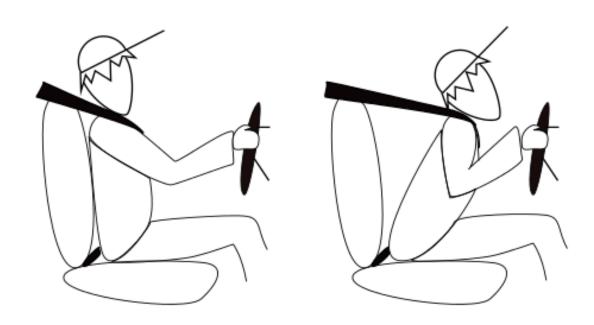


قوانین نیوتن (Newton's Laws):

إكتشف العالم إسحاق نيوتن (1662م-1727م) كثيرا من العلاقات الأساس التي تشكل المؤسسة الجديدة لمجال البايوميكانيك الحديث، هذه الاساسات مهمة جدا للعلاقات الداخلية بين الكميات الكينيتيكية.

قانون نيوتن الاول (القصور الذاتي) (Law of Inertia):


((كل جسم يستمر في سكونه أو حركته الخطية أو الدائرية ما لم تؤثر عليه قوة خارجية تحاول تغيير حالته الحركية او شكله))

يعرف هذا القانون بقانون الاستمرارية أو القصور الذاتي وإن التفسير المتعلق بمقاومة الاجسام لتغير حالتها ينطبق أيضا على الفعاليات الرياضية، حيث أن العداء في سباق 100م يستمر في ركضه إلا اذا كانت هناك قوة توقفه او تقلل من سرعته، حيث يصعب عليه التوقف فجأة، وكذلك فأن القفز لمسافة بعيدة يتطلب من الرياضي الركض من مسافة وبسرعة معينة لتحقيق تلك القفزة، أي هناك قوة لتغيير حالة الجسم الحركية.. إن مادة جسم الرياضي أو الاداة التي يستخدمها تحاول الاستمرار في حالتها من السكون أو الحركة الا إذا حدث تأثير من قوة خارجية تتغلب على قصورها الذاتي.

ان التعامل في قانون نيوتن الاول يكون من خلال حالتين هما السكون أو الحركة، ففي حالة السكون فأن محصلة القوى المؤثرة على الجسم يجب أن تساوي صفراً وفي حالة عدم تساوي هذه القوى فيتحول الجسم الى حالة الحركة وهذا ينطبق على الحركة الخطية والدائرية.

العوامل المؤثرة في قانون نيوتن الاول:-

1. يرتبط القصور الذاتي للاجسام بمقدار كتلتها: حيث أن مقدار القوة التي يبذلها الجسم للمحافظة على وضعه من السكون أو الحركة يعتمد على مقدار كتلته، وهنا يكون التناسب طرديا بين الكتلة والقوة المطلوبة للمحافظة على الوضع أو تغير الوضع الحركي للجسم:

تطبيق1: ومن هنا جاء التقسيم لفعاليات رياضية مثل رفع الاثقال والمصارعة والملاكمة وغيرها من الالعاب والفنون القتالية حسب الفئات الوزنية وذلك لان صاحب الكتلة الاصغر سيكون من الصعب عليه جدا من تغيير حركة اللاعب ذو الكتلة الاكبر، حيث أن الكتلة تلعب دوراً حاسماً في كل الفعاليات الرياضية.

تطبيق2: وتحتاج بعض الرياضات أن يمتلك اللاعب قصور ذاتي قليل لكي يبذل قوى تستطيع التغلب على قوة الجاذبية من أجل تحقيق إنجاز أكبر كما هو الحال بالنسبة للاعبي الجمناستك عند أداء الحركات الدورانية وزيادة هذا القصور عند الهبوط من الاجهزة.. من هنا فأن من الضروري جداً بالنسبة للاعبي الجمناستك أن يستمرون بالمحافظة على عدم زيادة كتلتهم مع العمل على تطوير القوة باتجاه التغلب على وزنهم أو القصور الذاتي لاجسامهم.

