C-Language Programming Asst. Lect. Gregor A. Aremice

1. Introduction to C

C is a general-purpose, structured programming language. Its instructions consist of terms that resemble
algebraic expressions, augmented by certain English keywords such as if, else, for, do and while. In this
respect C resembles other high-level structured programming languages such as Pascal and Fortran. C also
contains certain additional features, however, that allow it to be used at a lower level, thus bridging the gap
between machine language and the more conventional high-level languages. This flexibility allows C to be
used for systems programming (e.g., for writing operating systems) as well as for applications programming
(e.g., for writing a program to solve a complicated system of mathematical equations, or for writing a program
to bill customers).

C is characterized by the ability to write very concise source programs, due in part to the large number of
operators included within the language. It has a relatively small instruction set, though actual implementations
include extensive /ibrary functions which enhance the basic instructions. Furthermore, the language
encourages users to write additional library functions of their own. Thus the features and capabilities of the
language can easily be extended by the user.

C compilers are commonly available for computers of all sizes, and C interpreters are becoming
increasingly common. The compilers are usually compact, and they generate object programs that are small
and highly efficient when compared with programs compiled from other high-level languages. The
interpreters are less efficient, though they are easier to use when developing a new program. Many
programmers begin with an interpreter, and then switch to a compiler once the program has been debugged
(i.e., once all of the programming errors have been removed).

Another important characteristic of C is that its programs are highly portable, even more so than with
other high-level languages. The reason for this is that C relegates most computer-dependent features to its
library functions. Thus, every version of C is accompanied by its own set of library functions, which are
written for the particular characteristics of the host computer. These library functions are relatively
standardized, however, and each individual library function is generally accessed in the same manner from
one version of C to another. Therefore, most C programs can be processed on many different computers with
little or no alteration.

C-Language Programming

2. Structure of a C Program

Asst. Lect. Gregor A. Aremice

‘ Every C program consists of one or more modules called functions. One of the functions must be called main.
| The program will always begin by executing the main function, which may access other functions.

Each function must contain:

1. A function heading, which consists of the function name, followed by an optional list of arguments,
enclosed in parentheses.

2. A list of argument declarations, if arguments are included in the heading.

3. A compound statement, which comprises the remainder of the function.

The arguments are symbols that represent information being passed between the function and other parts of
the program. (Arguments are also referred to as parameters.)
Each compound statement is enclosed within a pair of braces, i.e., { }. The braces may contain one or
more elementary statements (called expression statements) and other compound statements. Thus compound
statements may be nested, one within another. Each expression statement must end with a semicolon (;).
Comments (remarks) may appear anywhere within a program, as long as they are placed within the

delimiters /* and */ (e.g.,

/* this is a comment */). Such comments are helpful in identifying the

program'’s principal features or in explaining the underlying logic of various program features.
These program components will be discussed in much greater detail later in this book. For now, the
reader should be concerned only with an overview of the basic features that characterize most C programs.

3. Data Types

C supports several different types of data, each of which may be represented differently within the computer’s
memory. The basic data types are listed below. Typical memory requirements are also given. (The memory
requirements for each data type will determine the permissible range of values for that data type. Note that the
memory requirements for each data type may vary from one C compiler to another.)

Data Type

int

char

float

double

Descripti

integer quantity

single character

floating-point number (i.e., a number containing
a decimal point and/or an exponent)

double-precision floating-point number (i.e., more
significant figures, and an exponent which may
be larger in magnitude)

Tupical M Reaui
2 bytes or one word (varies from
one compiler to another)

1 byte
1 word (4 bytes)

2 words (8 bytes)

C-Language Programming Asst. Lect. Gregor A. Aremice

C compilers written for personal computers or small minicomputers (i.e., computers whose natural word
size is less than 32 bits) generally represent a word as 4 bytes (32 bits).

The basic data types can be augmented by the use of the data type qualifiers short, long, signed and
unsigned. For example, integer quantities can be defined as short int, long int or unsigned int
(these data types are usually written simply as short, long or unsigned, and are understood to be integers).
The interpretation of a qualified integer data type will vary from one C compiler to another, though there are
some commonsense relationships. Thus, a short int may require less memory than an ordinary int or it
may require the same amount of memory as an ordinary int, but it will never exceed an ordinary int in word
length. Similarly, a long int may require the same amount of memory as an ordinary int or it may require
more memory, but it will never be less than an ordinary int.

If short int and int both have the same memory requirements (e.g., 2 bytes), then long int will
generally have double the requirements (e.g., 4 bytes). Or if int and long int both have the same memory
requiremements (e.g., 4 bytes) then short int will generally have half the memory requirements (e.g., 2
bytes). Remember that the specifics will vary from one C compiler to another.

An unsigned int has the same memory requirements as an ordinary int. However, in the case of an
ordinary int (or a short int ora long int), the leftmost bit is reserved for the sign. With an unsigned
int, all of the bits are used to represent the numerical value. Thus, an unsigned int can be approximately
twice as large as an ordinary int (though, of course, negative values are not permitted). For example, if an
ordinary int can vary from -32,768 to +32,767 (which is typical for a 2-byte int), then an unsigned int
will be allowed to vary from 0 to 65,535. The unsigned qualifier can also be applied to other qualified ints,
e.g., unsigned short intorunsigned long int.

The char type is used to represent individual characters. Hence, the char type will generally require
only one byte of memory. Each char type has an equivalent integer interpretation, however, so that a char is
a really a special kind of short integer (see Sec. 2.4). With most compilers, a char data type will permit a
range of values extending from 0 to 255. Some compilers represent the char data type as having a range of
values extending from —128 to +127. There may also be unsigned char data (with typical values ranging
from O to 255), or signed char data (with values ranging from —128 to +127).

Some compilers permit the qualifier long to be applied to float or to double, e.g., long float, or
long double. However, the meaning of these data types will vary from one C compiler to another. Thus,
long float may be equivalent to double. Moreover, long double may be equivalent to double, or it

4. Constants

There are four basic types of constants in C. They are integer constants, floating-point constants, character
constants and string constants
Moreover, there are several different kinds of integer and floating-point constants, as discussed below.

Integer and floating-point constants represent numbers. They are often referred to collectively as
numeric-type constants. The following rules apply to all numeric-type constants.

C-Language Programming Asst. Lect. Gregor A. Aremice

1. Commas and blank spaces cannot be included within the constant.

2. The constant can be preceded by a minus (-) sign if desired. (Actually the minus sign is an operator that
changes the sign of a positive constant, though it can be thought of as a part of the constant itself.)

3. The value of a constant cannot exceed specified minimum and maximum bounds. For each type of
constant, these bounds will vary from one C compiler to another.

Let us consider each type of constant individually.

Integer Constants

An integer constant is an integer-valued number. Thus it consists of a sequence of digits. Integer constants
can be written in three different number systems: decimal (base 10), octal (base 8) and hexadecimal (base 16).
Beginning programmers rarely, however, use anything other than decimal integer constants.

