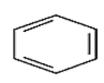
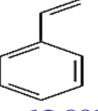

# Spectroscopy (review)


#### Partial structures:




**\$\square\$** Strong UV (ε > 1000):-Conjugated  $\pi$  systems give ε > 1000.







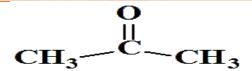


 $\varepsilon = 20, 900$ 

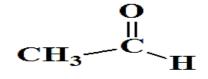
 $\varepsilon = 4,580$ 

 $\varepsilon = 8,000$ 

 $\varepsilon = 12,000$ 


Q // If  $\varepsilon > 1000$ , what kind of partial structure is indicated?

- ✓ The compound MUST CONTAIN a conjugated  $\pi$  system.
- ✓ It might be aromatic (like benzene).
- ✓ It might be a conjugated polyene (like 1,3-butadiene).




• Weak UV ( $\varepsilon$  < 100):

-Aldehydes or Ketones give e < 100



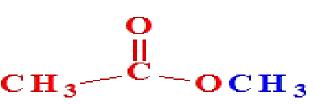
acetone  $\varepsilon = 19$ 



acetaldehyde  $\varepsilon = 12$ 

Q// If  $\varepsilon$  < 100, what kind of partial structure is indicated?

- ✓ The compound must have an aldehyde or ketone carbonyl.
- ✓ There is no heteroatom next to the carbonyl carbon (only C or H).

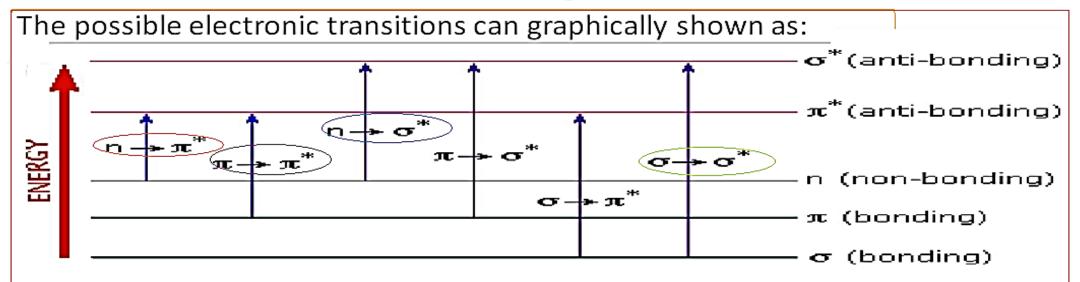



**.** UV End Absorption (No ε) Esters give end absorption

Q// If UV = end absorption, what partial structure is indicated?

✓ A carbonyl group with an Oxygen atom next to the carbonyl carbon is indicated.

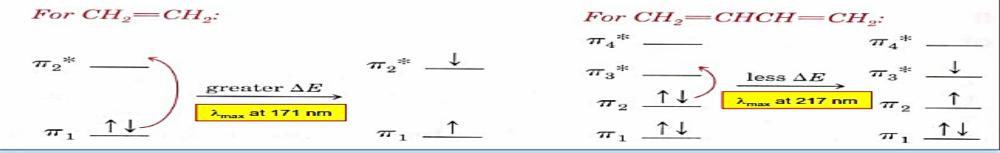
#### m ethyl acetate



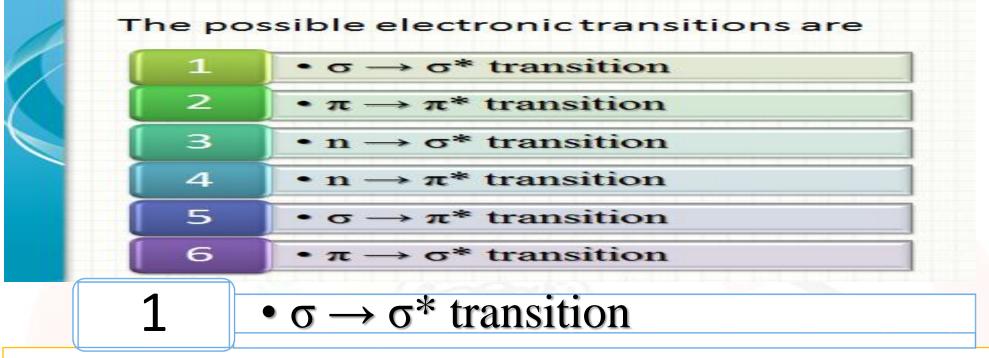



The ground state of an organic molecule contains valence electrons in three principal types of molecular orbitals: sigma (σ) orbitals; pi (π) orbitals; and filled but nonbonded orbitals (n).




- Both σ and π orbitals are formed from the overlap of two atomic or hybrid orbitals. Each of these molecular orbitals therefore has an antibonding σ\* or π\* orbital associated with it.
- An orbital containing n electrons does not have an antibonding orbital (because it was not formed from two orbitals).
- Electron transitions involve the promotion of an electron from one of the three ground states (σ, π, or n) to one of the two excited states (σ\*, or π\*).
- There are six possible transitions; the four important transitions and their relative energies are:




- The most useful region of the UV spectrum is at wavelengths longer than 200 nm.
- The following transitions give rise to absorption in the nonuseful 100-200 nm range:
  - $\pi \rightarrow \pi^*$  for an isolated double bond, and
  - σ→σ\* for an ordinary carbon-carbon bond.
- □ The useful transitions (200 nm-400 nm) are  $\pi \rightarrow \pi^*$  for compounds with conjugated double bonds, and some  $n \rightarrow \sigma^*$  and some  $n \rightarrow \pi^*$  transitions.
- Alkenes and nonconjugated dienes usually have absorption maxima below 200 nm.
- Example: Ethene gives an absorption maximum at 171 nm,
  - 1,4-pentadiene gives an absorption maximum at 178 nm.

