Lecture 11: Eigenvalues and Eigenvectors

Definition 11.1. Let A be a square matrix (or linear transformation). A number A is
called an eigenvalue of A if there exists a non-zero vector « such that

At =\ . (1)

In the above definition, the vector u is called an eigenvector associated with this eigenvalue
A. The set of all eigenvectors associated with A forms a subspace, and is called the eigenspace
associated with \. Geometrically, if we view any n X n matrix A as a linear transformation
T. Then the fact that @ is an eigenvector associated with an eigenvalue \ means « is an
invariant direction under 7. In other words, the linear transformation 7" does not change
the direction of « : @ and T either have the same direction (A > 0) or opposite direction
(A < 0). The eigenvalue is the factor of contraction (|A| < 1) or extension (|A[ > 1).

Remarks. (1) @ # 0 is crucial, since @ = 0 always satisfies Equ (1). (2) If @ is an
eigenvector for A, then so is cu for any constant c. (3) Geometrically, in 3D, eigenvectors of
A are directions that are unchanged under linear transformation A.

We observe from Equ (1) that A is an eigenvalue iff Equ (1) has a non-trivial solution.
Since Equ (1) can be written as

(A= X))@= At — \i =0, (2)

it follows A is an eigenvalue iff Equ (2) has a non-trivial solution. By the inverse matrix
theorem, Equ (2) has a non-trivial solution iff

det (A — \I) = 0. (3)

We conclude that A is an eigenvalue iff Equ (3) holds. We call Equ (3) "Characteristic
Equation" of A. The eigenspace, the subspace of all eigenvectors associated with A, is

eigenspace = Null (A — \I).
¢ Finding eigenvalues and all independent eigenvectors:

Step 1. Solve Characteristic Equ (3) for .
Step 2. For each ), find a basis for the eigenspace Null (A — AI) (i.e., solution set of Equ

(2))-

Example 11.1. Find all eigenvalues and their eigenspace for

Solution:



The characteristic equation is

det (A—A)=(3—=X)(=)) — (=2) =0,
M —3)4+2=0,
A=1)(A=2)=0.

We find eigenvalues
)\1 = 1, )\2 == 2

We next find eigenvectors associated with each eigenvalue. For A\; = 1,
o - 3—1 -2 X1 . 2 =2 X1
L I o e 4}

Tr1 = Ta.

or

The parametric vector form of solution set for (A — \I)Z =0 :

- E+l)
basis of Null (A — I : m .

This is only (linearly independent) eigenvector for A\; = 1.
The last step can be done slightly differently as follows. From solutions (for (A — A1) ¥ =
0)
Ty = T,

we know there is only one free variable x5. Therefore, there is only one vector in any basis. To
find it, we take x5 to be any nonzero number, for instance, o = 1, and compute x; = x5 = 1.

We obtain
. - T 1
wenm= [ =[]
For Ay = 2, we find

0= (A—XD)7 = {312 IZ} Bj = E :;] Bj

T = 2,172.

or

To find a basis, we take x9 = 1. Then z; = 2, and a pair of eigenvalue and eigenvector



Example 11.2. Given that 2 is an eigenvalue for

4 -1 6
A=12 1 6
2 -1 8
Find a basis of its eigenspace.
Solution:
4-2 -1 6 2 -1 6 2 —1 6
A—21 = 2 1-2 6 =12 -1 6/ —10 0 O
2 -1 8-2 2 -1 6 0 0 0
Therefore, (A — 2I) # = 0 becomes
2117 — o9 + 623 = 0, or x9 = 2x1 + 6x3, (4)

where we select x; and x3 as free variables only to avoid fractions. Solution set in parametric
form is

T T 1 0
= |x2| = |201 +623| =21 |2] + 23 |6
T3 T3 0 1
A basis for the eigenspace:
1 0
;= |2| and Uy = |6
0 1