A decimal integer constant can consist of any combination of digits taken from the set 0 through 9. If the
constant contains two or more digits, the first digit must be something other than 0.

EXAMPLE 2.4 Several valid decimal integer constants are shown below.

0 1 743 5280 32767 9999

The following decimal integer constants are written incorrectly for the reasons stated.

12,245 illegal character (,).

36.0 illegal character (.).

10 20 30 illegal character (blank space).
123-45-6789 illegal character (-).

0900 the first digit cannot be a zero.

An octal integer constant can consist of any combination of digits taken from the set O through 7.
However the first digit must be 0, in order to identify the constant as an octal number,

EXAMPLE 2.5 Several valid octal integer constants are shown below.
0 01 0743 077777

The following octal integer constants are written incorrectly for the reasons stated.

743 Does not begin with 0.
05280 legal digit (8).
0777.777 [llegal character (.).

4

C-Language Programming Asst. Lect. Gregor A. Aremice

A hexadecimal integer constant must begin with either Ox or 0OX. It can then be followed by any
combination of digits taken from the sets 0 through 9 and a through f (either upper- or lowercase). Note that
the letters a through f (or A through F) represent the (decimal) quantities 10 through 15, respectively.

EXAMPLE 2.6 Several valid hexadecimal integer constants are shown below.
Ox 0X1 OX7FFF Oxabed

The following hexadecimal integer constants are written incorrectly for the reasons stated.

0X12.34 [iegal character (.).
OBE38 Does not begin with Ox or 0X.
Ox.4bff [llegal character (.).
OXDEFG llegal character (G}.

Floating-Point Constants

A floating-point constant is a base-10 number that contains either a decimal point or an exponent (or both).

EXAMPLE 2.8 Several valid floating-point constants are shown below,

0. 1. 0.2 827.602
50000. 0.000743 12.3 315.0066
2E-8 0.006e-3 1.6667E+8 .12121212e12

The following are nor valid floating-point constants for the reasons stated.

1 Either a decimal point or an exponent must be present.

1,000.0 Illegal character (,).

2E+10.2 The exponent must be an integer quantity (it cannot contain a decimal point).
3E 10 Illegal character (blank space)} in the exponent.

EXAMPLE 2.9 The quantity 3 x 10° can be represented in C by any of the following floating-point constants.

300000. 3e5 3e+5 3ES5 3.0e+
.3e86 0.3E6 30E4 30.E+4 300e3

Similarly, the quantity 5.026 x 10717 can be represented by any of the following floating-point constants.

5.026E-17 .5026e-16 50.26e-18 .0005026E-13

Character Constants
A character constant is a single character, enclosed in apostrophes (i.e., single quotation marks).
EXAMPLE 2.10 Several character constants are shown below.

‘A X '3 7 L

Notice that the last constant consists of a blank space, enclosed in apostrophes.

C-Language Programming Asst. Lect. Gregor A. Aremice

Most computers, and virtually all personal computers, make use of the ASCII (i.e., American Standard
Code for Information Interchange) character set, in which each individual character is numerically encoded
with its own unique 7-bit combination (hence a total of 27 = 128 different characters). Table 2-1 contains the
ASCII character set, showing the decimal equivalent of the 7 bits that represent each character. Notice that the
characters are ordered as well as encoded. In particular, the digits are ordered consecutively in their proper
numerical sequence (0 to 9), and the letters are arranged consecutively in their proper alphabetical order, with
uppercase characters preceding lowercase characters. This allows character-type data items to be compared
with one another, based upon their relative order within the character set.

EXAMPLE 2.11 Several character constants and their corresponding values, as defined by the ASCII character set, are
shown below.

Constant Vaiue
‘A 65
120

'3 51
63

Escape Sequences

Certain nonprinting characters, as well as the backslash (\) and the apostrophe ('), can be expressed in terms
of escape sequences. An escape sequence always begins with a backward slash and is followed by one or
more special characters. For example, a line feed (LF), which is referred to as a newline in C, can be
represented as \n. Such escape sequences always represent single characters, even though they are written in
terms of two or more characters,

The commonly used escape sequences are listed below.

Character Lscape Sequence
bell (alert) \a
backspace \b
horizontal tab \1
vertical tab \v
newline (line feed) \n
form feed \f
carriage return \r
quotation mark (™) \"
apostrophe (') \'
question mark (?) \?
backslash (\) WA

null \0

C-Language Programming Asst. Lect. Gregor A. Aremice

String Constants

A string constant consists of any number of consecutive characters (including none), enclosed in (double)
quotation marks.

EXAMPLE 2.14 Several string constants are shown below.

green *Washington, D.C. 20005" *270-32-3456"
*$19.95" *THE CORRECT ANSWER IS:" "2 (I+3)/J"
v " *Line 1\nLine 2\nLine 3" "

5. Variable and Arrays

A variable is an identifier that is used to represent some specified type of information within a designated
portion of the program. In its simplest form, a variable is an identifier that is used to represent a single data
item; i.e., a numerical quantity or a character constant. The data item must be assigned to the variable at some
point in the program. The data item can then be accessed later in the program simply by referring to the

variable name.

A given variable can be assigned different data items at various places within the program. Thus, the
information represented by the variable can change during the execution of the program. However, the data
type associated with the variable cannot change.

EXAMPLE 2.18 A C program contains the following lines.

int a, b, c;

char d;
a = 3;
b = 5;
C =a + b;
d= 'a';
a = 4;
b= 2;
c =a - b;
d = "W';

(-1 anociiaca Pracramming Acct lart Graonr A Aromicra

The first two lines are type declarations, which state that a, b and ¢ are integer variables, and that d is a char-type
variable. Thus a, b and ¢ will each represent an integer-valued quantity, and d will represent a single character. These
type declarations will apply throughout the program (more about this in Sec. 2.6).

The next four lines cause the following things to happen: the integer quantity 3 is assigned to a, 5 is assigned to b,
and the quantity represented by the sum a + b (i.e, 8) is assigned to c. The character ‘a’ is then assigned to d.

In the third line within this group, notice that the values of the variables a and b are accessed simply by writing the
variables on the right-hand side of the equal sign.

The last four lines redefine the values assigned to the variables as follows: the integer quantity 4 is assigned to a,
replacing the earlier value, 3, then 2 is assigned to b, replacing the earlier value, 5; then the difference between a and b
(i.e., 2) is assigned to c, replacing the earlier value, 8. Finally, the character 'W' is assigned to d, replacing the earlier
character, 'a’, :

The array is another kind of variable that is used extensively in C. An array is an identifier that refers to a
collection of data items that all have the same name. The data items must all be of the same type (e.g., all
integers, all characters, etc.). The individual data items are represented by their corresponding array_elements
(i.e., the first data item is represented by the first array element, etc.). The individual array elements are
distinguished from one another by the value that is assigned to a subscript.

