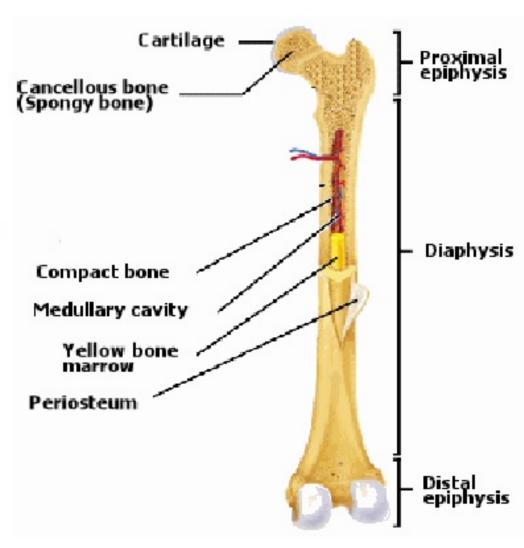
# Biology

### Bone marrow:

■ Is one of the largest organs in the body, it is the main site for hematopoiesis.

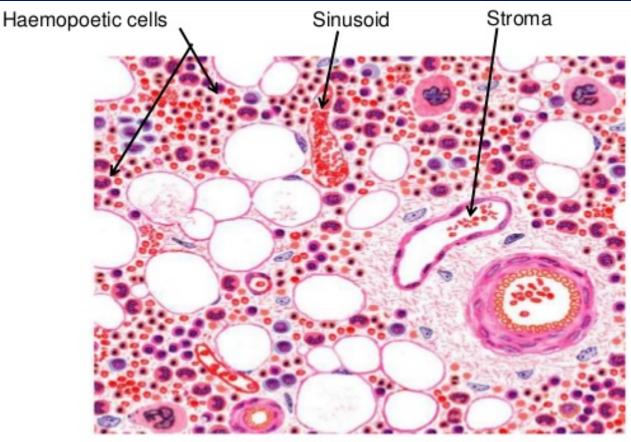
- red bone marrow:
- yellow bone marrow:

#### What is Bone marrow & Where do you find it ???


#### **Yellow Marrow**

 Presence of Adipocytes

#### Red marrow


 Consists of Stroma, Hemopoitic cord, Sinusoidal capillaries

The "hollow" center of the diaphysis, called the medullary cavity, is filled with a fatty substance called, *yellow* bone marrow, while the "hollow" spaces of the epiphyseal spongy bone are filled with blood making tissue called *red bone* marrow.



In newborns, all bone marrow is red & active, but as the child grows most of the marrow changes to yellow type, but with severe bleeding or hypoxia, yellow marrow reverts to red marrow.

### Red bone marrow:



Bone marrow ( Decalcified section)











. Polychromatophilic erythroblast Dr Radhakrishnan

Normoblast

#### Hematopoiesis

- 1<sup>st</sup> trimester: yolk sac mesoderm.
- 2<sup>nd</sup> trimester: liver and spleen.
- 3<sup>rd</sup> trimester: bone marrow.

- Stem cells:
- Stem cells will proliferate and differentiate in two ways:
- where the cells will eventually become lymphocytes (lymphoid cells)
- where the stem cells will form the myeloid cells that will develop in the bone marrow leading eventually to the formation of erythrocytes, granulocytes, monocytes & megakaryocytes.