#### Absorption by Polyenes

- Compounds whose molecules contain conjugated multiple bonds have absorption maxima at wavelengths longer than 200 nm.
- For example, less energy is required to promote a π electron of 1,3-butadiene than is needed to promote a π electron of ethylene.
- The reason is that the energy gap between the HOMO and the LUMO for conjugated double bonds is less than the energy difference for an isolated double bond.
- Resonance-stabilization of the excited state of a conjugated diene is one factor that decreases the energy of the excited state.



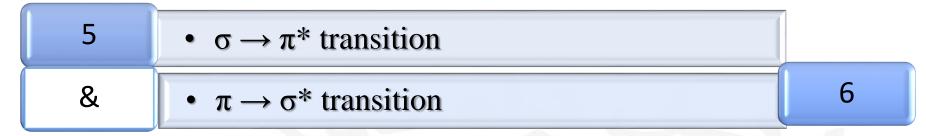
Because less energy is needed for a  $\pi \to \pi^*$  transition of 1,3-butadiene, this diene absorbs UV radiation of longer wavelengths than does ethylene.



- $\sigma$  electron from orbital is excited to corresponding anti-bonding orbital  $\sigma^*$ .
- The energy required is large for this transition.
- e.g. Methane (CH<sub>4</sub>) has C-H bond only and can undergo  $\sigma \rightarrow \sigma^*$  transition and shows absorbance maxima at 125 nm.

Q. The energy required is the highest one for  $\sigma \to \sigma^*$  transition ? ANS. All saturated alkane need highest energy, so they show shortest wave length, with an exception Cyclopropane because of ring strength which give normal UV region above 200 nm.

2 •  $\pi \rightarrow \pi^*$  transition


- $\pi$  electron in a bonding orbital is excited to corresponding anti-bonding orbital  $\pi^*$ .
- Compounds containing multiple bonds like alkenes, alkynes, carbonyl, nitriles, aromatic compounds, etc undergo  $\pi \to \pi^*$  transitions.
- e.g. Alkenes generally absorb in the region 170 to 205 nm.

•  $n \rightarrow \sigma^*$  transition

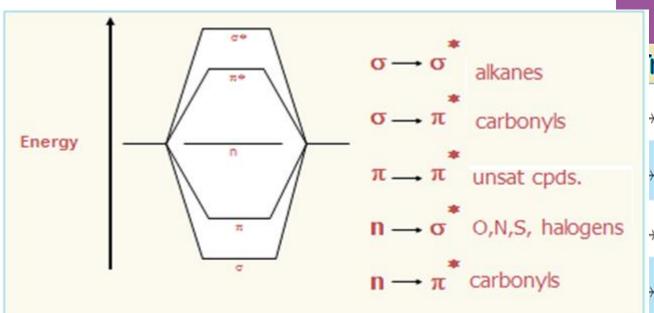
- Saturated compounds containing atoms with lone pair of electrons like 0, N, S and halogens are capable of  $n \to \sigma^*$  transition.
- These transitions usually requires less energy than  $\sigma \to \sigma^*$  transitions.
- The number of organic functional groups with  $n \to \sigma^*$  peaks in UV region is small (150 250 nm).

n → π\* transition

- An electron from non-bonding orbital is promoted to anti-bonding  $\pi^*$  orbital.
- Compounds containing double bond involving hetero atoms (C=O, C≡N, N=O) undergo such transitions.
- $n \to \pi^*$  transitions require minimum energy and show absorption at longer wavelength around 300 nm.



- These electronic transitions are forbidden transitions & are only theoretically possible.
- Thus,  $n \to \pi^* \& \pi \to \pi^*$  electronic transitions show absorption in region above 200 nm which is accessible to UV-visible spectrophotometer.
- The UV spectrum is of only a few broad of absorption.




#### **Band Structure**

In molecules, when a bulk sample of molecules is observed, not all bonds (read – pairs of electrons) are in the same vibrational or rotational energy states

This effect will impact the wavelength at which a transition is observed – very similar to the effect of H-bonding on the O-H vibrational energy levels.

#### Observed electronic transitions



# Electronic Transitions Involving *n*, σ, and π Molecular Orbitals

| Molecular Orbitals     |                  |                                                          |
|------------------------|------------------|----------------------------------------------------------|
| ransition              | Wavelength Range | Examples                                                 |
| $\rightarrow \sigma^*$ | <200 nm          | C-C, C-H                                                 |
| $\rightarrow \sigma^*$ | 160–260 nm       | H <sub>2</sub> O, CH <sub>3</sub> OH, CH <sub>3</sub> Cl |
| $\rightarrow \pi^*$    | 200–500 nm       | $C=C$ , $C=O$ , $C=N$ , $C\equiv C$                      |
| $\rightarrow \pi^*$    | 250–600 nm       | C=O, C=N, N=N, N=O                                       |

| CH4 σ σ*                   |                                                             |
|----------------------------|-------------------------------------------------------------|
| CH2=CH2 σ                  | $\rightarrow$ $\sigma^*$ $\pi$ $\longrightarrow$ $\pi^*$    |
| CH3-(R) C=O 1-σ            | $\rightarrow$ $\sigma^*$ 2- $\pi$ $\longrightarrow$ $\pi^*$ |
| 3- n                       | $\rightarrow \sigma^*$ 4- n $\longrightarrow \pi^*$         |
| CH2=CH-OH                  | CH2=CH-CH2-OH                                               |
| As the above example (1-4) | As the above example (1-3) no 4 x                           |

#### $\pi$ - $\pi$ \* Transition is the most convenient and useful transition in UV-Vis Spectroscopy. Why?

#### In $\sigma$ – $\sigma$ \* transitions :

- The high energy required can cause rupture of the s bonds and breakdown of the molecule.
- Air components absorb in vacuum UV which limits the application of the method, working in vacuum
   UV requires special training
- Special sources and detectors.