EXAMPLE 2.19 Suppose that x is a 10-element array. The first element is referred to as x[0], the second as x[1], and
so on. The last element will be x{9].

The subscript associated with each element is shown in square braces. Thus, the value of the subscript for the first
element is 0, the value of the subscript for the second element is 1, and so on. For an n-c¢lement array, the subscripts
always range from 0 to n-1.

There are several different ways to categorize arrays (e.g., integer arrays, character arrays, one-
dimensional arrays, multi-dimensional arrays). For now, we will confine our attention to only one type of
array: the one-dimensional, char-type array (often called a one-dimensional character array). This type of
array is generally used to represent a string. Each array element will represent one character within the string.
Thus, the entire array can be thought of as an ordered list of characters.

Since the array is one-dimensional, there will be a single subscript (sometimes called an /ndex) whose
value refers to individual array elements. If the array contains n elements, the subscript will be an integer
quantity whose values range from O to n—1. Note that an n-character string will require an (n+1)-element
array, because of the null character (\0) that is automatically placed at the end of the string.

EXAMPLE 2.20 Suppose that the string *California” is to be stored in a one-dimensional character array called
letter. Since *California* contains 10 characters, letter will be an 11-element array. Thus, letter[0] will
represent the letter C, Lletter[1] will represent a, and so on, as summarized below. Note that the last (i.e., the 11th) array
element, letter([10], represents the null character which signifies the end of the string.

Element Subscript Array Corresponding Data ltem

Number Value Element (String Characterl

letter[O]
letter[1]
letter[2]
letter[3]
letter[4)
letter[5]
letter[6]
letter[7]
letter([8]
letter[9]
letter[10]

4 2PN AN =
CONDNAEWN <O
B R3O0 kDO

- Q
-
o
-
o

C-Language Programming Asst. Lect. Gregor A. Aremice

From this list we can determine, for example, that the 5th array element, letter[4], represents the letter f, and so on.
The array elements and their contents are shown schematically in Fig. 2.1.

Subscript: 0 1 2 3 4 5 6 7 8 9 10

An 1l-element character array

6. Declarations

A declaration associates a group of variables with a specific data type. All variables must be declared before

they can appear in executable statements.
A declaration consists of a data type, followed by one or more variable names, ending with a semicolon.
Each array variable must be followed by a
pair of square brackets, containing a positive integer which specifies the size (i.e., the number of elements) of

the array.
EXAMPLE 2.21 A C program contains the following type declarations.

int a, b, ¢
float root1, root2;
char flag, text[B0];

Thus, a, b and ¢ are declared to be integer variables, root1 and root2 are floating-point variables, flag is a char-type
variable and text is an 80-clement, char-type array. Note the square brackets enclosing the size specification for text.

These declarations could also have been written as follows.

int a;

int b;

int c;

float root1;
float root2;
char flag;
char text[80];

This form may be useful if each variable is to be accompanied by a comment explaining its purpose. In small programs
however, items of the same type are usually combined in a single declaration.

C-Language Programming Asst. Lect. Gregor A. Aremice

7. Expressions

An expression represents a single data item, such as a number or a character. The expression may consist of a
single entity, such as a constant, a variable, an array element or a reference to a function. It may also consist
of some combination of such entities, interconnected by one or more operators. The use of expressions
involving operators is particularly common in C, as in most other programming languages.

Expressions can also represent logical conditions that are either true or false. However, in C the
conditions true and false are represented by the integer values 1 and O, respectively. Hence logical-type
expressions really represent numerical quantities.

EXAMPLE 2.27 Several simple expressions are shown below.

>
1]

il
[+
+

o

x X O
] A
n [
T

++1

The first expression involves use of the addition operator (+). This expression represents the sum of the values
assigned to the variables a and b.

The second expression involves the assignment operator (=). In this case, the expression causes the value
represented by y to be assigned to x. We have already encountered the use of this operator in several earlier examples (see
Examples 1.6 through 1.13, 2.25 and 2.26). C includes several additional assignment operators, as discussed in Sec. 3.4.

In the third line, the value of the expression (a + b) is assigned to the variable c. Note that this combines the
features of the first two expressions (addition and assignment).

The fourth expression will have the value 1 (true) if the value of x is less than or equal to the value of y. Otherwise,
the expression will have the value 0 (false). In this expression, <= is a relational operator that compares the values of the
variables x and y.

The fifth expression is a test for equality (compare with the second expression, which is an assignment expression).
Thus, the expression will have the value 1 (true) if the value of x is equal to the value of y. Otherwise, the expression will
have the value 0 (false).

The last expression causes the value of the variable i to be increased by 1 (i.e., incremented). Thus, the expression is
equivalent to

10

C-Language Programming Asst. Lect. Gregor A. Aremice

8. Statements

A statement causes the computer to carry out some action. There are three different classes of statements in C.
They are expression statements, compound statements and control statements.

An expression statement consists of an expression followed by a semicolon. The execution of an
expression statement causes the expression to be evaluated.

EXAMPLE 2.28 Several expression statements are shown below.

a = 3;
c =a+b;
++1;

printf(-Area = %f", area),
;
The first two expression statements are assignment-type statements. Each causes the value of the expression on the righ
of the equal sign to be assigned to the variable on the left. The third expression statement is an incrementing-typ
statement, which causes the value of i to increase by 1.
The fourth expression statement causes the printf function to be evaluated. This is a standard C library functio
that writes information out of the computer (more about this in Sec. 3.6). In this case, the message Area = will b

displayed, followed by the current value of the variable area. Thus, if area represents the value 100., the statement wil
generate the message

Area = 100.

The last expression statement does nothing, since it consists of only a semicolon. It is simply a mechanism fo
providing an empty expression statement in places where this type of statement is required. Consequently, it is called
null statement,

A compound statement consists of several individual statements enclosed within a pair of braces { }.
The individual statements may themselves be expression statements, compound statements or control
statements. Thus, the compound statement provides a capability for embedding statements within other
statements. Unlike an expression statement, a compound statement does not end with a semicolon.

EXAMPLE 2.29 A typical compound statement is shown below.

pi = 3.141593;
circumference = 2. * pi * radius;
area = pl * radius * radius;

C-Language Programming Asst. Lect. Gregor A. Aremice

9. Arithmetic Operators

There are five arithmetic operators in C. They are

Operator Burpose
+ addition
- subtraction

multiplication
/ division
% remainder after integer division

The % operator is sometimes referred to as the modulus operator.

The operands acted upon by arithmetic operators must represent numeric values. Thus, the operands can
be integer quantities, floating-point quantities or characters (remember that character constants represent
integer values, as determined by the computer’s character set). The remainder operator (%) requires that both
operands be integers and the second operand be nonzero. Similarly, the division operator (/) requires that the
second operand be nonzero.