Another way of finding a basis for Null (A — AI) = Null (A — 2I) may be a little easier.
From Equ (4), we know that x; an x3 are free variables. Choosing (x;, x3) = (1,0) and
(0,1), respectively, we find

1
l’1:1,1’3:0:>l’2:2:>ﬁ1: 2
0
0
l’1:0,1’3:1:>l’2:6:>ﬁ2: 6
1
Example 11.3. Find eigenvalues: (a)
3 -1 6 33— —1 6
A=10 0 6|, A—xi=| 0 —x 6
0 0 2 0 0 2—2X

det (A — M) = (3—X) (=\) (2= X) =0

3



The eigenvalues are 3, 0, 2, exactly the diagonal elements. (b)

4—-X 0 0
B -\ = 2 1-Xx 0

4
B=|2
1 1 0 4-A

o = O
- O O

det (B— M) =(4—X\)>(1—=X)=0.

The eigenvalues are 4, 1, 4 (4 is a double root), exactly the diagonal elements.

Theorem 11.1. (1) The eigenvalues of a triangle matrix are its diagonal elements.

(2) Eigenvectors for different eigenvalues are linearly independent. More precisely, sup-
pose that A1, Ao, ..., A, are p different eigenvalues of a matrix A. Then, the set consisting
of

a basis of Null (A — A\I), a basis of Null (A — A2I), ..., a basis of Null (A — \,1)

is linearly independent.
Proof. (2) For simplicity, we assume p = 2 : A\; # ), are two different eigenvalues. Suppose
that ; is an eigenvector of A\; and i, is an eigenvector of Ay To show independence, we need
to show that the only solution to

1‘1’171 + 1‘2’172 = 6

is x1 = 29 = 0. Indeed, if x1 # 0, then

We now apply A to the above equation. It leads to

- Z2 ., - To,
Au1 = —AUQ - )\1'&1 = —>\2U2. (6)
x I

Equ (5) and Equ (6) are contradictory to each other: by Equ (5),

Equ (5) — )\1’1_[1 = ﬁ)\lﬁg
I

Equ (6) — )\1'1_[1 = ﬁ)\gﬁg,
€y

or

Zo, - Zo,
—>\1UQ = )\1’&1 = —)\QUQ.
x x

Therefor \; = Ay, a contradiction to the assumption that they are different eigenvalues.

e Characteristic Polynomials



We know that the key to find eigenvalues and eigenvectors is to solve the Characteristic
Equation (3)
det (A—\)=0.

For 2 X 2 matrix,

So
det (A= A)=(a—A)(d—X) —bc
=M+ (—a—d) X+ (ad — bc)

is a quadratic function (i.e., a polynomial of degree 2). In general, for any n x n matrix A,

a;; — A Q12 tet Q1n
21 Qge — A - -- Q2
A— M = "
an1 an2 e Apn — >\

We may expand the determinant along the first row to get

age — A - Q2p,
det (A — AI) = (a;; — ) det + ..

an2 ann_)\

By induction, we see that det (A — AI) is a polynomial of degree n.We called this polynomial
the characteristic polynomial of A. Consequently, there are total of n (the number of rows
in the matrix A) eigenvalues (real or complex, after taking account for multiplicity). Finding
roots for higher order polynomials may be very challenging.

Example 11.4. Find all eigenvalues for

5 =2 6 -1
0 3 -8 0
A= 0 0 5 4
0 O 1 1
Solution:
5—A =2 6 -1

det(A=A)=(B—-Ndet| 0 55—\ 4

5-A 4
11—\

=BG-=-NB=XN[b=-AN(1=X—-4]=0.