• All solvents contain  $\sigma$  bonds

#### In $n-\sigma^*$ transitions:

- The absorption wavelength for a n- $\sigma$ \* transition occurs at about 185 nm where, unfortunately, most solvents absorb. For example, water which has two pairs of nonbonding electrons that will strongly absorb as a result of the n- $\sigma$ \*.(H2O and other solvents with nonbonding electrons).
- $\triangleright$  in polar solvents the energy required for the n- $\sigma^*$  increases and thus the probability for the transition decreases.

#### In $n-\pi^*$ transitions:

- requires very little energy, However, unfortunately, the absorptivity of this transition is very small which precludes its use for sensitive quantitative analysis.
- using polar solvents increases the energy required for this transition, thus decreasing its probability.

#### In $\pi$ - $\pi$ \* transitions: The most frequently used transition is the $\pi$ - $\pi$ \* transition for the following reasons:

- $\triangleright$  The molar absorptivity for the  $\pi$ - $\pi$ \* transition is high allowing sensitive determinations.
- > The energy required is moderate, far less than dissociation energy.
- $\triangleright$  In presence of the most convenient solvent (water), the energy required for a  $\pi$ - $\pi$ \* transition is usually smaller.

#### **CHROMOPHORE**

The part of a molecule responsible for imparting color, are called as chromospheres.

OR

The functional groups containing multiple bonds capable of absorbing radiations above 200 nm due to  $n \to \pi^* \& \pi \to \pi^*$  transitions. e.g. NO<sub>2</sub>, N=O, C=O, C=N, C=N, C=C, C=S, etc

To interpretate UV – visible spectrum following points should be noted:

- 1. Non-conjugated alkenes show an intense absorption below 200 nm & are therefore inaccessible to UV spectrophotometer.
- 2. Non-conjugated carbonyl group compound give a weak absorption band in the 200 300 nm region.

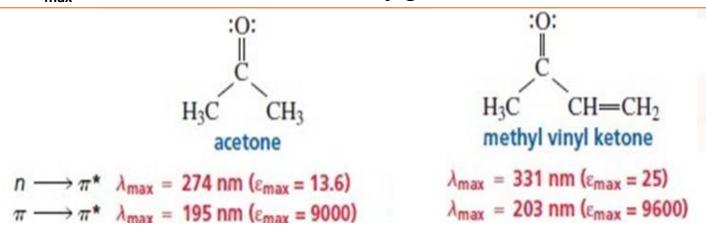
# Chromophore

When double bonds are conjugated in a

#### compound $\lambda_{max}$ is shifted to longer wavelength.

e.g. 1,5 - hexadiene has 
$$\lambda_{max}$$
 = 178 nm

2,4 - hexadiene has 
$$\lambda_{max}$$
 = 227 nm



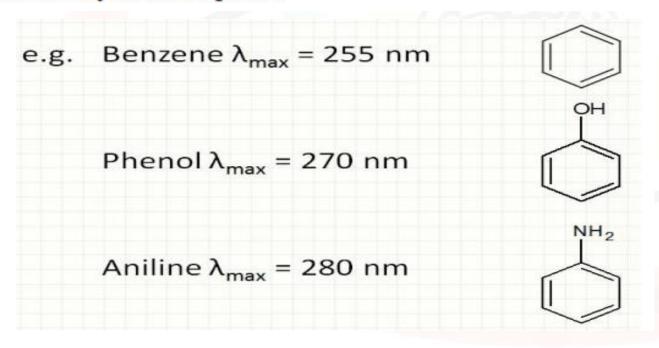

$$H_3C$$
  $CH_3$ 

#### Effect of Conjugation on $\lambda_{max}$

The  $n\to\pi^*$  transition for methyl vinyl ketone is at 331 nm, and the  $\pi\to\pi^*$  transition is at 203 nm. Both  $\lambda_{max}$  values are at longer wavelengths than the corresponding  $\lambda_{max}$  values of acetone because methyl vinyl ketone has two conjugated double bonds.

#### "The $\lambda_{max}$ increases as the number of conjugated double bonds increases."




The more conjugated double bonds there are in a compound, the less energy is required for the electronic transition, and therefore the longer is the wavelength at which the electronic transition occurs.

#### **Auxochrome**

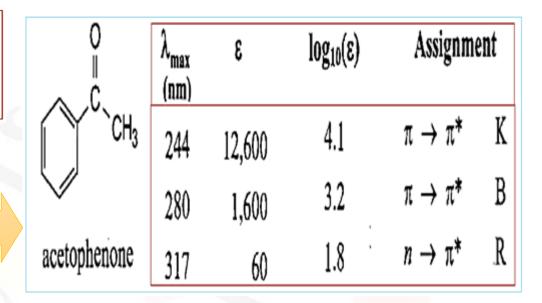
The functional groups attached to a chromophore which modifies the ability of the chromophore to absorb light, altering the wavelength or intensity of absorption.