Division of one integer quantity by another is referred to as infeger division. This operation always
results in a truncated quotient (i.e., the decimal portion of the quotient will be dropped). On the other hand, if

a division operation is carried out with two floating-point numbers, or with one floating-point number and one
integer, the result will be a floating-point quotient.

EXAMPLE 3.1 Suppose that a and b are integer variables whose values are 10 and 3, respectively. Several arithmetic
expressions involving these variables are shown below, together with their resulting values.

Expression Value
a+hb 13
a-»>b 7
a*hb 30
al/b 3

a%shb 1

C-Language Programming Asst. Lect. Gregor A. Aremice

10. Relational and logical Operators

There are four relational operators in C. They are

Operator Meaning
< less than
<= less than or equal to
> greater than
>= greater than or equal to

These operators all fall within the same precedence group, which is lower than the arithmetic and unary
operators. The associativity of these operators is left to right.
Closely associated with the relational operators are the following two equality operators,

QOperator Meaning

== equal to

! not equal to

The equality operators fall into a separate precedence group, beneath the relational operators. These
operators also have a left-to-right associativity.

These six operators are used to form logical expressions, which represent conditions that are either true or
false. The resulting expressions will be of type integer, since frue is represented by the integer value 1 and
JSalse is represented by the value 0.

EXAMPLE 3.15 Suppose that i, j and k are integer variables whose values are 1, 2 and 3, respectively. Several logical
expressions involving these variables are shown below.

Expression Interpreration Value
i<ij true 1
(1 +]) »>= k true 1
(3] + K) > {i + 5) false 0
k I= 3 false 0
j == 2 true 1

13

C-Language Programming Asst. Lect. Gregor A. Aremice

EXAMPLE 3.16 Supposc that 1 is an integer variable whose value is 7, T is a floating-point variable whose value is 5.5,
and ¢ is a character variable that represents the character 'w'. Several logical expressions that make use of these variables
arc shown below. Lach expression involves two different type operands. (Assume that the ASCII character sct applies.)

ression Interpretation Falue
f>5 true 1
(1L + T) <= 10 false 0
c == 119 true 1
c != 'p’ true 1
c >= 10 * (i + f) false 0

In addition to the relational and equality operators, C contains two logical operators (also called logical
connectives). They are

Qperator Meaning
&% and
|| or

These operators are referred to as logical and and logical or, respectively.

The logical operators act upon operands that are themselves logical expressions. The net effect is to
combine the individual logical expressions into more complex conditions that are either true or false. The
result of a logical and operation will be true only if both operands are true, whereas the result of a /ogical or
operation will be true if either operand is true or if both operands are true. In other words, the result of a
logical or operation will be false only if both operands are false.

In this context it should be pointed out that any nonzero value, not just 1, is interpreted as true.

EXAMPLE 3.17 Suppose that i is an integer variable whose value is 7, f is a floating-point variable whose value is 5.5,
and ¢ is a character variable that represents the character 'w'. Several complex logical expressions that make use of these
variables are shown below,

{xpression Interpretation Yalue
(i >= 6) && (c == 'w') true 1
(i »>=86) || (c == 119) true 1
(f < 11) & (i > 100) false 0
(c != "p'y || ((1 + F) == 10) frue 1

The first expression is true because both operands are true. In the second expression, both operands are again true; hence
the overall expression is true. ‘The third expression is false because the sccond operand is false. And finally, the fourth
expression is true because the first operand is true.

14

C-Language Programming Asst. Lect. Gregor A. Aremice

EXAMPLE 3.18 Suppose that 1 is an integer variable whose value is 7, and T is a floating-point variable whose value is
5.5. Several logical expressions which make use of these variables and the logical negation operator are shown below.

Expression Interpretation Value
f>35 true 1
(T > 5) false 0
i<=23 false 0
(1 <= 3) true 1
i> (T +1) true 1
(i > (f + 1)) false 0

We will see other examples illustrating the use of the logical negation operator in later chapters of this
book.

The hierarchy of operator precedences covering all of the operators discussed so far has become
extensive. These operator precedences are summarized below, from highest to lowest.

unary operators - ++ —— | sizeof (type) R-L
arithmetic multiply, divide and remainder % L—>R
arithmetic add and subtract + - L—>R
relational operators < <= > >= L—>R
equality operators == |= L—->R
logical and && L—- R
logical or [| L—-R

15

C-Language Programming Asst. Lect. Gregor A. Aremice

11.Conditional Operators

Simple conditional operations can be carried out with the conditional operator (? :). An expression tha
makes use of the conditional operator is called a conditional expression. Such an expression can be written in
place of the more traditional if-else statement, which is discussed in Chap. 6.

A conditional expression is written in the form

expression 1 7 expression 2 : expression 3

When evaluating a conditional expression, expression 7 is evaluated first. If expression 1 is true
(i.e., if its value is nonzero), then expression 2is evaluated and this becomes the value of the conditional
expression. However, if expression 1 is false (i.e., if its value is zero), then expression 3 is evaluated
and this becomes the value of the conditional expression. Note that only one of the embedded expressions
(either expression 2 or expression J) is evaluated when determining the value of a conditional

expression.
EXAMPLE 3.26 In the conditional expression shown below, assume that i is an integer variable.

(L<0) 20 : 100

The expression (1 < 0) is evaluated first. If it is true (i.e., if the value of i is less than 0), the entire conditional
expression takes on the value 0. Otherwise (if the value of i is not less than 0), the entire conditional expression takes on
the value 100,

In the following conditional expression, assume that f and g are floating-point variables.
(f<g)y?2"*t:.9g

This conditional expression takes on the value of f if f is less than g; otherwise, the conditional expression takes on the
value of g. In other words, the conditional expression returns the value of the smaller of the two variables.

EXAMPLE 3.27 Now suppose that i is an integer variable, and f and g are floating-point variables. The conditional
expression

(f<g)y?i:g

involves both integer and floating-point operands. Thus, the resulting expression will be floating-point, even if the value
of i is selected as the value of the expression (because of rule 2 in Sec. 3.1).

Conditional expressions frequently appear on the right-hand side of a simple assignment statement. The
resulting value of the conditional expression is assigned to the identifier on the left.

C-Language Programming Asst. Lect. Gregor A. Aremice

12.Data Input and Output

We have already seen that the C language is accompanied by a collection of library functions, which includes
a number of input/output functions. In this chapter we will make use of six of these functions: getchar,
putchar, scanf, printf, gets and puts. These six functions permit the transfer of information between
the computer and the standard input/output devices (e.g., a keyboard and a TV monitor). The first two
functions, getchar and putchar, allow single characters to be transferred into and out of the computer;
scanf and printf are the most complicated, but they permit the transfer of single characters, numerical
values and strings; gets and puts facilitate the input and output of strings. Once we have leamed how to use
these functions, we will be able to write a number of complete, though simple, C programs.

An input/output function can be accessed from anywhere within a program simply by writing the function
name, followed by a list of arguments enclosed in parentheses. The arguments represent data items that are
sent to the function. Some input/output functions do not require arguments, though the empty parentheses
must still appear.