تطبيق3: وهناك رياضات اخرى تحتاج أن تكون كتلة الجسم قليلة من أجل أن تكون القوى التي تحاول تغيير الحالة الثابتة الى الحالة الحركية قادرة على تنفيذ هذا التغيير مثل لاعب الوثب العالي، إذ كلما اقترب اللاعب من تخفيف أو تقليل المقاومة (القصور الذاتي) التي يتعرض لها يكون قد اقترب من أداء الحركة بشكل ناجح.

2.الحالة الحركية للجسم: حيث أن الجسم الساكن يحتاج الى قوة أكبر للتغلب على قصوره الذاتي من الجسم المتحرك أي أن تغيير الحالة الحركية للجسم المتحرك يكون أسهل من الجسم الساكن، ونقصد بتغيير الحالة الحركية هو زيادة السرعة من خلال زيادة مقدار القوة المؤثرة بثبات كتلة الجسم، ومن الممكن أن يكون لدى المدرب الالمام بذلك. تطبيق: حيث أن العمل على زيادة السرعة أو التغيير في التعجيل اثناء العمل يكون له الأثر الاكبر في إحداث التطور البدني المطلوب مع مراعاة المسارات الحركية، وبما أن كتلة الرياضي ثابتة فإن تغيير السرعة هو المطلوب كجانب تدريبي، ويظهر ذلك أيضا في تنفيذ الركلات الثابتة والمتحركة في كرة القدم وكذلك عند حدوث التصادم بين لاعبين أحدهما ثابت والاخر متحرك في الارض أو في الهواء أثناء القفز.

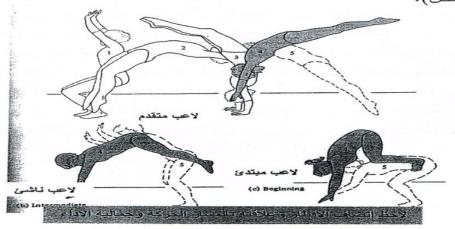
3. مساحة قاعدة الارتكاز: إن العلاقة طردية بين مساحة قاعدة الارتكاز ومقدار القصور الذاتي للجسم، ومن هنا كان لوقفة البداية في الكثير من المهارات الرياضية المختلفة الاثر الاكبر في تحقيق استقرار لدى الرياضي.

تطبيق: فالمصارع يؤكد على الوقوف بقاعدة واسعة للمحافظة على الاستقرار العالي سيما أثناء التلاحم مع المنافس وكذلك الحال في الملاكمة فأن وقفة الاستعداد تكتسب أهمية كبيرة لمنع سقوط اللاعب بسهولة.. إن القاعدة الواسعة والمتوازنة للجسم تمنع من خروج مركز تقله خارج قاعدة الارتكاز وتحدد زاوية سقوطه وهو من العوامل المهمة التي تحدد مقدار القصور الذاتى للأجسام.

4. ارتفاع مركز ثقل الجسم: وتكون العلاقة عكسية مع مقدار القصور الذاتي، حيث أن زيادة ارتفاع مركز ثقل الجسم يقلل من قصوره الذاتي والعكس صحيح. تطبيق: نلاحظ الاطفال بأعمار صغيرة (4-6) سنوات تكون خطواتهم غير مستقرة بسبب إرتفاع مركز ثقلهم بالنسبة لاطوالهم.

5. طبيعة الارض أو السطح: لكي نتغلب على القصور الذاتي لجسم على سطح أملس أو صقيل، نحتاج الى قوة أقل مما لو كان السطح خشناً أو متعرج، ويتضح ذلك من خلال ممارسة فعاليات رياضية مختلفة على أرضيات مختلفة.