The functional group with non-bonding electrons that does not absorb radiation in near UV region but when attached to a chromophore alters the wavelength & intensity of absorption.



If the group attached to the ring bears *n* electrons, they can induce a shift in the primary and secondary absorption bands


Increase λmax. Of E1 (not appear )
E2 (shorter to appear )
& B with increase E max.
Or stable and loss its fine structure



Another method of classification uses the symbols:

- B (for benzenoid) R (for radical-like)
- E (for ethylenic) K (for conjugated)

A molecule may give rise to more than one band in its UV spectrum, either because it contains more than one chromophore or because more than one transition of a single chromophore is observed.



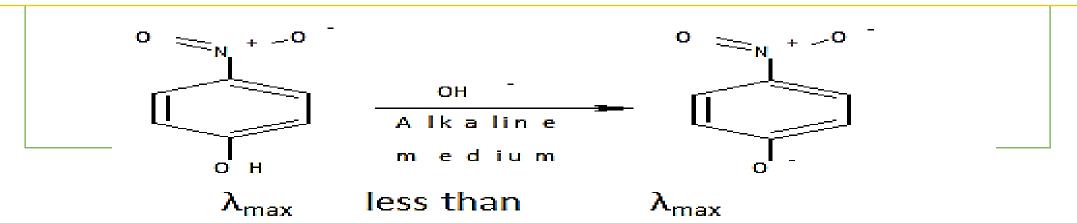
B band (Benzene band, Benzenoid bands) from the  $\pi \to \pi^*$  transition of Benzene. Broad band with fine structure between 230 – 270 nm. This band can be used to identify aromatic compound.

E band (Ethylenic bands) also from  $\pi \to \pi^*$  transition of ethylenic band in benzene E1 band and E2 band

R band originated from  $n - \pi^*$  transition transition.

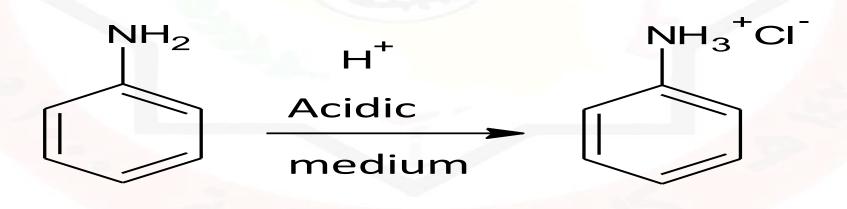
The maximum absorption wavelength > 270 nm,  $\epsilon_{\rm max}$  < 100

Example: Acetone  $\lambda_{\text{max}}$  279 nm,  $\epsilon_{\text{max}}$  =15


**K** band (conjugation band, form  $\pi \rightarrow \pi^*$  transition.

High 
$$\epsilon_{\text{max}}$$
 ( > 10<sup>4</sup>)

Example: Dienes, Acetophenone


#### Bathochromic Shift (Red Shift)

- When absorption maxima  $(\lambda_{max})$  of a compound shifts to longer wavelength, it is known as bathochromic shift or red shift.
- The effect is due to presence of an auxochrome or by the change of solvent.
- e.g. An auxochrome group like –OH, -OCH<sub>3</sub> causes absorption of compound at longer wavelength.
- In alkaline medium, *p*-nitrophenol shows red shift. Because negatively charged oxygen delocalizes more effectively than the unshared pair of electron.



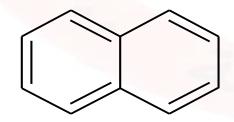
#### Hypsochromic Shift (Blue Shift)

- When absorption maxima  $(\lambda_{max})$  of a compound shifts to shorter wavelength, it is known as hypsochromic shift or blue shift.
- The effect is due to presence of an group causes removal of conjugation or by the change of solvent.
- · Aniline shows blue shift in acidic medium, it loses conjugation.

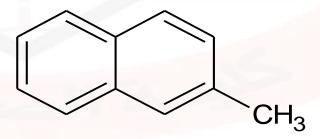


Aniline

$$\lambda_{\text{max}} = 280 \text{ nm}$$


$$\lambda_{\text{max}} = 265 \text{ nm}$$

4


- When absorption intensity ( $\epsilon$ ) of a compound is increased, it is known as hyperchromic shift.
- If auxochrome introduces to the compound, the intensity of absorption increases.

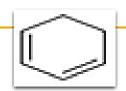
Hypochromic Effect

• When absorption intensity ( $\epsilon$ ) of a compound is decreased, it is known as hypochromic shift.

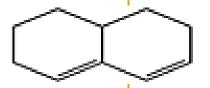


Naphthalene  $\varepsilon = 19000$ 

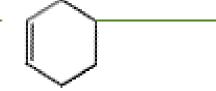



2-methyl naphthalene  $\varepsilon = 10250$ 

# Woodward – Fieser's rules for calculating $\lambda_{max}$

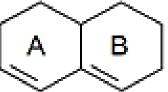

#### **BASIC INTRODUCTION:-**

The central bond is a part of the ring system, the diene chromophore is usually held rigidly in either the s-trans or the s-cis conformation

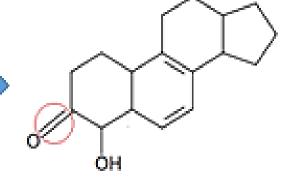

HOMOANNULAR:- cyclic diene having conjugated double bonds in same ring. (s-cis) cyclic dienes having conjugated double bonds in the same ring. e.g.



