
I. Light Microscopy (Histology)

A. Definition
B. Resolution of light microscope

0.2 μm
units of measurement
mm, μm, nm, A

C. Translucent specimen

[Resolution of human eye ~100 μm]

I. Light Microscope D. Nikon LM 1. 10X oculars, width adjustment 2. Nosepiece 3.4,10,40,100X objectives 4. Mechanical stage 5. Condensor lens 6. Condensor aperture 7. Light source, rheostat 8. Coarse & fine focus

I. Light Microscope

- E. 5-Headed LM
- 1. Located in back hallway
- 2. Available 8-5, M-F, firstcome, first-served
- 3. Do not remove slide box
- 4. HAS field iris diaphragm
- 5. HAS separate power supply
- 6. HAS lighted pointer

I. Light Microscope

- F. 2-Headed LM
- 1. Located in Rm 6128
- 2. Available 8-5, M-F
- 3. Do not remove slide box
- 4. Has field iris diaphragm
- 5. Has lighted pointer
- 6. Has video camera and computer with frame grabber to view/print/save images (not for student use)
- 7. Priority use for tissue processing lab

Tissue Processing

Rgistration

• Lab.no, Date, Name of patient, age, Sex, Occupation, address, reffereing doctor

II. Fixation: preservation of tissue structure

- A. Avoid autolysis
- B. Common fixatives:
- formaldehyde,buffered formal-saline
 10%
 - 2. glutaraldehyde: for EM
 - 3. 90-100% alcohol: suitable for cytology
 - 4. heat: boiling water, microwave

The purposes of fixation are

A.to inhibit autolytic enzymes and kill • microorganisms of decomposition .

B.to preserve tissue as nearly as possible • in its original form.

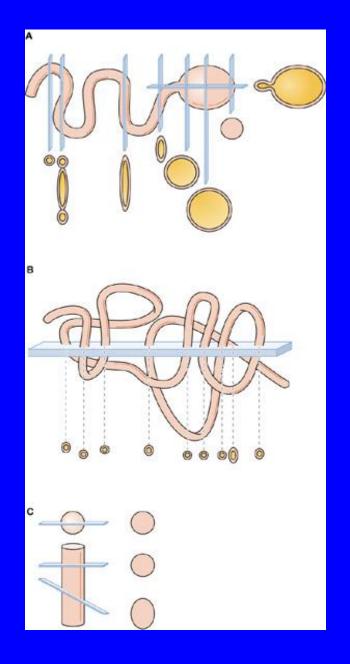
C.to protect tissues against subsequent • damage during embding.

The purposes of fixation are-continue

D. to give tissue a texture which permits • easy sectioning . •

E. to render the various constituents receptive of the proposed stains

 Fixation of tissues with different types of fixatives depend on tissues, large specimen should be sliced . loose tissues max. 10 mm penetration , compact tissue max. penetration 5mm, hollow organs injected or packed with wool socked in formalin .


Gross examination

 Includes description of the specimen : weight, dimensions, color, texture, cutsection, followed by photography Tissue dissection and taking representative sections followed by labeling .
The pieces taken will placed in tissue cassette .

Transfer casssette either to automatic tissue processoe or to jars (in case of manual tissue processing)

Tissue dissection

III. Dehydration

- A. Definition: removal of water
- B. Rationale: for paraffin embedding/sectioning
- C. Steps
 - 1. wash out fixative
 - 2. graded series of alcohol
 - a. 70%, 95%, 100%, 100%
 - 3. replace water by diffusion
 - 4. not too long, not too short

III. Dehydration D. Procedure 1. automatic tissue processor a. overnight 2. Baths: water, 70,95,100,100 % alcohol 3. Clearing agent: 2 baths of xylene