عزم القصور الذاتي Moment of Inertia


²gyration of radius × mass = Moment of Inertia ²k×m =I

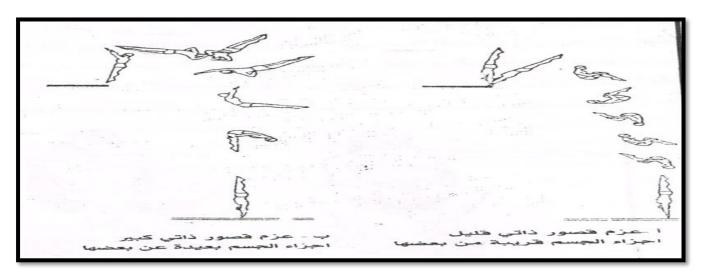
:Angular Momentumالزخم الزاوي (كمية الحركة الزاوية)

ان كمية الحركة الزاوية يمكن ان تتحدد من خلال القانون الآتي:-

الزخم الزاوي (H)= عزم القصور الذاتي (I) × السرعة الزاوية (w)

إن المبدأ السابق من الممكن أن يدخل في تحديد شكل ألاداء المهاري الجيد للاعب متقدم والاداء للاعب مبتديء عند أداء نفس المهارة ويظهر لدينا ذلك من خلال المسار الحركي الظاهري للمهارة وكما في الشكل.

إن مفهوم عزم القصور الذاتي يتوضح لنا من خلال الكثير من الفعاليات الرياضية مثل الرقص على الجليد والحركات الاكروباتيكية في الجمناستك والغطس، حيث أن اللاعب يعمل على تقريب أجزاء جسمه من محور الدوران عند زيادة السرعة ويبعد أجزاء جسمه عن مركز الدوران عندما يريد أن يقلل من سرعة الدوران وكما في الشكل


لاحظ أنصاف الاقطار وعلاقته بمسار الحركة وجمالية الاداء

أي أن تنظيم العلاقة بين عزم القصور الذاتي والسرعة الزاوية يتم من خلال التحكم بأنصاف اقطار الدوران، وهذا ناتج من خلال العلاقة العكسية بين السرعة الزاوية ونصف قطر الدوران. حيث أن:

 $r \times (w)$ السرعة المحيطية السرعة الزاوية

وبما أن: الزخم الزاوي(H)= عزم القصور الذاتي(I) × السرعة الزاوية(W) ومن تنظيم العلاقة والتعويض عن السرعة الزاوية في معادلة الزخم، نجد ان العلاقة السابقة هي التي توضح فاعلية الحركات التي يقوم بها الرياضي أثناء رمي القرص أو مهارات الجمناستك.

قانون نيوتن الثاني (قانون التعجيل) (Law of Acceleration)

تعد القوة العامل الرئيس لحدوث الحركة وإن مقدار الحركة وكميتها متعلق بمقدار القوة المؤثرة وهذا القانون يعد القاعدة الميكانيكية الرئيسة لجميع الحركات وينص على: ((يتناسب تعجيل الجسم طردياً مع مقدار القوة المؤثرة عليه وتكون الحركة بإتجاه القوة)) $a \times m = F$

من المعروف أن الحركة عبارة عن ناتج التأثير المتبادل بين القوة الداخلية والقوى الخارجية أي أن هناك عملية فعل ورد فعل (قانون نيوتن الثالث)، وهذا يتحدد من كون القوة الداخلية هي قوة (العضلات والاربطة والانسجة الضامة) التي تعمل على إنتاج حركة الجسم خلال اداء المهارات الرياضية، ويتناسب التغير في كمية الحركة (الزخم) طردياً مع القوة المؤثرة وهذا هو الاساس في الانجاز الرياضي وتنظيم عمليات التدريب، حيث تلعب كتلة الرياضي دوراً مهماً في الاداء الحركي سيما في الفعاليات التي تلعب فيها الكتلة دوراً حاسماً في تحقيق الانجاز مثل المصارعة والملاكمة وحتى في الاركاض فأن القوة المنتجة من قبل الرياضي تتناسب مع مقدار كتلته.

مثال:

احسب مقدار التعجيل الناتج من قوة مقدارها N100 على ثقل كتلته KG10؟

تطبيق1: وهناك الكثير من الامثلة التي من الممكن أن نطبقها على هذا القانون، ففي مصارعة السومو يعتمد المصارع على كتلته في إحداث تغيير في كتلة خصمه وهذا هو الاساس في اسقاط خصمه داخل الحلبة. إن الاساس هو في تغيير الكتلة أو في إنتاج القوة لزيادة كمية الحركة الخطية.