HETEROANNULAR:-cyclic diene having conjugated double bonds in different rings (s-trans) cyclic dienes having Conjugated double bonds not in the same ring. e.g




ENDOCYCLIC DOUBLE BOND:-double bond present in a ring.




EXOCYCLIC DOUBLE BOND:-double bond in which one of the doubly atoms is a part of ring system.ring A has only one endocyclic double bond

ring B has one exocyclic and endocyclic double bond.



Double bond extending: When more double bonds are present other than conjugations.



## Different Terms

1. Alicylic dienes or dienes contained in an open chain system

i.e, where basic unit is butadiene system.

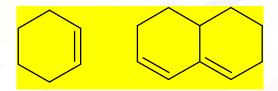


#### 2. Homoannular conjugated double bonds

Are the conjugated double bond present in the same ring. it is also called as Homodiene. some examples of this type are:

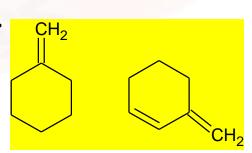


## **Different Terms**


#### 3. Heteroannular conjugated double bonds

Are the double bonds which are present in different ring. for example.




#### 4. Endocyclic double bond

The double bond present in a ring only (inside).



#### 5. Exocyclic double bond

The double bond is a part of the ring (outside).

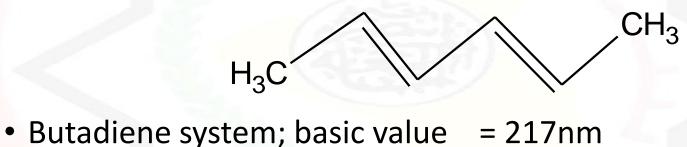


# Woodward – Fieser's rules for conjugated dienes, trienes, polyenes etc

- According to this rules each type of dienes or trienes system is having a certain fixed value at which absorption takes place.
- This constitutes the basic value or parent value.

This value of absorption maximum depends upon:-

- √ The number of alkyl substitution or ring residues
- √ The number of double bonds which extending conjugation
- ✓ The presence of polar groups such as Cl, Br, OR, are added to the basic value to obtain  $\lambda_{max}$  for a particular compound.


| Conjugated Dienes and Polyenes                                |        |  |
|---------------------------------------------------------------|--------|--|
| Parent Value                                                  |        |  |
| Acyclic conjugated dienes and Heteroannular conjugated dienes | 215 nm |  |
| Homoannular conjugated dienes                                 | 253 nm |  |
| Acyclic trienes                                               | 245 nm |  |
| Butadiene system open chain (Acyclic)                         | 217 nm |  |
| Increments                                                    |        |  |
| Each alkyl substitute or ring residue                         | 5 nm   |  |
| Exocyclic double bond                                         | 5 nm   |  |
| Double bond extending conjugation                             | 30 nm  |  |
| Auxochromes                                                   |        |  |
| -OR                                                           | 6 nm   |  |
| -SR                                                           | 30 nm  |  |
| -Cl,-Br                                                       | 5 nm   |  |
| -NR2                                                          | 60 nm  |  |
| -OCOCH3                                                       | 0 nm   |  |

| α,β-unsaturated carbonyl compounds         |                     |        |     |
|--------------------------------------------|---------------------|--------|-----|
| Parent Value                               |                     |        |     |
| α,β -unsaturated acycring ke               |                     | 215 1  | nin |
| α,β -unsaturated five membered ring ketone |                     | 202 nm |     |
| α,β -unsaturated aldehyde                  |                     | 207 nm |     |
| Increments                                 |                     |        |     |
| Each alkyl substitu                        | ite or ring residue |        |     |
| At position α                              |                     | 10 nm  |     |
| At position β                              |                     | 12 nm  |     |
| At γ position and higher position          |                     | 18 nm  |     |
| Each Exocyclic                             | c double bond       | 5 nı   | n   |
| Double bond extending conjugation          |                     | 30 nm  |     |
| Homoannular co                             | njugated diene      | 39 nm  |     |
| Auxochromes                                | α                   | β      | γ   |
| -OH                                        | 35                  | 30     | 50  |
| -OR                                        | 35                  | 30     | 17  |
| -SR                                        | -                   | 85     | -   |
| -OCOCH3                                    | 6                   | 6      | 6   |

| Aromatic compounds or Benzovl derivatives.                 |              |
|------------------------------------------------------------|--------------|
| Parent Value                                               |              |
| X = alkyl / ring residue, ArCOR                            | 246 nm       |
| X = H, ArCHO                                               | 250 nm       |
| X = OH / O-alkyl, ArCO <sub>2</sub> H, ArCO <sub>2</sub> R | 230 nm       |
| Increments                                                 |              |
| R = alkyl / ring residue                                   | o, m = 3 nm  |
|                                                            | p = 10  nm   |
| R = OH / O-alkyl                                           | o, m =7 nm   |
|                                                            | p = 25  nm   |
| $R = NH_2$                                                 | o, m = 23 nm |
|                                                            | p = 58 nm    |

### **EXAMPLES**

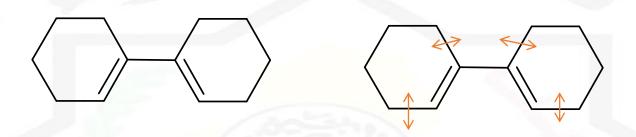
1. Calculate absorption maximum in UV Spectrum of 2,4 Hexadiene.