The names of those functions that return data items may appear within expressions, as though each
function reference were an ordinary variable (e.g., ¢ = getchar();), or they may be referenced as separate
statements (e.g., scanf(. . .);). Some functions do not return any data items. Such functions are
referenced as though they were separate statements (e.g., putchar(. . .);).

Most versions of C include a collection of header files that provide necessary information (e.g., symbolic
constants) in support of the various library functions. Each file generally contains information in support of a
group of related library functions. These files are entered into the program via an #include statement at the
beginning of the program. As a rule, the header file required by the standard input/output library functions is
called stdio.h (see Sec. 8.6 for more information about the contents of these header files).

EXAMPLE 4.1 Here is an outline of a typical C program that makes use of several input/output routines from the
standard C library.

/* sample setup illustrating the use of input/output library functions */

#include <stdioc.h>

main()

{
char ¢,d; /* declarations */
float x,y;
int i,j,k;
¢ = getchar(); /* character input */
scanf{"%f", &x); /* floating-point input */
scanf{"%d %d", &i, &j); /* integer input */
.- /* action statements */
putchar(d), /* character output */

printf("%3d %7.4f", Kk, Y); /* numerical output */

C-Language Programming Asst. Lect. Gregor A. Aremice

The program begins with the preprocessor statement #include <stdio.h>. This statement causes the contents of
the header file stdio.h to be included within the program. The header file supplies required information to the library
functions scanf and printf. (The syntax of the #include statement may vary from on¢ version of C to another; some
versions of the language use quotes instead of angle-brackets, e.g., #include *stdio.h*.)

Following the preprocessor statement is the program heading main() and some variable declarations. Several
input/output statements are shown in the skeletal outline that follows the declarations. In particular, the assignment
statement ¢ = getchar(); causes a single character to be entered from the keyboard and assigned to the character
variable c. The first reference to scanf causes a floating-point value to be entered from the keyboard and assigned to the
floating-point variable x, whereas the second reference to scanf causes two decimal integer quantities to be entered from
the keyboard and assigned to the integer variables i and j, respectively.

The output statements behave in a similar manner. Thus, the reference to putchar causes the value of the character
variable d to be displayed. Similarly, the reference to printf causes the values of the integer variable k and the floating-
point variable y to be displayed.

The details of each input/output statement will be discussed in subsequent sections of this chapter. For now, you
should consider only a general overview of the input/output statements appearing in this rypical C program.

13.Control Statements

In most of the C programs we have encountered so far, the instructions were executed in the same order in
which they appeared within the program. Each instruction was executed once and only once. Programs of
this type are unrealistically simple, since they do not include any logical control structures. Thus, these
programs did not include tests to determine if certain conditions are true or false, they did not require the
repeated execution of groups of statements, and they did not involve the execution of individual groups of
statements on a selective basis. Most C programs that are of practical interest make extensive use of features
such as these.

For example, a realistic C program may require that a logical test be carried out at some particular point
within the program. One of several possible actions will then be carried out, depending on the outcome of the
logical test. This is known as branching. There is also a special kind of branching, called selection, in which
one group of statements is selected from several available groups. In addition, the program may require that a
group of instructions be executed repeatedly, until some logical condition has been satisfied. This is known as
looping. Sometimes the required number of repetitions is known in advance; and sometimes the computation
continues indefinitely until the logical condition becomes true.

All of these operations can be carried out using the various control statements included in C. We will see
how this is accomplished in this chapter. The use of these statements will open the door to programming
problems that are much broader and more interesting than those considered earlier.

18

C-Language Programming Asst. Lect. Gregor A. Aremice

14. if-else Statement

The if - else statement is used to carry out a logical test and then take one of two possible actions,
depending on the outcome of the test (i.e., whether the outcome is true or false).

The else portion of the if - else statement is optional. Thus, in its simplest general form, the statement
can be written as

if (expression) statement

The expression must be placed in parentheses, as shown. In this form, the statement will be executed
only if the expression has a nonzero value (i.e., if expressionis true). If the expressionhas a value of
zero (i.e., if expression is false), then the statement will be ignored.

The statement can be either simple or compound. In practice, it is often a compound statement which
may include other control statements.

EXAMPLE 6.5 Several representative if statements are shown below.
if (x < 0) printf("%f", x);

if (pastdue > 0)
credit = 0;

if (x <= 3.0) {
y = 3 * pow(x, 2);
printf(*%f\n*, y);

if ((balance < 1000.) || (status == 'R'))
printf("%f", balance);

if ((a >= 0) && (b <= 5)) {
xmid = (a + b) / 2;
ymid = sqrt(xmid);

19

C-Language Programming Asst. Lect. Gregor A. Aremice

The first statement causes the value of the floating-point variable x to be printed (displayed) if its value is negative
In the second statement, a value of zero is assigned to credit if the value of pastdue exceeds zero. The third statemen
involves a compound statement, in which y is evaluated and then displayed if the value of x does not exceed 3. In the
fourth statement we see a complex logical expression, which causes the value of balance to be displayed if its value i
less than 1000 or if status has been assigned the character 'R".

The last statement involves both a complex logical expression and a compound statement. Thus, the variables xmic
and ymid will both be assigned appropriate values if the current value of a is nonnegative and the current value of b doe:
not exceed 5.

The general form of an if statement which includes the else clause is
if (expression) statement 1 else statement 2

If the expression has a nonzero value (i.e., if expression is true), then statement 7 will be executed
Otherwise (i.e., if expressionis false), statement Zwill be executed.

EXAMPLE 6.6 Here are several examples illustrating the full if - else statement.

if (status == 'S')
tax = 0.20 * pay;
else
tax = 0.14 * pay;

if (pastdue > 0) {
printf(“account number %d is overdue®, accountno);

credit = 0;
}
else

credit = 1000.0;
if (x <= 3)

y =3 * pow(x, 2);
else

y =2 * pow(x - 3), 2);
printf("%f\n", balance);

it (circle) {
scanT(*%f", &radius);

area = 3.14159 * radius ™ radius;
printrf(*“Area of circle = %", area);
}
else {

scanft("%f %f*, &length, &width);
area = length * width;
printf(“Area of rectangle = %T", area);

C-Language Programming Asst. Lect. Gregor A. Aremice

It is possible to nest (i.e., embed) if - else statements, one within another. There are several different
forms that nested if - else statements can take. The most general form of two-layer nesting is

if e7 if e2 s7
else s2
else 1if &3 53
else s4

where e7, e2and e3represent logical expressions and s7, s2, s3 and s4 represent statements. Now, one
complete if - else statement will be executed if e7 is nonzero (true), and another complete if - else
statement will be executed if e7 is zero (false). It is, of course, possible that s7, s2, s3 and s4 will contain
other if - else statements, We would then have multilayer nesting.

