In this lab the following topics would be covered with **focusing mainly on mathematical equations and its application:**

A- Initial dose determination of aminoglycosides

- 1- Pharmacokinetic Dosing Method.
- 2- Hull and Sarubbi Nomogram Method.
- 3- Hartford Nomogram Method for Extended-Interval Dosing.
- 4- Literature-Based Recommended Dosing.

B- Use aminoglycosides serum concentration to change the dose

- 1- Linear Pharmacokinetics Method.
- 2- Pharmacokinetic Concepts Method.
- 3- Sawchuk-Zaske Method

C- Solving the problems of chapter Four; The Aminoglycoside Antibiotics (the main

task of the Lab.)

Dear student; all the necessary equations and the covered topics are within **chapter four** in your textbook;"**Applied Clinical Pharmacokinetics, Second Edition, 2008 by Larry A. Bauer.**"

Dosage intervals should be rounded to clinically acceptable intervals of 8 hours, 12 hours, 18 hours, 24 hours, 36 hours, 48 hours, 72 hours, and multiples of 24 hours thereafter.

[IBW females (in kg) = 45 + 2.3(Ht - 60 in)

 $\{IBWmales = 50 + 2.3(Ht - 60 in)\}$

% overweight = [100(76 kg - 68 kg)] / 68 kg

The Salazar and Corcoran equation for CrCl calculation for obese patients.

$$CrCl_{col(make)} = \frac{(146 - age)[(0.287 \cdot Wl) + (9.74 \cdot Hl^{2})]}{(60 \cdot S_{C})}$$
$$CrCl_{col(make)} = \frac{(137 - age)[(0.285 \cdot Wl) + (12.1 \cdot Hl^{2})]}{(51 \cdot S_{C})}$$

Ht = * 2.54 cm/in / (100 cm/m) from inch to meter

Ht *12 to convert from feet to inches

% overweight=acual wt-ideal wt/ideal wt*100

Pharmacokinetic Dosing Method

1. *Estimate creatinine clearance.*

The Cockcroft-Gault equation:

 $CrClest = [(140 - age) BW] / (72 \cdot SCr)$. Multiply by 0.85 for female.

2. *Estimate elimination rate constant (ke) and half-life (t1/2).*

ke = 0.00293(CrCl) + 0.014, t1/2 = 0.693/ke

3. *Estimate volume of distribution (V).*

0.26 L/kg, obese (30% over IBW) V =0.26[IBW + 0.4(TBW - IBW)]

4. Choose desired steady-state serum concentrations.

- **5.** Use right equation to compute dose.
- 6. Compute loading dose (LD), if needed.

ROUTE OF ADMINISTRATION	SINGLE DOSE	MULTIPLE DOSE	STEADY STATE
Intravenous bolus	$C = (D/V)e^{-k_{e^{t}}}$	$\begin{split} C &= (D/V)e^{-k_e t}[(1 - e^{-nk_e \tau}) / (1 - e^{-k_e \tau})] \end{split}$	$C = (D/V)[e^{-k_{e}t}/(1 - e^{-k_{e}t})]$
Intermittent intravenous infusion	$C = [k_0 / (k_e V)](1 - e^{-k_e t'})$	$\begin{split} C &= [k_0 / (k_e V)] (1 - e^{-k_e t'}) \cdot \\ &[(1 - e^{-nk_e \tau}) / (1 - e^{-k_e \tau})] \end{split}$	$\begin{split} \mathbf{C} &= [\mathbf{k}_0 / (\mathbf{k}_e \mathbf{V})] [(1 - \mathbf{e}^{-\mathbf{k}_e \mathbf{r}})] \\ & \mathbf{e}^{-\mathbf{k}_e \mathbf{r}'}) / (1 - \mathbf{e}^{-\mathbf{k}_e \mathbf{r}})] \end{split}$

FABLE 4-2A One-Compartment Model Equations Used with Aminoglycoside Antibiotics

TABLE 4-2B Pharmacokinetic Constant Computations Utilizing a One-Compartment Model for Aminoglycoside Antibiotics

ROUTE OF ADMINISTRATION	SINGLE DOSE	MULTIPLE DOSE	STEADY STATE
Intravenous bolus	$\begin{array}{l} k_{e} = - \left(\ln C_{1} - \ln C_{2} \right) / \\ \left(t_{1} - t_{2} \right) \end{array}$	$\begin{array}{l} k_{e} = - \left(\ln C_{1} - \ln C_{2} \right) / \\ (t_{1} - t_{2}) \end{array}$	$\begin{array}{l} k_{e}\!=\!-\left(\ln C_{1}\!-\!\ln C_{2}\right)/\\ (t_{1}-t_{2}) \end{array}$
	$t_{1/2} = 0.693 / k_e$	$t_{1/2} = 0.693 / k_e$	$t_{1/2} = 0.693 / k_e$
	$V = D/C_0$	$V = D / (C_0 - C_{predose})$	$V = D / (C_0 - C_{predose})$
	$Cl = k_e V$	$Cl = k_e V$	$Cl = k_e V$
Intermittent intravenous infusion	$k_e = -(\ln C_1 - \ln C_2) / (t_1 - t_2)$	$\begin{array}{c} k_{e} = - \left(\ln C_{1} - \ln C_{2} \right) / \\ (t_{1} - t_{2}) \end{array}$	$k_e = -(\ln C_1 - \ln C_2)/(t_1 - t_2)$
	$t_{1/2} = 0.693 / k_e$	$t_{1/2} = 0.693 / k_e$	$t_{1/2} = 0.693 / k_e$
	$V = [k_0(1 - e^{-k_e t'})] / \{k_e [C_{max} - (C_{nredose} e^{-k_e t'})]\}$	$\begin{split} \mathbf{V} &= \left[\mathbf{k}_0 (1 - \mathbf{e}^{-\mathbf{k}_0 t'}) \right] / \\ & \left\{ \mathbf{k}_e [\mathbf{C}_{\max} - \\ & \left(\mathbf{C}_{\text{predoxe}} \mathbf{e}^{-\mathbf{k}_0 t'}) \right] \right\} \end{split}$	$V = [k_0(1 - e^{-k_e t'})] / \\ \{k_e[C_{max} - (C_{predese}e^{-k_e t'})]\}$
	$Cl = k_e V$	$Cl = k_e V$	$Cl = k_e V$

TABLE 4-2C Equations Used to Compute Individualized Dosage Regimens for Various Routes of Administration Used with Aminoglycoside Antibiotics

DOSAGE INTERVAL (τ), MAINTENANCE DOSE (D OR K _p), AND LOADING DOSE (LD) EQUATIONS $\tau = (\ln Css_{max} - \ln Css_{min}) / k_e$		
$LD = Css_{max} V$		
$\tau = [(\ln Css_{max} - \ln Css_{min}) / k_e] + t'$		
$k_0 = Css_{max}k_eV[(1 - e^{-k_e\tau}) / (1 - e^{-k_et'})]$		
$LD = k_0 / (1 - e^{-k_0 r})$		

Symbol key: Css_{max} and Css_{min} are the maximum and minimum steady-state concentrations, k_e is the elimination rate constant, V is the volume of distribution, k_0 is the continuous infusion rate, t' is the infusion time.