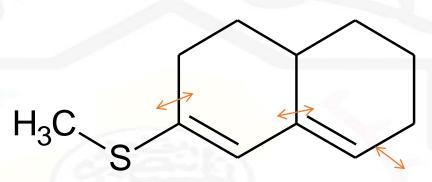
- 2 Alkyl substituent(2X5nm) = 10nm
- Calculated value = 227 nm
- Observed value = 227 nm

2. Calculate  $\lambda$  max for 1,4- dimethylcyclohex-

1,3-diene


Parent value for homoannular ring : = 253 nm

• Two alkyl substituents :  $2 \times 5 = 10 \text{ nm}$ 


• calculated value : = 273 nm

• observed value : = 263 nm

# 3. Calculate $\lambda$ max of following compound



- Parent value for heteroannular diene : = 214 nm
- Four ring residue : 4 X5 = 20 nm
- Calculated value : = 234 nm
- Observed value : = 236 nm



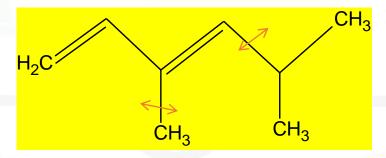
• Parent value for heteroannular diene : = 214 nm

• 3 ring residue : 3 X5 = 15 nm

• Exocyclic double bond = 5 nm

• Thiomethyl substituent =30 nm

• Calculated value : = 264 nm

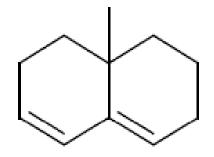

• Observed value : = 268 nm

| Isopre            | ne - acyclic butadiene =                       | 217 nm           |
|-------------------|------------------------------------------------|------------------|
| $\leftrightarrow$ | one alkyl subs.<br>Calculated value            | + 5 nm<br>222 nm |
|                   | Observed value                                 | 220 nm           |
|                   |                                                |                  |
|                   |                                                |                  |
| Allylidenecycloh  | nexane - acyclic butadiene =                   | 217 nm           |
| Allylidenecycloh  | nexane - acyclic butadiene = one exocyclic C=C | 217 nm<br>+ 5 nm |
| Allylidenecycloh  | •                                              |                  |



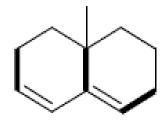
Acyclic butadiene = 217 nm Extended conjugation = +30 nm

Calculated value = 247 nm

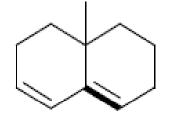



Acyclic base = 217 nm

2 alkyl substitution = 10 nm


Calculated value = 227 nm

#### 1,2,3,7,8,8a-hexahydro-8a-methylnaphthalene




Heteroannular diene

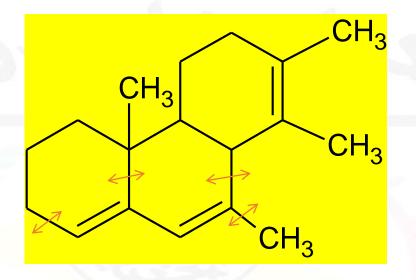
= 214 nm



3 alkyl subs.  $(3 \times 5)$  = +15 nm



1 exo C=C


= + 5 nm

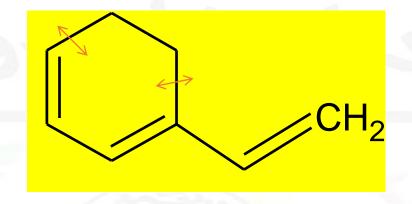
Calculated value

234 nm

Observed value

235 nm



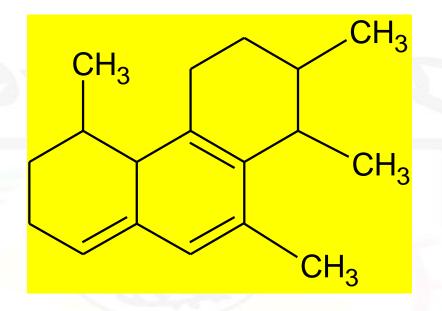

Parent value for heteroannular : = 214 nm

Four ring residue : 4 X5 = 20 nm

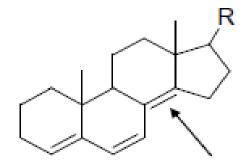
Exocyclic double bond =5 nm

Calculated value : = 239 nm

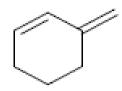
Observed value : = 236 nm



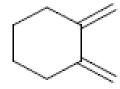

Parent value for homoannular : = 253 nm


Extended conjugation 1 X30 = 30 nm

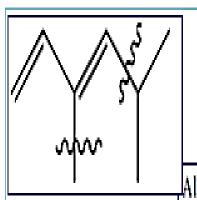
Alkyl substitution 2x5 = 10 nm


Calculated value : = 293 nm




#### Be careful with your assignments - three common errors:



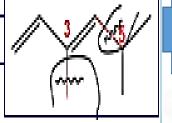

This compound has three exocyclic double bonds; the indicated bond is exocyclic to *two* rings



This is **not** a heteroannular diene; you would use the base value for an acyclic diene



Likewise, this is **not** a homooannular diene; you would use the base value for an acyclic diene

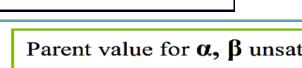



H<sub>3</sub>C

Parent value for Acyclic conjugated diene = 215 nm

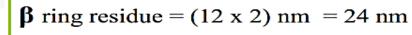


Alkyl Substitute or Ring residue at C-3 and C-5 = 5+5= 10 nm




One way to identify an auxochrome is:

- draw a loop around the entire conjugated system (including extending olefins)
- then add hash marks across all bonds attached to the loop. The hash marks define auxochrome attachments.