Some other forms of two-layer nesting are

if et st
else if g2 s2

if et s71
alse if e2 s2
else s3

if er if e2 s71
else s2
else s3

if ef if e2 st
else s2

In the first three cases the association between the else clauses and their corresponding expressions is
straightforward. In the last case, however, it is not clear which expression (e7 or €2) is associated with the
else clause. The answer is €2 The rule is that the else clause is always associated with the closest
preceding unmatched (i.e., else-less) if. This is suggested by the indentation, though the indentation itself is
not the deciding factor. Thus, the last example is equivalent to

if er {
if e2 s7 else s2

}

If we wanted to associate the else clause with e7 rather than e2, we could do so by writing

if er |
if e2 st

}
else s2

This type of nesting must be carried out carefully in order to avoid possible ambiguities.

C-Language Programming Asst. Lect. Gregor A. Aremice
EXAMPLE 6.7 Here is an illustration of three nested if - e1se statements.

if ((time >= 0.) && (time < 12.)) printf(“Good Morning");
else if ((time >= 12.) && (time < 18.)) printf(*Good Afternoon");
else if ((time >= 18.) && (time < 24.)) printf(*Good Evening");
else printf("Time is out of range®);

This example causes a different message to be displayed at various times of the day. Specifically, the message Goo
Morning will be displayed if time has a value between 0 and 12; Good Afternoon will be displayed if time has a valu
between 12 and 18; and Good Evening will be displayed if time has a value between 18 and 24. An error messag
(Time is out of range) will be displayed if the value of time is less than zero, or greater than or equal to 24.

15. Loops

The while statement is used to carry out looping operations, in which a group of statements is executed
repeatedly, until some condition has been satisfied.
The general form of the while statement is

while (expression) statement

The statement will be executed repeatedly, as long as the expression is true (i.e., as long expression
has a nonzero value). This statement can be simple or compound, though it is usually a compound
statement. It must include some feature that eventually alters the value of the expression, thus providing a
stopping condition for the loop.

EXAMPLE 6.8 Consecutive Integer Quantities = Suppose we want to display the consecutive digits 0, 1,2, ..., 9,
with one digit on each line. This can be accomplished with the following program.
#include <stdio.h>
main() /* display the integers O through 9 */
{
int digit = 0;

while (digit <= 9) {
printf('%d\n', digit);
++digit;

22

C-Language Programming Asst. Lect. Gregor A. Aremice

Initially, digit is assigned a value of 0. The while loop then displays the current value of digit, increases its value by
I and then repeats the cycle, until the value of digit exceeds 9. The net effect is that the body of the loop will be
repeated 10 times, resulting in 10 consecutive lines of output. Each line will contain a successive integer value, beginning
with 0 and ending with 9. Thus, when the program is executed, the following output will be generated.

© @ N DL s WK = O

This program can be written more concisely as

#1nclude <stdio.h>

main() /* display the integers 0 through 9 */

{
int digit = 0;

while (digit <= 9)
printf("sd\n", digit++);

When executed, this program will generate the same output as the first program.

When a loop is constructed using the while statement described in Sec. 6.3, the test for continuation of the

loop is carried out at the beginning of each pass. Sometimes, however, it is desirable to have a loop with the

test for continuation at the end of each pass. This can be accomplished by means of the do - while statement.
The general form of the do - while statement is

do statement while (expression);

The statement will be executed repeatedly, as long as the value of expression is true (i.e., is nonzero).
Notice that statement will always be executed at least once, since the test for repetition does not occur until
the end of the first pass through the loop. The statement can be either simple or compound, though most
applications will require it to be a compound statement. 1t must include some feature that eventually alters the
value of expression so the looping action can terminate,

23

C-Language Programming Asst. Lect. Gregor A. Aremice

EXAMPLE 6.11 Consecutive Integer Quantities In Example 6.8 we saw two complete C programs that use the
while statement to display the consecutive digits 0, 1, 2, . .., 9. Here is another program to do the same thing, using the
do - while statement in place of the while statement.

#include <stdio.h>

main() /* display the integers O through 9 */

{
int digit = 0;
do
printf(*%d\n*, digit++);
while (digit <= 9);
}

As in the earlier example, digit is initially assigned a value of 0. The do - while loop displays the current value of
digit, increases its value by 1, and then tests to see if the current value of digit exceeds 9. If so, the loop terminates;
otherwise, the loop continues, using the new value of digit. Note that the test is carried out at the end of each pass
through the loop. The net effect is that the loop will be repeated 10 times, resulting in 10 successive lines of output. Each
line will appear exactly as shown in Example 6.8.

Comparing this program with the second program presented in Example 6.8, we see about the same level of
complexity in both programs, Neither of the conditional looping structures (i.e., while or do - while) appears more
desirable than the other.

The for statement is the third and perhaps the most commonly used looping statement in C. This statement
includes an expression that specifies an initial value for an index, another expression that determines whether
or not the loop is continued, and a third expression that allows the index to be modified at the end of each

pass.
The general form of the for statement is

for (expression 1; expression 2; expression 3) statement

where expression 7 is used to initialize some parameter (called an index) that controls the looping action,
expression 2represents a condition that must be true for the loop to continue execution, and expression
3 is used to alter the value of the parameter initially assigned by expression 1. Typically, expression 1
is an assignment expression, expression 2 is a logical expression and expression 3 is a unary
expression or an assignment expression.

When the for statement is executed, expression 2is evaluated and tested at the beginning of each pass
through the loop, and expression 3 is evaluated at the end of each pass. Thus, the for statement is
equivalent to

expression 1;

while (expression 2) {
statement
expression 3;

24

C-Language Programming Asst. Lect. Gregor A. Aremice

The looping action will continue as long as the value of expression 2is not zero, that is, as long as the
logical condition represented by expression 2is true.

The for statement, like the while and the do - while statements, can be used to carry out looping
actions where the number of passes through the loop is not known in advance. Because of the features that are
built into the for statement, however, it is particularly well suited for loops in which the number of passes is
known in advance. As a rough rule of thumb, while loops are generally used when the number of passes is
not known in advance, and for loops are generally used when the number of passes is known in advance.

EXAMPLE 6.14 Consecutive Integer Quantities We have already seen several different versions of a C program that
will display the consecutive digits 0, 1, 2, . . ., 9, with one digit on each line (see Examples 6.8 and 6.11). Here is another
program which does the same thing. Now, however, we will make use of the for statement rather than the while

statement or the do - while statement, as in the carlier examples.

#include <stdio,h>

main() /* display the numbers 0 through 9 */

{
int digit;
for (digit = 0; digit <= 9; ++digit)
printf("sd\n*, digit);
}

The first line of the for statement contains three expressions, enclosed in parentheses. The first expression assigns
an initial value 0 to the integer variable digit, the second expression continues the looping action as long as the current
value of digit does not exceed 9 at the beginning of each pass; and the third expression increases the value of digit by
1 at the end of each pass through the loop. The printf function, which is included in the for loop, produces the desired
output, as shown in Example 6.8.