تطبيق2: من خلال هذا القانون فأن عمليات التدريب يجب أن تتم بإستخدام الاوزان ضمن شكل المسارات الحركية والمحافظة عليها (تدريب المصارعين مع خصوم أكثر من وزنهم أو إستخدام أدوات رمي أثقل في فعاليات الساحة والميدان)، وأن ثبات كتلة الرياضي يقابله زيادة القوة الموضوعة لزيادة سرعة الاداء وهو مهم في خدمة الاداء الفني خاصة في الفعاليات التي تتطلب السرعة في الاداء مثل الاركاض القصيرة.

مثال:

ما هو مقدار كتلة العداء الذي لديه قوة مقدارها N800 تمكنه من قطع مسافة سباق m100 بتعجيل قدره N800 ? ؟

تطبيق3: إن الاستخدام الاخر لهذا القانون يتعلق بدقة التهديف من مسافات مختلف مثلاً في كرة اليد أو كرة السلة، حيث أن استخدام القوة لكل حالة يختلف عن الحالة الاخرى لاكساب الكرة التعجيل المناسب مع حالة التهديف المطلوبة.

س/ رامي ثقل يصدر قوة مقدارها N1200 بسرعة s/m6 وبزمن 50,5.. إحسب كتلة الرامي؟ أما قانون نيوتن للتعجيل في الحركة الدورانية فهو:

((إن تعجيل الجسم يتناسب طردياً مع مقدار الزخم الزاوي وتتعلق بمقدار البعد العمودي لنقطة تأثير القوة -نصف قطر الدوران))

إن تطبيق قانون نيوتن في التعجيل

يمكن ان يعطى استنتاجات علمية عديدة يمكن ان نصوغ منه قواعد لبيان أهمية تطبيق هذا القانون في التدريبات والتمارين الرياضية وكما يأتي:

* مع ثبات الكتلة، فأن زيادة القوة تعني زيادة تعجيل تلك الكتلة التي تمثل جسم اللاعب.. مثلاً (من اجل الحصول على مسافة ابعد في رمي الثقل أوتحقيق مسار طيران عالي وبعيد عند التهديف البعيد بكرة السلة أو عند المناولة البعيدة بكرة اليد او عند ركلة رمية المرمى بكرة القدم، يتطلب ذلك زيادة القوة لان الأداة هنا ثابتة الكتلة) وتطوير القوة في العضلات العاملة يتطلب استخدام أوزان مضافة لاجزاء الجسم العاملة لتمثل مقاومة لهذه العضلات من اجل تطوير كفاءتها.

* مع ثبات القوة ، فأن نقصان الكتلة يعني زيادة تعجيل هذه الكتلة أيضا، وفي هذا المجال يمكن استخدام الكرات الطبية الأقل وزنا من الأداة في مختلف الألعاب التي تستخدم الأداة في مبارياتها، ككرة القدم واليد والسلة والطائرة والعاب المضرب والعاب الرمي بالعاب القوى، وفي ذلك يدخل تطوير الشعور العضلي وقدرة الإحساس بالحركة ضمنا عند التدريب بهذه الأوزان.

التعجيل، مثلا عند نزول المنحدرات فقوة الجاذبية تعد قوة كبيرة مفاجئة ومسببة لهذا التعجيل، مثلا عند نزول المنحدرات فقوة الجاذبية تعد قوة كبيرة تسبب في زيادة تعجيل الجسم أو سحب الجسم بسرعة أعلى من سرعته الحقيقية، وفي حركات الهبوط من الأجهزة بعد تطبيق مختلف الحركات والتي تتطلب استخدام قوة قليلة بزمن طويل من اجل العمل على تحقيق تعجيل تناقصي للجسم بعد الهبوط من هذه الأجهزة، أو عند تحقيق دفع قوة كبير بأقل زمن ممكن كما في ارتقاء لاعب الوثب الطويل ، حينما تنخفض سرعته لحظة لمس القدم للارتقاء ولنفرضها كانت (s/m10.7) وانخفضت لحظة الدفع إلى (s/m10) أي التناقص في السرعة كان بمقدار \$ s /m0.7 في زمن قدره (s0.1) فأن الرياضي سيتحرك بتعجيل متوسط قدره (-2s/m7) ، وبافتراض إن كتلة اللاعب Kg80)، فهذا يعني أن متوسط القوة لتحقيق ذلك هو:

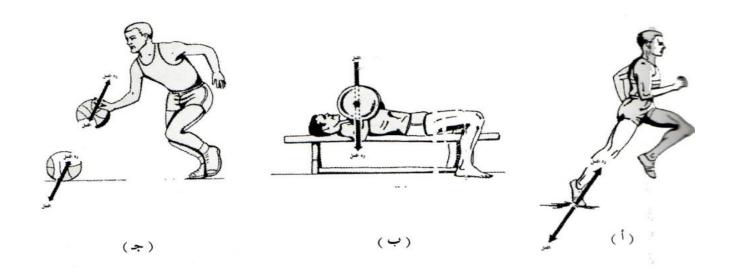
عنم ×- 7 م/ث² 80 m. a =F

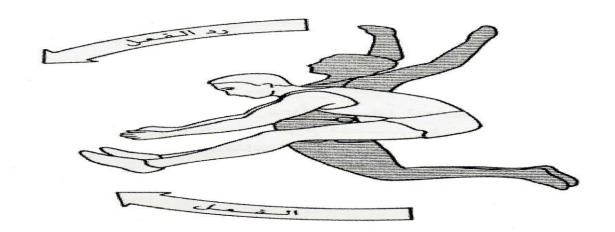
= - 560 Nأي بتغير في زخم الجسم مقداره (-s/m.Kg 56).

إن المفاهيم التي تطرقنا إليها أعلاه تعني إن هناك تدريبات خاصة تهدف إلى تطوير نوع القوة المناسبة مع نوع المهارة الرياضية والتي يطلق عليها القوة الخاصة المحددة للأداء.

يجب أن يكون الهدف من تدريب اللاعب هو الحصول على أفضل انجاز وأفضل نتيجة، وأول شئ يجب إدراكه هو أن يكون تدريب الأداء بطريقه واضحة ومفهومه، والتعرف على مصطلح القوة الخاصة المحددة للأداء التي تتبع هذه المهارة أو تلك.

القانون الثالث (قانون رد الفعل) Law of Reaction

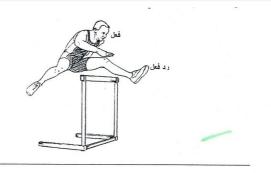



((لكل فعل رد فعل يساويه بالمقدار ويعاكسه بالاتجاه))

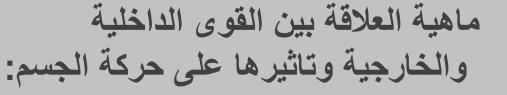
إن هذا القانون يفسر حركة الاجسام فضلاً عن تفسير التأثير المتبادل بين القوى الداخلية والخارجية، ويعد هذا القانون الاساس في فهم ناتج تأثير القوة على حركة الاجسام.

أحياناً يكون من الصعوبة بمكان التعرف على رد الفعل، فعندما نقذف الكرة نحو الحائط ثم ترتد الكرة، فإننا لا نرى الحائط يتحرك في الاتجاه المضاد، ولكن هناك حركة صغيرة للمساحة التي ضربت من الحائط، وإذا ارتدت الكرة من الارض فأن الكرة الارضية تتحرك في الاتجاه الاخر، ولكن لان كتلة الارض كبيرة للغاية، فإ هذه الحركة تكون ضئيلة جداً ولا نستطيع أن نميزها وهذا ينطبق في حالة القفز العمودي أو الوثب العريض يظهر رد الفعل على جسم القافز وليس على الارض.

إن وجود قوتين متساويتين ومتضادتين في الاتجاه يظهر لنا في الكثير من الحركات الرياضية التي هي عبارة عن فعل ورد فعل وبحسب نوع المهارة، وهذا ما نطلق عليه التأثير المتبادل بين قوة العضلات والقوى الخارجية الاخرى مثل قوة الجاذبية وقوة الاحتكاك وضمن مفهوم قانون نيوتن الثالث.