I. V. Clearing
A. Paraffin solvent
B. Xylene, "clearing agent"
C. Makes tissue appear "clear"

V. Infiltration

A. Replace xylene with paraffin

B. Immerse in melted paraffin

1. ~55° C MP

C. Remove all bubbles, xylene

D. Procedure

1. Two baths of melted paraffin

VI. Embedding

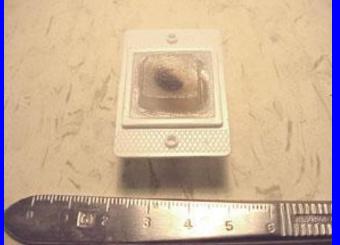

- A. Orient tissue
 - 1. cross section
- 2. longitudinal sectionB. Dissection orientationC. Avoid bubbles

Fig. 1-30

VI. EmbeddingD.Procedure
1. Place tissue cassette in melted paraffin
2. Fill mold with paraffin

3. Place tissue in mold

4. Allow to cool

VII. Sectioning – Trimming the Block Untrimmed tissue block

> Trimmed block with excess paraffin removed and block face in a trapezoid shape

VII. Sectioning

A. Rotary microtome
1. 5-10 μm
2. resolution vs. staining
B. Cryostat
C. Freezing microtome
D. Vibratome

VII. Sectioning

E. Procedure

 Place tissue block in microtome with wide edge of trapezoid lowest, and parallel to knife
 Advance blade toward block

VII. Sectioning

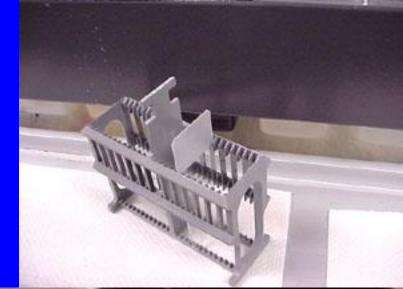
NOTE: Many of the figures in the text are of plastic embedded sections cut at 1 μ m thickness, and thus showing better resolution than 5-10 μ m paraffin sections seen in lab.

VIII. Mounting sections

A. 40° C water bath

- 1. Flattens paraffin section
- 2. Permits mounting on slide
- B. Gelatin & albumin
- C. Glass slides
- D. Oven / air dry

IX. Staining


A. Basic dye: hematoxylin

- 1. basophilic structures: DNA, RNA
- 2. differentiation: sodium bicarbonate
- B. Acid dye: eosin
 - acidophilic (eosinophilic) structures
 a. mitochondria, collagen
- C. Water soluble dyes (paraffin sections)
- D. Clearing agent (remove paraffin)
- E. Rehydrate
- F. Stain (trial & error timing)

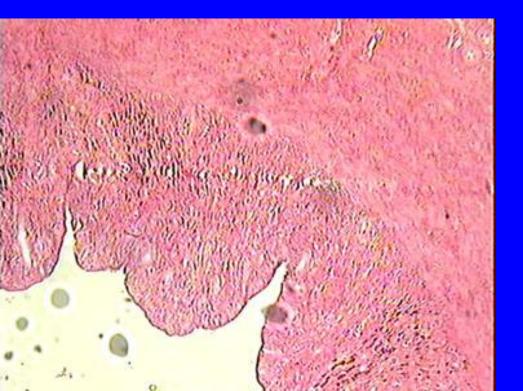
IX. Staining

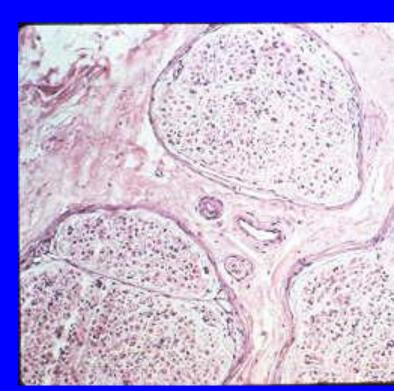
Most of the stains are water soluble and don't mix with paraffin, so staining should started with de-waxing by using solvents (Xylene). Then rehydration of tissue using descending concentrations of alcohol (100%, 90%,70%, water)