25

C-Language Programming Asst. Lect. Gregor A. Aremice

16. Arrays

Many applications require the processing of multiple data items that have common characteristics (e.g., a set
of numerical data, represented by x;, x3, . . ., x,). In such situations it is often convenient to place the data
items into an array, where they will all share the same name (e.g., x). The individual data items can be
characters, integers, floating-point numbers, etc. However, they must all be of the same type and the same
storage class.

Each array element (i.e., each individual data item) is referred to by specifying the array name followed
by one or more subscripts, with each subscript enclosed in square brackets. Each subscript must be expressed
as a nonnegative integer. In an n-element array, the array elements are x[0], x[1], x[2],...,x[n- 1], as
illustrated in Fig. 9.1. The value of each subscript can be expressed as an integer constant, an integer variable
or a more complex integer expression.

x[0] x[1] x[2] X[n-2] x[n-1]

X is an n-element, one-dimensional array

The number of subscripts determines the dimensionality of the array. For example, x[1i] refers to ar
element in the one-dimensional array x. Similarly, y[1][j] refers to an element in the two-dimensional array
y. (We can think of a two-dimensional array as a table, where y[i}[j] is the jth element of the ith row.
Higher-dimensional arrays can be also be formed, by adding additional subscripts in the same manner (e.g..

z[i][]) (K1)

Arrays are defined in much the same manner as ordinary variables, except that each array name must be
accompanied by a size specification (i.e., the number of elements). For a one-dimensional array, the size is
specified by a positive integer expression, enclosed in square brackets. The expression is usually written as a
positive integer constant.

In general terms, a one-dimensional array definition may be expressed as

storage-class data-type array|expression],

where storage-class refers to the storage class of the array, data-type is the data type, array is the
array name, and expression is a positive-valued integer expression which indicates the number of array
elements. The storage-class is optional; default values are automatic for arrays that are defined within a
function or a block, and external for arrays that are defined outside of a function.

EXAMPLE 9.1 Several typical one-dimensional array definitions are shown below.

int x[100];
char text[80],;
static char message([25];
static fleat n{12];
The first line states that x is a 100-element integer array, and the second defines text to be an 80-element character array.

In the third line, message is defined as a static 25-element character array, whereas the fourth line establishes n as a static
12-element floating-point array.

C-Language Programming Asst. Lect. Gregor A. Aremice

EXAMPLE 9.3 Shown below are several array definitions that include the assignment of initial values.
int digits{10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
static float x([6] = {0, 0.25, O, -0.50, 0, 0};
char color(3) = {'R', 'E', 'D'};
Note that x is a static array. The other two arrays (digits and color) are assumed to be external arrays by virtue of their

placement within the program.
The results of these initial assignments, in terms of the individual array elements, are as follows, (Remember that the
subscripts in an n-element array range from0ton—-1.)

digits[0] = 1 x[0] = O color[0] = 'R’
digits[1] = 2 x[1] = 0.25 color[1] = 'E'
digits[2] = 3 x[2]) = 0 color[2] = 'D'
digits[3] = 4 x[3] = -0.50

digits[4] = 5 x[4] = 0

digits[5] = 6 x[5]) = 0

digits[6] = 7

digits[7] = 8

digits[(8] = 9

digits[9] = 10

EXAMPLE 9.6 Consider the following two character array definitions. Each includes the initial assignment of the
string constant *RED". However, the first array is defined as a three-element array, whereas the size of the second array is
unspecified.

char color[3] = "RED";

char color[] = "RED";

The results of these initial assignments are not the same because of the nuil character, \0, which is automatically added at
the end of the second string. Thus, the elements of the first array are

color(0] = 'R’
color[1] = 'E'
calor[2] = 'D’

whereas the elements of the second array are
caler(0] = 'R’
¢olor(1] = 'E'
color[2] D!
color[3] "\O'

n

27

C-Language Programming Asst. Lect. Gregor A. Aremice

Multidimensional arrays are defined in much the same manner as one-dimensional arrays, except that a
separate pair of square brackets is required for each subscript. Thus, a two-dimensional array will require two
pairs of square brackets, a three-dimensional array will require three pairs of square brackets, and so on.

In general terms, a multidimensional array definition can be written as

storage-class data-type array|expression 1)|expression 2] . . .|expression n];

where storage - class refers to the storage class of the array, data- type s its data type, array is the array
name, and expression 1, expression 2, . . ., expression n are positive-valued integer
expressions that indicate the number of array elements associated with each subscript. Remember that the
storage-class is optional; the default values are automatic for arrays that are defined inside of a function,
and external for arrays defined outside of a function.

We have already seen that an n-element, one-dimensional array can be thought of as a /ist of values, as
illustrated in Fig. 9.1. Similarly, an m x n, two-dimensional array can be thought of as a table of values having
m rows and n columns, as illustrated in Fig. 9.2. Extending this idea, a three-dimensional array can be
visualized as a ser of tables (e.g., a book in which each page is a table), and so on.

col 1 col 2 col 3 col (n-1) <coln
row 1
x{0][0] x[0}[1] x[0][2] x[0][n-2] xfO][n-1}
row 2
x{1]ro] x(1][1] x[1][2] x[1][n-2] x[1]{n-1]
L] . L] e []
row m
x[m-1][0] x[m-1][1] x[m-1][2] x[m-1][n-2] x{m-1][n-1]

X is am x n, two-dimensional array
EXAMPLE 9.15 Several typical multidimensional array definitions are shown below.
fleoat table[50][50];
char page[24][80];
static double records[100][66][255];
static double records[L][M][N];

The first line defines table as a floating-point array having 50 rows and 50 columns (hence 50 x 50 = 2500 elements),
and the second line establishes page as a character array with 24 rows and 80 columns (24 x 80 = 1920 elements). The
third array can be thought of as a set of 100 static, double-precision tables, each having 66 lines and 255 columns (hence
100 x 66 x 255 = 1,683,000 clements).

The last definition is similar to the preceding definition except that the array size is defined by the symbolic constants
L, Mand N. Thus, the values assigned 1o these symbolic constants will determine the actual size of the array.

28

C-Language Programming Asst. Lect. Gregor A. Aremice

EXAMPLE 9.16 Consider the following two-dimensional array definition.
int values([3]|[4] = {1, 2, 3, 4, 5, 6, 7, 8, §, 10, 11, 12};

Note that values can be thought of as a table having 3 rows and 4 columns (4 elements per row). Since the initial values
are assigned by rows (i.e., last subscript increasing most rapidly), the results of this initial assignment are as follows.

values[0][0] = 1 values[0][1] = 2 values[0][2] = 3 values[0][3] = 4
values[1][0] = 5 values[1][1] = 6 values[1][2] = 7 values[1][3] = 8
values[2][0] = 9 values[2][1] = 10 values[2][2] = 11 values[2][3] = 12

Remember that the first subscript ranges from 0 to 2, and the second subscript ranges from O to 3.