تطبيق: تعد تمارين البلايومترك من أنواع التدريب التي تعتمد على مبدأ استخدام القفز من ارتفاعات مختلفة وبالتالي الحصول على ردود أفعال عضلية مختلفة تسهم في تطوير العمل العضلي باتجاه المسارات الحركية، وهي تعتمد على مقدار رد فعل السطح الذي يقوم الرياضي بالتدريب عليه.


إن قوة رد الفعل متجهة تتعلق بالزاوية التي يتم التأثير فيها وتكون على نفسط خط عمل القوة المؤثرة وكما في الشكل.

تطبيق: إن ترك العداء لمكعب البداية بقوة يدفعه الى الامام بنفس القوة وكذلك في السباحة، حيث أن عملية السحب تولد في الوقت نفسه دفع الجسم الى الامام ويتناسب ذلك مع مقدار السحب بالذراع أثناء السباحة الحرة، ومن الامثلة الاخرى ارتداد كرة السلة من الارض، حيث أن ارتفاعها يتحدد من خلال مقدار قوة ارتطامها بالارض كرد فعل لذلك.

قانون الفعل ورد الفعل في الحركة الدورانية:

((لكل عزم قوة مؤثر عزم قوة أخر مساوي له ومعاكس له بالاتجاه ويحدث في نفس اللحظة)) تطبيق: ذلك في الكثير من الفعاليات الرياضية، ففي القفز العالي فإن عملية ارجاع الرأس الى الخلف فوق العارضة (فعل) يؤدي الى رفع القدمين فوق العارضة (كرد فعل)، وفي الحواجز فإن عملية ثني الجذع تؤدي الى أن تتجه الساق القائدة بإتجاه الجذع كرد فعل

إن كل حركة يقوم بها الرياضي من ركض أو رمى أو قفز لا يمكن أن تحدث إلا بوجود قوى.. فعند محاولة رفع ثقل من الارض الى الاعلى للتغلب على هذه المحاولة هو من خلال قواه الذاتية (العضلية والاربطة والانسجة الضامة)، وما المقاومة الا عبارة عن (قوة الجذب الارضى) لذلك الثقل، فنجد أن القوة التي يستخدمها الرباع لرفع ثقل وزنه 300 نيوتن أقل من القوة المستخدمة لرفع ثقل وزنه 500نيوتن. من ناحية اخرى إن محاولة التغلب على القصور الذاتي لجسم ساكن على ارض ملساء تختلف عنها عندما يكون الجسم نفسه على أرض خشنة.. إن هذا الاختلاف متأت نتيجة لطبيعة الارض التي تتم عليها الحركة الت تتمثل بما يسمى (قوة الاحتكاك)، ونتيجة لهذا الاختلاف فإن القوة المبذولة لتحريك الجسم في الحالة الاولى أقل منها في الحالة الثانية، أي أن القوة العضلية للرياضي تتحدد على اساس القوة الخارجية.

وكذلك الحال بالنسبة لرامي القرص، فهو يحاول استغلال إمكانياته الذاتية على ضوء القوى الخارجية (مقاومة الهواء)، ويكون ذلك بالتحكم في مقدار زاوية الانطلاق أخذاً بنظر الاعتبار إتجاه الريح، وكذلك نسبة ارتفاع النقطة التي ينطلق منها القرص وسرعة الانطلاق..ويعد (الماء) أحد أنواع القوى الخارجية التي تؤثر بشكل أو بأخر على القوى الداخلية للسباح. إن اشتراك جميع العوامل في أداء الرياضي لحركة معينة سواء كانت حركة جسمه بمفرده أو مع الاداة، يجعل من الاهمية دراسة طبيعة العوامل الميكانيكية التي تؤثر في الاداء ومدى الاستغلال الجيد للقوى الخارجية المحيطة بالجسم.