IX. Staining G. Procedure 1. Slide rack 2. Solutions a. rehydration b. stain c. dehydration

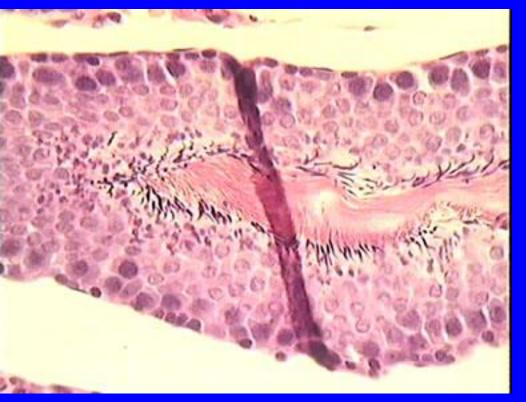
X. Coverslipping

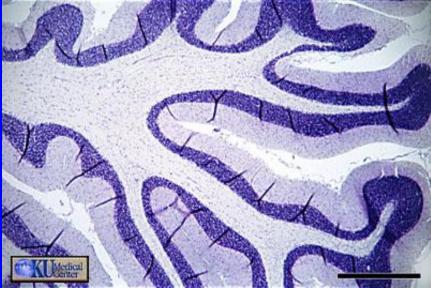
- A. Coverslip & mounting medium (not miscible with water)
- B. Dehydrate
- C. Clearing agentD. Permount



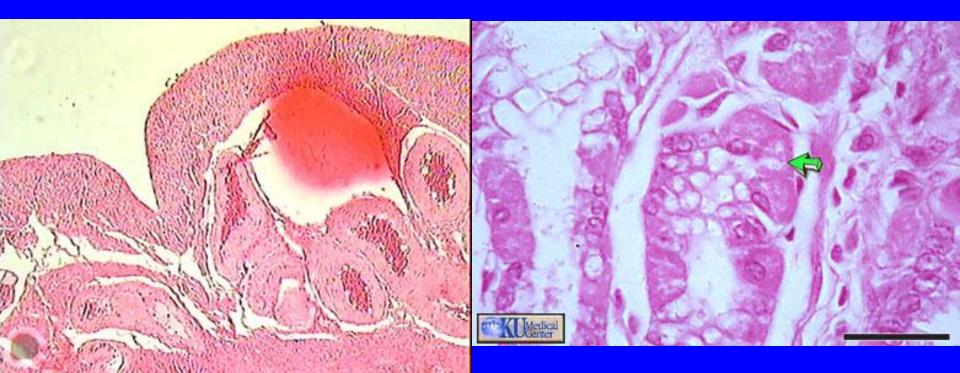

XI. Pitfalls

- A. Poor fixation (poor structural details)
- B. Inadequate dehydration
- C. Contaminated xylene (milky)
- D. Poor infiltration (bubbles, poor support)
- E. Embedding: orientation, bubbles


XI. Pitfalls

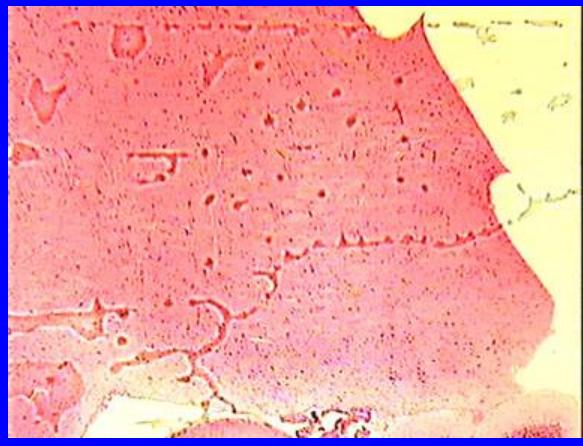

- F. Poor sectioning
 - 1. knife marks (scratches perpendicular to knife edge)
 - 2. compression (waves parallel to knife edge)

