symmetric linear transformation T : V — V. Then
eigenvectors for \ are orthogonal to eigenvectors for .

Proof. Let u be an eigenvector for A, and let v be an eigenvectors for y, i.e., T(u) = Au, T'(v) = pv. Then
Mu,v) = (Au,v) = (T(u),v)
= (u,T(v)) = (u, pv) = p(u,v).
Thus
(A — p){u,v) =0.
Since A — p # 0, it follows that (u,v) = 0. O
Theorem 11.4. Let V be an n-dimensional real inner product space. Let T : V — V be a symmetric linear

mapping. Then V has an orthonormal basis of eigenvectors of T'.

Proof. We proceed by induction on n. For n = 1, it is obviously true. Let A\; be an eigenvalue of T, and let
u; be a unit eigenvector of T for the eigenvalue \;. Let W := ui. For any w € W,

(T(w),u1) = (w,T(w1)) = (w, \u1)
= )\1 <'1U, U1> =0.
This means that T(w) € W. Thus the restriction T|W : W — W is a symmetric linear transformation.
Since dim W = n — 1, by induction hypothesis, W has an orthonormal basis {us, ..., u,} of eigenvectors
of T|W. Clearly, B = {uj,us,...,u,} is an orthonormal basis of V', and w1, us, ..., u, are eigenvectors of
T. O
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Theorem 11.5 (Real Spectral Theorem). Any real symmetric matriz A can be diagonalized by an

orthogonal matriz. More specifically, there exists an orthonormal basis B = {u1, us,
Au; = \u,;, 1<i<n,
Q7 'AQ = QT AQ = Diag[A1, A2, ..., A\,
where ) = [ul, Uz, ..., un] ; and spectral decomposition
A= uwul + Xusul + -+ Nu,ul.
Proof. Let T : R™ — R” be defined by T'(x) = Ax. For vectors u,v € R",

T(u)-v = (Au)-v=(Au)Tv=u"ATv
u'Av=u- (Av) = u-T(v).

.oy U} of R™ such that

Then T is symmetric. Thus R™ has an orthonormal basis B = {u1,us, ..., u,} of eigenvectors of T. Let

and Q = [ul,u%...,un}. Then

Q'AQ = QTAQ = Diag[A\i, A2,..., \y] = D.

Alternatively,
A = QDQ'=QDQ"
A 00T
0 Ao---0||ul
- [u17u27--~7un] R
00 A||u?
uy
uj
= [/\1ul, /\’LLQ, ey )\nun}
’U:T

n

T T T
= Muwiu; + Ausus + - + Aupt,, .

Note. It is clear that if a real square matrix A is orthogonally diagonalizable, then A is symmetric.

3 3

1
Example 11.2. Is the matrix A = | 3 3 | orthogonally diagonalizable?
3 1

The characteristic polynomial of A is
At) = (t+2)%(t-T7).

There are eigenvalues Ay = —2 and Ay = 7.
For A1 = —2, there are two independent eigenvectors

V1 = [717170]T’ Vo = [71707 HT

Set wy = vy,
U2 W oy = [-1/2,1/2,1]7.

Wy = Vg —
wq - Wq
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hen
: —1/V2 —1//6
U = 1/\/5 , Uy = —1/\/6
0 2/\/6

form an orthonormal basis of E},.
For Ao = —7, there is one independent eigenvector

vz = [1,1,1]T.

The orthonormal basis of E, is

1/V3
uz = | 1/V3
1/v3

Then the orthogonal matrix
-1/v2 -1/v6 1/V3
Q=| 1UvZ —1/V6 1v3
0 2/V6 1/V3

diagonalizes the symmetric matrix A.
An n x n real symmetric matrix A is called positive definite if, for any nonzero vector u € R™,
(u, Au) = u” Au > 0.
Theorem 11.6. Let A be an n x n real symmetric matriz. Let {,) be defined by
(u,v) = uT Av, wu,v €R"™.
Then (,) is an inner product on R™ if and only if the matriz A is positive definite.

Theorem 11.7. Let A be the matrixz of an n-dimensional inner product space V' relative to a basis B. Then
foru,v eV,
(u,v) = [ulgA[v]s.

Moreover, A is positive definite.

12 Complex inner product spaces

Definition 12.1. Let V be a complex vector space. An inner product of V is a function (,) : VxV — C
satisfying the following properties:

(1) Linearity: (au + bv,w) = a{u, w) + b{v, w).

(2) Conjugate Symmetric Property: (u,v) = (v, u).
(3) Positive Definite Property: For any u € V, (u,u) > 0; and (u,u) = 0 if and only if u = 0.
The complex vector space V' with an inner product is called a complex inner product space.
Note that the Conjugate Symmetric Property implies that
(u,av + bw) = a(u,v) + b{u, w).

For any u € V, since (u,u) is a nonnegative real number, we define the length of u to be the real

number
Jul = v/ (u,u).
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Theorem 12.2 (Cauchy-Schwarz Inequality). Let V be a complex inner product space. Then for any
u,veV,
[(u, )| < [Jul [l]-

Like real inner product space, one can similarly define orthogonality, the angle between two vectors,
orthogonal set, orthonormal basis, orthogonal projection, and Gram-Schmidt process, etc.
Two vectors u, v in a complex inner product space V are called orthogonal if

(u,v) = 0.