Observed value = 225 + - 5 nm



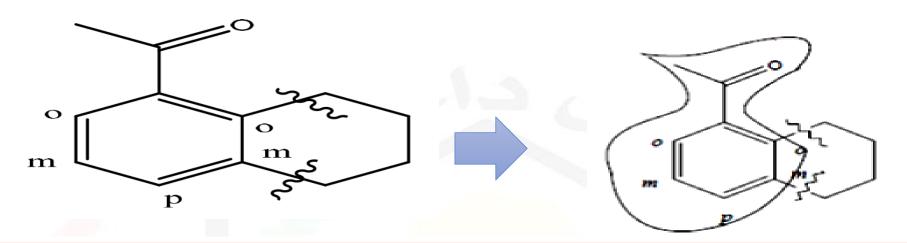
Parent value for  $\alpha$ ,  $\beta$  unsaturated 5 membered enone = 202 nm





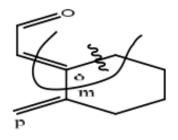


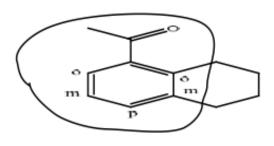



Exocyclic double bond (in respect of ring B) = 5 nm

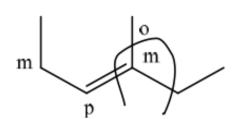


So, 
$$\lambda_{\text{max}}$$
 would be = (202+24+5) nm = 231 nm


Observed value would be = 231 + -5 nm

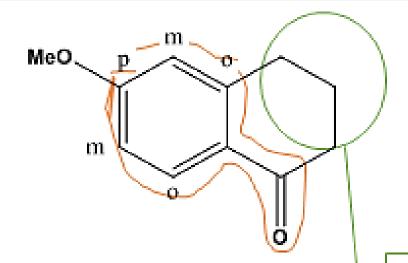


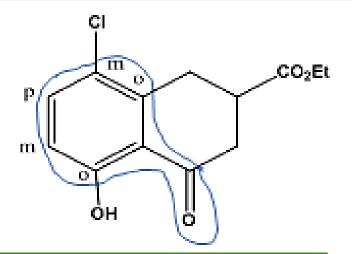


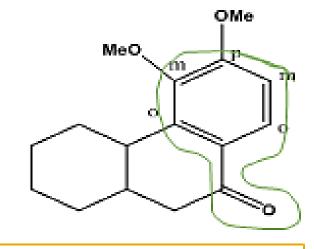


Parent value for Benzoyl group (aliphatic methyl group) = 246 nm

Auxochrome at Ortho Position = 3 nm







Auxochrome at Meta position = 3 nm




So, 
$$\lambda_{max}$$
 would be = (246+3+3) nm = 252 nm

Observed value would be = 252 + -5 nm







#### Ketone

λmax.

Parent comp. 246

Ring residue +3

P-OCH3 +25

-----

λmax. EtOH calc. 274 nm Obs. 276nm

#### Ketone

λmax.

Parent comp. 246

Ring residue +3

O-OH +7

m- Cl +0

λmax. EtOH

calc. 256 nm

Obs. 257nm

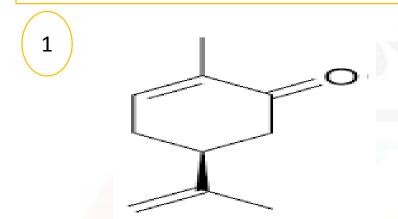
#### Ketone

λmax.

Parent comp. 246

Ring residue +3

*P*-OCH3 +25


*m*- OCH3 +7

λmax. EtOH

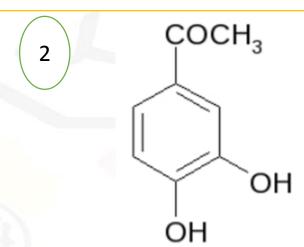
calc. 281 nm

Obs. 278nm

#### Calculate the $\lambda$ max for the following compounds:



Parent conjugated enone in six

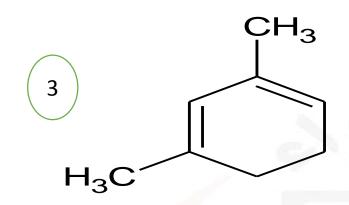

Substitution of alkyl groups at

$$\alpha$$
 position = 10 nm

Substitution of alkyl residue at

$$\beta$$
 position = 12 nm

$$\lambda_{\text{max}} = 237 \text{ nm}$$



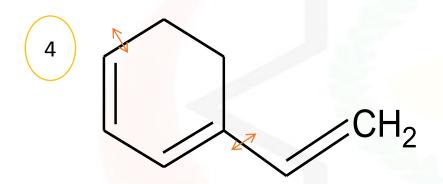

base value = 246 nm

Hydroxy group at meta position = 07 nm

Hydroxy group at para position = 25 nm

$$\lambda_{\text{max}} = 278 \text{ nm}$$




• Parent value for homoannular ring := 253 nm

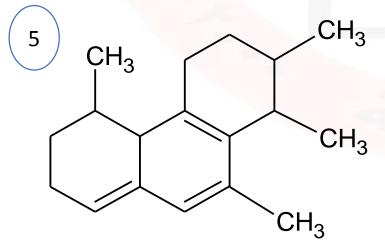
Two alkyl substituents :  $2 \times 5 = 10 \text{ nm}$ 