XI. Pitfalls G. Mounting sections 1. folds & tears 2. excess albumin (stain)



XI. Pitfalls

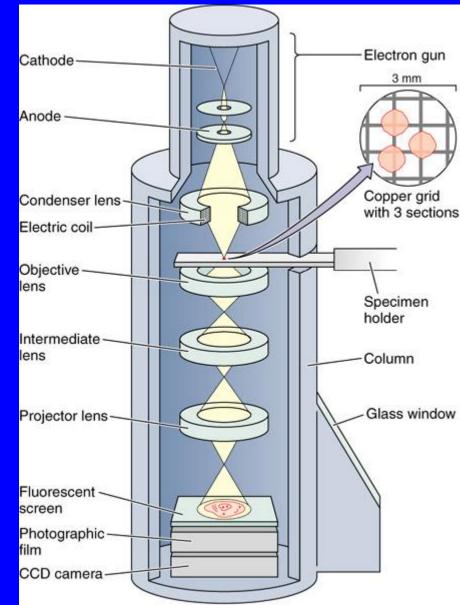
H. Staining


- 1. inadequate rehydration (uneven staining)
- 2. too dark or too light (timing off)
- 3. inadequate agitation

XI. Pitfalls I. Coverslipping 1. Bubbles

XI. PitfallsI. Coverslipping2. excess Permount3. two coverslips

Electron Microscopy X Immunohistochemistry (IHC)


Students are responsible for all EMs in the text.

I. Electron Microscope

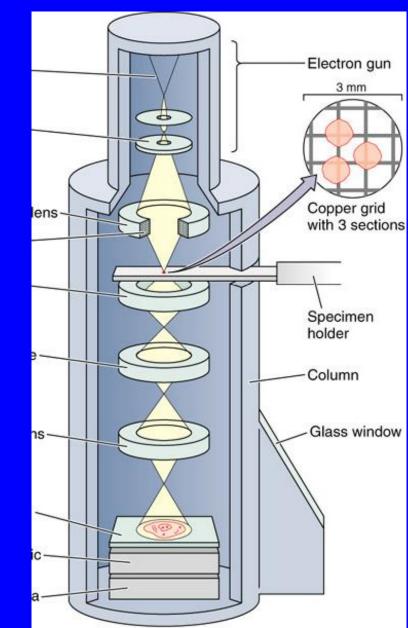
A. TEM (1.5)

- B. Similarities with LM
 - 1. electron source (vacuum) [light]
 - 2. condenser (electromagnetic) lens
 - 3. specimen chamber [stage]
 - 4. objective lens
 - 5. projector lens
 - 6. fluorescent screen
 - 7. camera