When both u,v € V are nonzero, the angle 6 between u and v is defined by

u, v
cosf = {uw,v) )
[[wll [lv]]
A set {'01, Vo, ... ,'uk} of nonzero vectors of V' is called an orthogonal set if the vectors vy, vs,...,v; are

mutually orthogonal. A basis of V is called an orthogonal basis if their vectors are mutually orthogonal;
a basis Bis called an orthonormal basis if B is an orthogonal basis and every vector of B has unit length.

T

Example 12.1 (Complex Euclidean space C"). For vectors u = [21,...,2,|T,,v = [wy,...,w,|T € C",

define

(u,v) = ul'® = 29 + 20Wa + - - + 20y
Then (,) is an inner product of C", called the standard inner product on C". The vector space C™ with
the standard inner product is called the complex Euclidean n-space.

Theorem 12.3. Let B = {171, Vo, v, vn} be an orthogonal basis of an inner product space V. Then for any
veV,
v,V v,V v, Uy,
’U:< 1>’U1+< 2>v2+"'+!n-
(v1,v1) (v2,v2) (Vn, vn)
Let W be a subspace of V' with an orthogonal basis {u1, us,...,u}. Then the orthogonal projection

Projy, : V. — V is given by

B <U,U1> <’U,’U,2> <’U,'U,k>
Pro v) = u; + o+ -+ —— U
w(®) (ui,up) (u2,uz) 2 (up, ug)
In particular, if V= C" andﬁ{ul, Ug, ..., U} is an orthonormal basis of W, then the standard matrix of the

linear mapping Projy, is UUT, i.e., -
Projy (x) = UU  x,

where U = [u1,ug, ..., ug] is an n x k complex matrix.

Theorem 12.4. Let B = {’Ul, v, ... ,’Un} be basis of an inner product space V. Let A be the matrix of the
inner product of V, i.e., A = [a;;], where a;; = (v;,v;). Then foru,v eV,

(u, v) = [u]" A[v],
where [u] and [v] are the B-coordinate vectors of w and v, respectively.
A complex square matrix A is called Hermitian if
A=A,

where -
A* = AT,

A complex square matrix A is called positive definite if for any « € C",

T Az > 0.
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Theorem 12.5. Let A be an n xn complex matriz. Then A is the matriz of an n-dimensional inner product
complex vector space relative to a basis if and only if A is Hermitian and positive definite.

A complex square matrix A is called unitary if
A* =AY

or equivalently,
AA*=A"A=1.

Let A = [a;5]. Then A is unitary means that

1 if i=j
0 if i#j

Theorem 12.6. Let A be a compler square matrixz. Then the following statements are equivalent:

a13G15 + Q2il25 + - - + Qnilnj = {

(a) A is unitary.
(b) The rows of A form an orthonormal set.
(¢c) The columns of A form an orthonormal set.

Theorem 12.7. Let V be an n-dimensional complex inner product space with an orthonormal basis B =

{ul,ug, ... 7'u,n}. Let U be an n X n real matriz, and
[’Ul,’Ug,. . .,’Un] = [uh’U,g, ce ,’U,n]A
Then B' = {’Ul,’Ug, e ,'vn} is an orthonormal basis if and only if A is a unitary matriz.

Proof. For simplicity, we assume n = 3. Since
[1)17 V2, 'Ug] = [u17 Uz, U’3:| A7

ie.,
V1 = a11U1 + ag1U2 + aziusg,

V2 = a12u1 + A22Uz + A32Us3,
V3 = G131 + G23U2 + A33U3.

We then have

(v;,v5) = (au1 + agus + as;us,
a1;u1 + a25U2 + CL3j’LL3>

= a1;015 + Q25 + a3;03;.
Note that B’ is an orthonormal basis is equivalent to
(i, v3) = 04,
and A is an unitary matrix if and only if
a13G1; + G825 + az;a3;5 = G;j.
The proof is finished. O

Let V be an n-dimensional complex inner product space. A linear mapping 7' : V' — V is a called an
isometry of V if T preserves length of vector, i.e., for any v € V,

1T ()| = [vl].
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Theorem 12.8. Let V' be an n-dimensional inner product space, and let T : V — V be a linear transforma-
tion. The following statements are equivalent:

(a) T preserves length, i.e., for any v € V,

1T ()|l = l[v]]

(b) T preserves inner product, i.e., for u,v € V,

(T(u), T(v)) = (v,v).

(¢) T preserves orthogonality, i.e., for u,v € V,

(T(u), T(v)) =0 <= (u,v) =0.

Proof. note that if T preserves inner product, of course it preserves length.
Now for vectors u,v € V, we have

IT(w +v)[[* = (T (u +v), T(u+v))

= (T(u), T(uw) +(T(v),T(v)) + (T'(u), T(v)) + (T(v),T(u))
IT(w)|? + 1T (0) 1> + 29T (), T(v));

|7 (u+ v=To)|[* =
IT()|? + | T(0)|* +23(T (u), T(v)).
On the other hand,
[+ o] = [[ul® + [[v]]* + 2R(u, v);
[+ vV=To|]* = [Ju]? + [v]? + 23 (u, v).

If T preserves length, then
IT(w)]* = [[ul?, T@)]? = [lv]?

IT(u+ 0 = flu+ ],
7 (o V=T0)|* = o+ V=Tof |

It follows that
R(T(u), T(v)) = R{u,v), S(T(u),T(v))=3u,v).

Equivalently,
) ' (T(uw),T(v)) = (u, v).
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