عندما يسلط الرياضي قوة على الأرض للنهوض إلى الأعلى فهذا يعني أن رد فعل الأرض سيساو ي القوة المسلطة ويعاكسه في الاتجاه، ومن المعلوم لدينا أن اتجاه الوزن (وزن الرياضي) دائما إلى الأسفل كتوضيح لمفهوم جذب الأرض للأشياء فان اتجاه رد فعل الأرض سيكون إلى الأعلى أي بمعنى أن الرياضي عندما يؤثر بقوة إلى الأرض فان الأرض سيرد ذلك إلى الأعلى أي إن رد الفعل سيكون بالاتجاه الموجب ومع اتجاه قوة العضلات أي:

رد الفعل = قوة العضلات

وبما أن وزن الجسم في اتجاه معاكس لرد الفعل فإننا نستطيع أن نستنتج أن: رد الفعل = قوة العضلات – وزن الجسم

مثال:

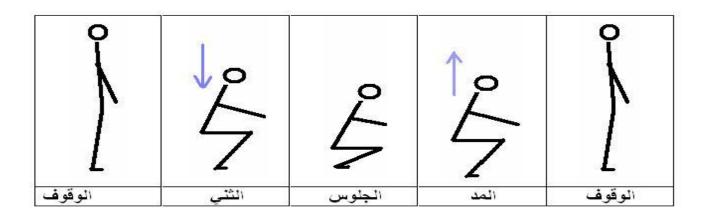
لو أدى الرياضي حركة ثني مفصلي الركبتين من الوقوف بشكل غير مبالغ فيه (انسيابي) فهذا يعني تغلب وزن الجسم على قوة العضلات وافتراضا أن وزن الرياضي كان N1000 وكانت قوة العضلات في لحظة ال ثني N800 فان علامة رد الفعل ستكون سالبة لان:

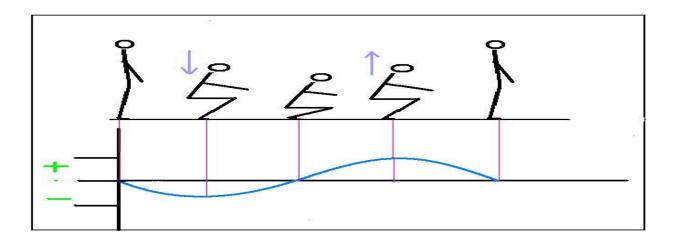
رد الفعل = قوة العضلات - وزن الجسم

رد الفعل = 800 – 1000

رد الفعل = - N200

ونستنتج من ذلك أن رد الفعل سيكون اقل من وزن الجسم في حالة الثني وهذه ملاحظة مهمة لتفسير بعض منحنيات دالة (القوة-الزمن)، أما إذا عكسنا الحالة أي إن الرياضي سيمد مفصلي الركبتين من وضع الجلو س فللتغلب على وزن الجسم الذي مقداره N1000 نحتاج إلى N1200 (افتراضا) فان علامة رد الفعل ستكون موجبة لان:


رد الفعل = قوة العضلات - وزن الجسم


رد الفعل = 1200 – 1000

رد الفعل = N200

ونستنتج من ذلك أن رد الفعل سيكون اكبر من وزن الجسم في حالة المد وبالضبط سيكون وكما موضح في الشكل (1000+200=1200)

ومن ذلك نستنتج أيضا إن رد فعل الأرض سيكون صفرا أو قريبا إلى الصفر إذا تساوت قوة العضلات مع وزن الجسم وسوف لن تكون هناك علامة (موجبة أو سالبة لرد الفعل) مما يؤشر أو يدل على الثبات أو الاستقرار.. علل: وهذا يوضح أيضا عدم استطاعة الأطفال من الوقوف على القدمين في سن مبكرة بسبب ضعف العضلات (تغلب وزن الجسم على قوة العضلات).