= (5— ) (3 — \)det




There are 4 roots:

5-A)=0=X\=5
B3-=AN)=0=X=3

5G-N(1-XN)—-4=0 =N —-6A+1=0
+ /36 — 4

We know that we can computer determinants using elementary row operations. One may
ask: Can we use elementary row operations to find eigenvalues? More specifically, we have

Question: Suppose that B is obtained from A by elementary row operations. Do A and
B has the same eigenvalues? (Ans: No)

Example 11.5.
o 1 1 R2+R1—>R2 1 1 o
Aefoof -

A has eigenvalues 1 and 2. For B, the characteristic equation is

3—A
=(1-ANB=A)—1=X\—4)\+2.

det (B — \I) = {1IA 1 }

The eigenvalues are

‘o 4++/16 —8 :41\/§:2i\/§.
2 2

This example show that row operation may completely change eigenvalues.

Definition 11.2. Two n x n matrices A and B are called similar, and is denoted as
A ~ B, if there exists an invertible matrix P such that A = PBP™!.

Theorem 11.2. If A and B are similar, then they have exact the same characteristic
polynomial and consequently the same eigenvalues.

Indeed, if A= PBP~! then P(B — \)P~! = PBP~! — APIP~! = (A — \I). There-
fore,

det (A — AI) = det (P (B — M) P7') =det (P)det (B — AI)det (P~') =det (B — AI).

Example 11.6. Find eigenvalues of A if

5 -2 6 -1
0 3 -8 0
A~B=1y ¢ 5 4
0 0 0 4

Solution: Eigenvalues of B are A = 5,3,5,4. These are also the eigenvalues of A.



Caution: If A ~ B, and if )\, is an eigenvalue for A and B, then an corresponding
eigenvector for A may not be an eigenvector for B. In other words, two similar matrices A
and B have the same eigenvalues but different eigenvectors.

Example 11.7. Though row operation alone will not preserve eigenvalues, a pair of
row and column operation do maintain similarity. We first observe that if P is a type 1
elementary matrix (row replacement) ,

P 1 0 aR1+Ro—R2 1 0
pu— b
a 1 0 1|’

then its inverse P! is a type 1 (column) elementary matrix obtained from the identity
matrix by an elementary column operation that is of the same kind with "opposite sign" to
the previous row operation, i.e.,

-1 1 0 C1—aCy—C1q 10
b= {—a 1 = o1

We call the column operation
Cl — CLCQ — Cl

is "inverse" to the row operation

Ry +aRy — Rs.

Now we perform a row operation on A followed immediately by the column operation
inverse to the row operation

0 2 13

CI—CE)HCI 0 1
-2 3

e {1 1} Ry+Ra— Ry {1 1} (left multiply by P)
] = B (right multiply by P'.)

We can verify that A and B are similar through P (with a = 1)
o ro]fr 1)1 o
PAP— = { 1o 2| [-1 1

S R

Now, A\; = 1 is an eigenvalue. Then

—

Y

a3
SRR

—= U= {0] is an eigenvector for A.



But
o=
|

S I

—= U= B] is NOT an eigenvector for B.
In fact,
L [-1 1] [1] o
w-ne= 5 o [ -[o]
So, ¥ = {_11} is an eigenvector for B.

This example shows that
1. Row operation alone will not preserve eigenvalues.

2. Two similar matrices share the same characteristics polynomial and same eigenvalues.
But they have different eigenvectors.

e Homework #11.

1. Find eigenvalues if

—1 2 8 -1
0 2 10 0
(@) A~ 1o o 1 4
(0 0 0 3
[—1 2 8 —1
1 210 0
)Y B~10 01 4
0 0 0 2

2. Find eigenvalues and a basis of each eigenspace.

(a) A:{_A‘g ‘92}.

7 4 6
(b) B=|-3 —1 -8
0 0 1



3. Find a basis of the eigenspace associated with eigenvalue A = 1 for

12 4 -1
1 2 -3 0
A= 00 1 2
00 0 1

4. Determine true or false. Reason your answers.

(a) If AZ = A%, then X is an eigenvalue of A.
(

(c
(d) If A and B have the same eigenvalues, then they have the same characteristic
polynomial.

(e) If det A = det B, then A is similar to B.

)

b) A is invertible iff 0 is not an eigenvalue.
) If A~ B, then A and B has the same eigenvalues and eigenspaces.
)