# Progenitor cells (colony-forming units(CFUs)):

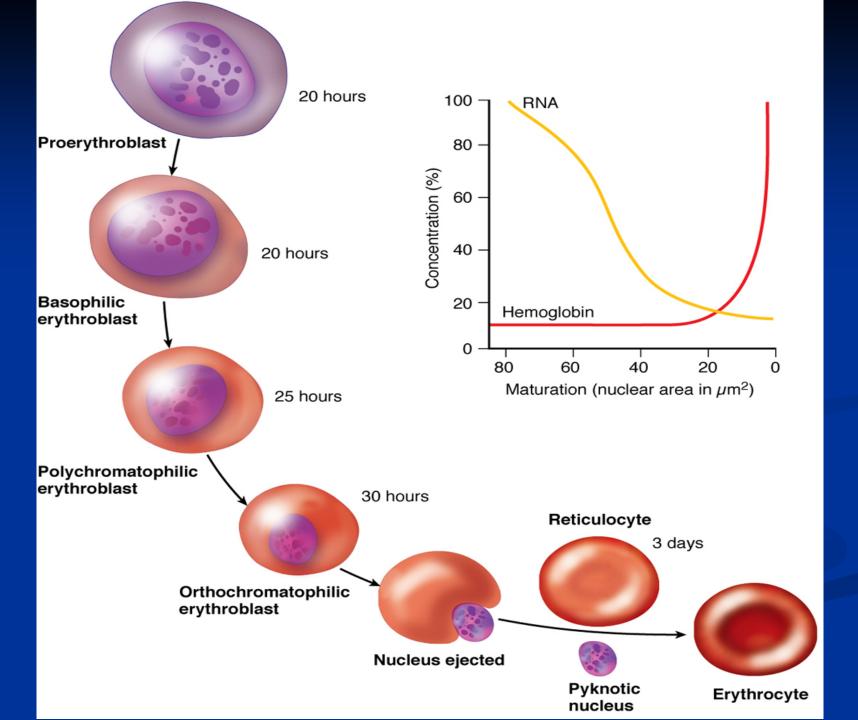
- 1. Lymphoid lineage of CFU-lymphocytes of all types (CFU-L).
- 2. Erythroid lineage of CFU-erythrocytes (CFU-E).
- Thrombocytic lineage of CFU-megakaryocytes (CFU-Meg).
- 4. Granulocyte-monocyte lineage of CFU-granulocytes-monocytes (CFU-GM).

Hematopoietic growth factors called colony-stimulating factors (CSF) are proteins with complex functions:

Stimulating proliferation (mitogenic activity) of immature progenitor & precursor cells.

Supporting differentiation of maturating cells.

Enhancing the functions of mature cells.


e.g. granulocyte (G-CSF), Erythropoietin (EPO), thrombopoietin (TPO) which are important clinically to increase marrow cellularity and blood cell counts in immunodeficient diseased conditions, BM transplant and malignancies.

- Precursor cells: (blast cells)
- In these cells the morphologic characteristics will differentiate for the first time suggesting the cell types they will become.
  - Additional information:
- Are stem cells only present in embryos?

| Phase                                                                                              | Stem Cells                                                       | Progenitor Cells                                                                                          | Precursor Cells (Blasts)                                                                               | Mature Cells                                                          |
|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Early<br>morphologic                                                                               |                                                                  | nologically<br>ble; have the<br>of lymphocytes                                                            | Beginning of<br>morphologic<br>differentiation                                                         | Clear morphologic differentiation                                     |
| Mitotic activity                                                                                   | Low mitotic activity;<br>self-renewing;<br>scarce in bone marrow | High mitotic activity;<br>self-renewing; common in<br>marrow and lymphoid organs;<br>mono- or bipotential | High mitotic activity;<br>not self-renewing; common<br>in marrow and lymphoid<br>organs; monopotential | No mitotic activity;<br>abundant in blood and<br>hematopoietic organs |
| Lymphoid multipotential cells  Pluripoter cell  Myeloid multipotential cells remain is bone marrow | Migrate to lymphoid                                              | Lymphocyte-colony-<br>forming cell (LCFC)                                                                 | Lymphoblast                                                                                            | B and T lymphocytes                                                   |
|                                                                                                    | organs                                                           | Erythrocyte-colony-<br>forming cell (ECFC)                                                                | Erythroblast                                                                                           | Erythrocyte                                                           |
|                                                                                                    |                                                                  | Megakaryocyte-<br>forming cell                                                                            | Megakaryoblast                                                                                         | Megakaryocyte                                                         |
|                                                                                                    |                                                                  | Monocyte-<br>colony-forming<br>cell (MCFC)<br>MGCFC                                                       | Promonocyte                                                                                            | Monocyte Monocyte                                                     |
|                                                                                                    |                                                                  | Granulocyte-<br>colony-forming<br>cell (GCFC)                                                             | Neutrophilic myelocyte                                                                                 | Neutrophilic granulocyte                                              |
|                                                                                                    |                                                                  | Eosinophil-colony-<br>forming cell (EoCFC)                                                                | Eosinophilic myelocyte                                                                                 | Eosinophilic granulocyte                                              |
|                                                                                                    |                                                                  | Basophil-colony-<br>forming cell (BCFC)                                                                   | Basophilic myelocyte                                                                                   | Basophilic granulocyte                                                |

- Erythropoiesis:
- proerythroblast:
- basophilic erythroblast:
- polychromatophilic erythroblast:
- normoblast (orthochromatophilic erythroblasts):
- Reticulocytes:
- erythrocytes

the process of development of RBC from the process of development of RBC from the process into the release of reticulocytes into the circulation takes about 7 days & it is under control of the hormone erythropoietine.



## Clinical informations

Reticulocytosis:

# Thank

you