يمكننا الاستفادة من ذلك في قانون نيوتن الثاني لمعرفة التعجيل أو العجلة:

 $a \times m = F$

m /F =a

ولو عوضنا عن القوة برد الفعل

m / Reaction = a

ومن معلوماتنا أعلاه فان رد الفعل = قوة العضلات - وزن الجسم فان:

m /body weight – العضلات F = a

ما مقدار التعجيل لجسم وزنه N800 يسلط على ارض قوة مقدارها N870؟

m /Weight Body – عضلات الجسم F =

الحل:

نجد الكتلة من خلال قسمة وزن الجسم على الجذب الارضي (2s/m 9.81)

a/F = m

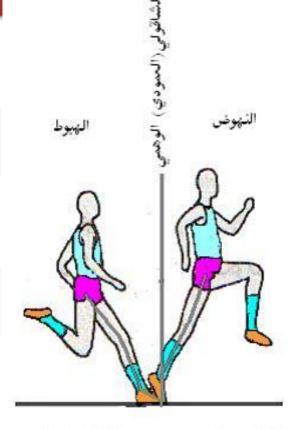
9,81/800 = m

Kg82 =m تقريباً

82/800 - 870 = a

82/70 = a

2s/m0.85 = a بما أن التعجيل موجب فان الجسم في حالة مد


ويمكننا من خلال الشكل الاتي: أن نتوقع الخط البياني للتعجيل، إذ يتضح لاعب الوثب الطويل (العريض) في حالتين على لوحة الارتقاء الحالة الأولى الهبوط والثانية الانطلاق (نرسم من مشط اللاعب خطا عموديا وهميا إلى الأعلى فيكون في حالة الارتكاز الأمامي عندما يكون الخط الوهمي أمامه وبالعكس يكون في حالة الارتكاز الخلفي عندما يكون الخط خلفه)، وبما إن اللاعب يثني ركبته بعد هبوطه على لوحة الارتقاء فالخط البياني سيكون بالاتجاه السالب.

أما إذا كان الدفع على سطح الأرض بشكل مائل مثلما هو واضح في مرحلة الارتكاز الخلفي (الشكل أعلاه) فان القوة تتحلل إلى مركبتين (إذا كانت تمر بمركز كتلة الجسم) احداهما المركبة الأفقية والتي ستتعامل مع اتجاه الحركة إذ سيكون رد الفعل بعكس اتجاه الحركة أي لا تتعامل مع وزن اللاعب، والمركبة الأخرى ستكون عمودية وهي مثلما مر سابقا، أي:

على الأغلب فا Horizontal acceleration = F/m في الأغلب فا المع قوة الاحتكاك والذي تم إهماله ن التعجيل الأفقي سيتعامل مع قوة الاحتكاك والذي تم إهماله

=Vertical acceleration m /Weight Body – عضلات الجسم F

وعن طريق قانون فيثاغورس يمكننا من إيجاد المحصلة للتعجيل

الارتكاز الامامي

الارتكاز الخلفي

المصادر

- 1. سمير مسلط الهاشمي؛ البايوميكانيك الرياضي، ط3: (بغداد، النبراس للطباعة والتصميم، 2010).
- 2. صريح عبدالكريم الفضلي؛ <u>تطبيقات البيوميكانيك في التدريب الرياضي والاداء الحركي، ط2</u>: (بغداد، جامعة بغداد، 2010).
- 3. صريح عبدالكريم الفضلي ووهبي علوان البياتي؛ موسوعة التحليل الحركي، ج1: (بغداد، مطبعة العكيلي ، 2007).
 - 4 طلحة حسام الدين؛ مباديء التشخيص العلمي للحركة: (القاهرة، دار الفكر العربي، 1994).
- 5.محمد جاسم محمد الخالدي؛ البايوميكانيك في التربية البدنية والرياضة: (بغداد، جامعة الكوفة، 2012).
- 6 ياسر نجاح حسين واحمد ثامر محسن؛ التحليل الحركي الرياضي: (النجف الاشرف، دار الضياء للطباعة ، 2015
 - 7.د.حسين مردان؛ محاضرات في البايوميكانيك: (كلية التربية الرياضية، جامعة القادسية).
 - 8. James G. Hay; The Biomechanics of Sports Techniques, 3rd edition:

(New Jersey, prentice – Hall,1985).

9. Susan J. Hall; Basic Biomechanics, sixth edition:

(New York, McGraw – Hill, 2012).

شكرا لطيب الاستماع