EXAMPLE 9.17 Here is a variation of the two-dimensional array definition presented in the last example.

int values[3)[4] = {
{11 2’ 3? 4}3
{51 EF 7’ B}:
{9, 10, 11, 12}
¥

This definition results in the same initial assignments as in the last example. Thus, the four values in the first inner pair of
braces are assigned to the array elements in the first row, the values in the second inner pair of braces are assigned to the
array elements in the second row, etc. Note that an outer pair of braces is required, containing the inner pairs.

Now consider the following two-dimensional array definition.

int values[3][4] = {
{1, 2, 3},
{41 5! B}i
{7, 8, 8}

};

This definition assigns values only to the first three elements in each row. Therefore, the array elements will have the
following initial values.

values[0][0] = 1 values[0][1] = 2 values[0][2] = 3 values[0][3] = 0O
values[1][0] = 4 values[1][1] = 5 values[1][2] = 6 values[1][3] = O
values[2][0] = 7 values[2][1]) = 8 values[2][2]) = 9 values([2][3] = O

29

C-Language Programming Asst. Lect. Gregor A. Aremice

17. Pointers

A pointer is a variable that represents the /ocation (rather than the value) of a data item, such as a variable o
an array element. Pointers are used frequently in C, as they have a number of useful applications. Fo
example, pointers can be used to pass information back and forth between a function and its reference point
In particular, pointers provide a way to return multiple data items from a function via function arguments
Pointers also permit references to other functions to be specified as arguments to a given function. This ha
the effect of passing functions as arguments to the given function.

Pointers are also closely associated with arrays and therefore provide an alternate way to access individua
array elements. Moreover, pointers provide a convenient way to represent multidimensional arrays, allowin;
a single multidimensional array to be replaced by a lower-dimensional array of pointers. This feature permit
a group of strings to be represented within a single array, though the individual strings may differ in length.

Within the computer’s memory, every stored data item occupies one or more contiguous memory cells (i.e.,
adjacent words or bytes). The number of memory cells required to store a data item depends on the type of
data item. For example, a single character will typically be stored in one byte (8 bits) of memory; an integer
usually requires two contiguous bytes; a floating-point number may require four contiguous bytes; and a
double-precision quantity may require eight contiguous bytes. (See Chap. 2 and Appendix D.)

Suppose v is a variable that represents some particular data item. The compiler will automatically assign
memory cells for this data item. The data item can then be accessed if we know the location (i.e., the address)
of the first memory cell.® The address of v*s memory location can be determined by the expression &v, where
& is a unary operator, called the address operator, that evaluates the address of its operand.

Now let us assign the address of v to another variable, pv. Thus,

pv = &v
This new variable is called a pointer to v, since it “points” to the location where v is stored in memory

Remember, however, that pv represents v's address, not its value. Thus, pv is referred to as a pointe
variable. The relationship between pv and v is illustrated in Fig. 10.1.

address of v value of v

h 4

pv v
The data item represented by v (i.e., the data item stored in v’'s memory celis) can be accessed by the
expression *pv, where * is a unary operator, called the indirection operator, that operates only on a pointer

variable. Therefore, *pv and v both represent the same data item (i.e., the contents of the same memory
cells). Furthermore, if we write pv = &vandu = *pv, then u and v will both represent the same value; i.e,,
the value of v will indirectly be assigned to u. (It is assumed that u and v are of the same data type.)

30

C-Language Programming Asst. Lect. Gregor A. Aremice

EXAMPLE 10.1 Shown below is a simple program that illustrates the relationship between two integer variables, their
corresponding addresses and their associated pointers.

#include <stdio.h>

main()
{
int u = 3;
int v;
int *pu; /* pointer to an integer */
int *pv; /* pointer to an integer */
pu = &u; {* assign address of u to pu */
v = *pu; /* assign value of u to v */
pv = &v; /* assign address of v to pv */

printf{*"\nu=%d &u=%X pu=%X *pu=%d*, u, &u, pu, *pu);
printf{*\n\nv=%d &v=%X pv=%X *pv=%d", v, &v, pv, *pv};
}

Note that pu is a pointer to u, and pv is a pointer to v. Therefore pu represents the address of u, and pv represents the
address of v. (Pointer declarations will be discussed in the next section.)
Execution of this program results in the following output.

u=3 &u=FBE pu=FBE *pu=3
v=3 &v=F8C pv=F8C *pv=3

In the first line, we see that u represents the value 3, as specified in the declaration statement. The address of u it
determined automatically by the compiler as F8E (hexadecimal). The pointer pu is assigned this value; hence, pu alsc
represents the (hexadecimal) address FBE. Finally, the value to which pu points (i.e., the value stored in the memory cel
whose address is FBE) is 3, as expected.

Similarly, the second line shows that v also represents the value 3. This is expected, since we have assigned the
value *pu to v. The address of v, and hence the value of pv, is FBC. Notice that u and v have different addresses. And
finally, we see that the value to which pv points is 3, as expected.

The relationships between pu and u, and pv and v, are shown in Fig. 10.2. Note that the memory locations of the
pointer variables (i.e., address EC7 for pu, and EC5 for pv) are not displayed by the program.

31

C-Language Programming Asst. Lect. Gregor A. Aremice

Pointer variables, like all other variables, must be declared before they may be used in a C program. The

interpretation of a pointer declaration differs, however, from the interpretation of other variable declarations.

When a pointer variable is declared, the variable name must be preceded by an asterisk (*). This identifies the

fact that the variable is a pointer. The data type that appears in the declaration refers to the object of the

pointer, i.e., the data item that is stored in the address represented by the pointer, rather than the pointer itself.
Thus, a pointer declaration may be written in general terms as

data-type *ptvar;

where ptvar is the name of the pointer variable, and data- type refers to the data type of the pointer’s
object. Remember that an asterisk must precede ptvar

EXAMPLE 10.4 A C program contains the following declarations.

float u, v;
float *pv;

EXAMPLE 10.5 A C program contains the following declarations.

float u, v;
float *pv = &v;

The variables u and v are declared to be floating-point variables and pv is declared as a pointer variable that points to a
floating-point quantity, as in Example 10.4. In addition, the address of v is initially assigned to pv.
This terminology can be confusing. Remember that these declarations are equivalent to writing

float u, v; /= floating-point variable declarations */
float *pv; /* pointer variable declaration */
pv = &v; /* assign v's address to pv */

Note that an asterisk is not included in the assignment statement.

In general, it does not make sense to assign an integer value to a pointer variable. An exception, however,
is an assignment of 0, which is sometimes used to indicate some special condition. In such situations the
recommended programming practice is to define a symbolic constant NULL which represents 0, and to use
NULL in the pointer initialization. This practice emphasizes the fact that the zero assignment represents a

special situation.

32