I. Electron Microscope

C. Differences from LM 1. vacuum (no living material)

2. electron penetration


a. 0.02 - 0.1 μm sections

3. resolution: 0.2 nm

a. magnification ~5k-1
million

b. small field of view4. BW

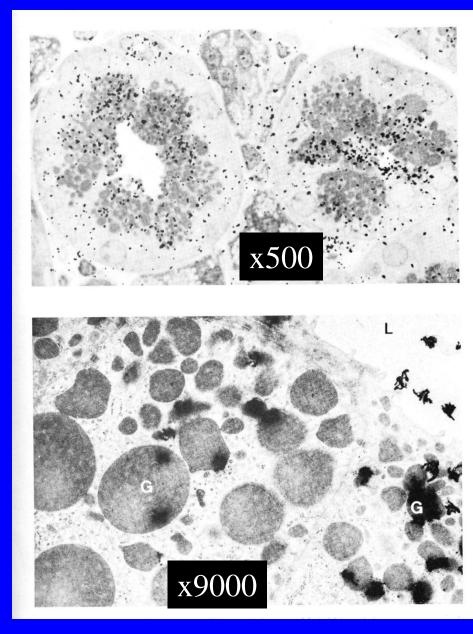
1-9

I. Electron Microscope

1-8

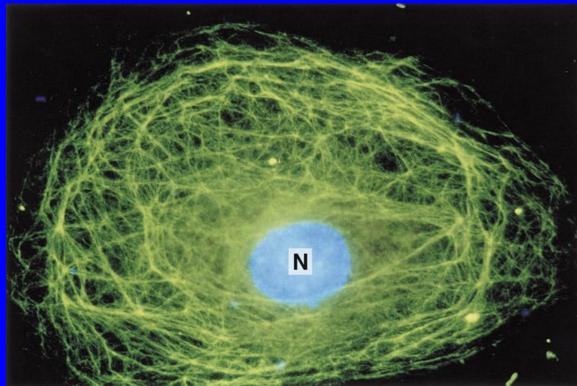
II. EM Fixation

A. buffered glutaraldehyde & osmium tetroxide

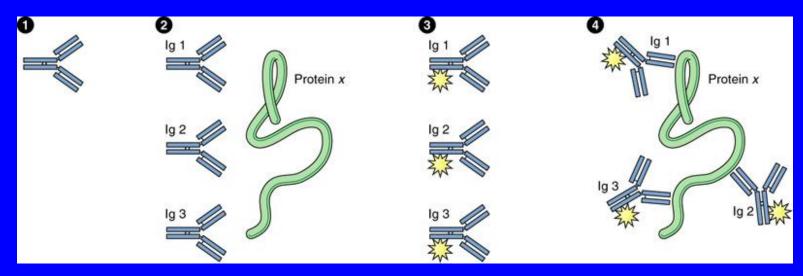

B. smaller sample size (~1mm³)

III. EM Embedding & Sectioning & Staining

- A. plastic resin
- B. polymerize (cure)
- C. ultramicrotome (0.02 0.1 µm sections)
 - 1. diamond knife
 - 2. fresh glass knife
- D. copper grids
- E. electron dense stains
 - 1. lead citrate
 - 2. uranyl acetate

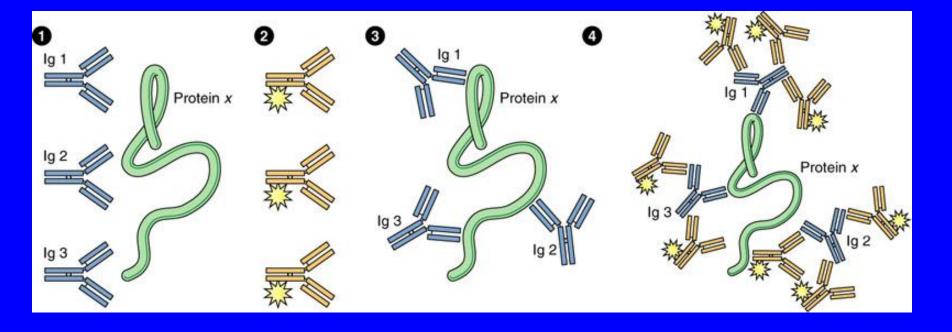

F. Demonstration: tissue block, diamond knife, copper grid

III. EM Viewing A. Advantages (1.8) 1. high resolution a. cell organelles b. plasma membrane **B.** Disadvantages 1. small sample 2. small field of view 3. 2-D image 4. static image 1-11



I. Immunohistochemistry (IHC)

- A. Identification & localization of specific molecules (1-18)
 B. Antigen-antibody reaction
 1. high affinity
 - 2. specific
- 3. ex.: intermediate filaments in mouse cell


II. Direct Labeling of antibodies

A. Fluorescent molecules (1-23)
1. fluorescein, rhodamine
B. HRP (horseradish peroxidase)
1. histochemical reaction
2. peroxidase + chromagen
C. Gold particles

IV. Indirect Immunohistochemistry

1-21: Primary Ab attaches to Ag; Secondary Ab tagged with HRP attaches to primary; HRP reacted to form visible ppt

1-24

IV. Indirect IHC

Ab to nNOS labeling neurons and processes in the superior colliculus in a P11 rat. From summer 2002.