• Two ring residue :  $2 \times 5 = 10 \text{ nm}$ 

• calculated value : = 273 nm

• observed value : = 263 nm




Parent value for homoannular : = 253 nm

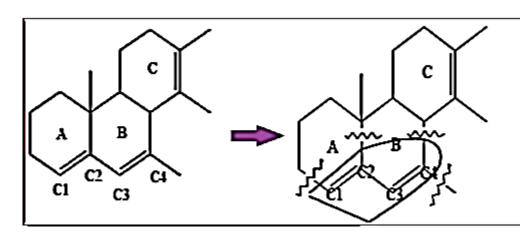
Extended conjugation 1 X30 = 30 nm

Alkyl substitution 2x5 = 10 nm

Calculated value :

= 293 nm




Parent value for homoannular (the highest value) = 253 nm

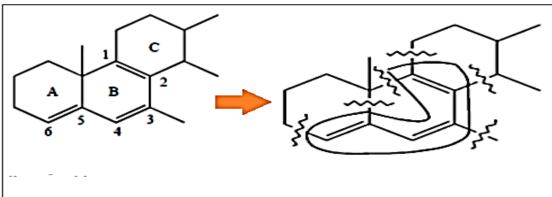
Extended conjugation 1 X30 = 30 nm

Exocyclic double bond =5 nm

Alkyl substitution or ring residue 6x5 = 30 nm

Calculated value : = 318 nm




Calc. λ<sub>max</sub>=

215 (heteroannular since two pi bonds are not in the same ring)

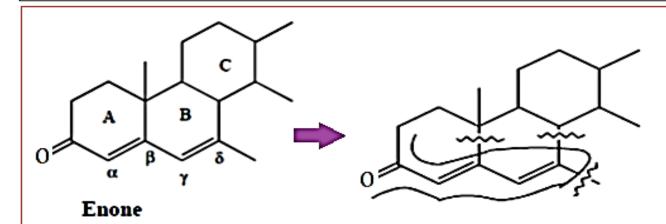
+20 (5+5+5+5=20, for each of the alkyl or ring auxochromes: attached to  $C_1$ ,  $C_2$ ,  $C_3$ , and  $C_4$ )

+5 (pi bond of C<sub>1</sub>-C<sub>2</sub> is exocyclic to ring B)

 $=240 \, \text{nm}$ 



Calc. λ<sub>max</sub> =


253 (choose diene with highest base value, pi bonds C<sub>1-2</sub> and C<sub>3-4</sub> are within same ring, so homoannular base should be selected)

+ 30 (C<sub>5.6</sub> pi bond is conjugated to diene and is therefore an extending diene)

+5 (C<sub>5-6</sub> is exocyclic to ring B)

+ 30 (5 + 5 + 5 + 5 + 5 + 5 + 5 = 30, for the alkyl or ring auxochromes at  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_5$ , and  $C_6$ )

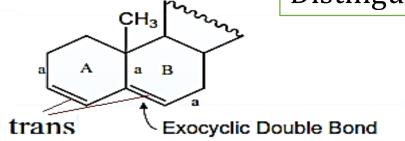
 $= 318 \, nm$ 



#### Calc. $\lambda_{max}$ :

215 (cyclohexenone base)

+ 30 (extending conjugation)

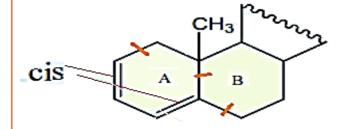

+ 5 (α,β olefin is exocyclic to ring B)

+ 12 (β auxochrome)

+36 (2 δ auxochromes)

= 298 nm

#### Distinguish Isomers

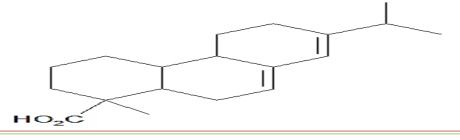



heteroannular or open diene 214 nm ring residues:  $3 \times 5 = 15$ 

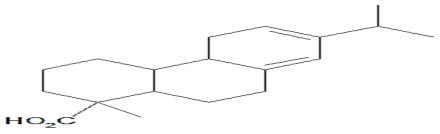
exocyclic double bond: 5

234 nm

observed: 235 nm




homoannular diene 253 nm ring residues:  $3 \times 5 = 15$ 


exocyclic double bond: 5

273 nm

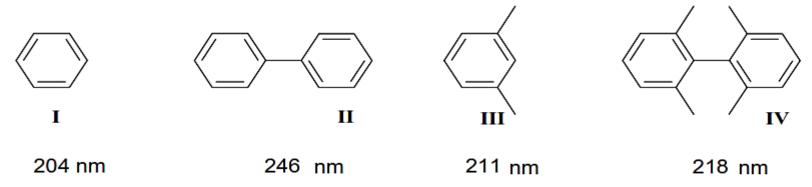
observed: 275 nm



| Base value       | 214 |
|------------------|-----|
| 4 x alkyl subst. | 20  |
| exo DB           | 5   |
| total            | 239 |
| Obs.             | 238 |
|                  |     |



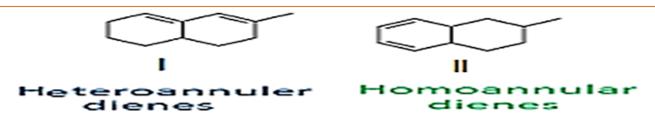
| Base value       | 253 |
|------------------|-----|
| 4 x alkyl subst. | 20  |
| total            | 273 |
| Obs.             | 273 |
|                  |     |




The structure of aldehydes and ketones has been studied and they were shown:

$$\left(\begin{array}{c} R \\ C = 0 \end{array} \longrightarrow \begin{array}{c} R \\ R \end{array}\right)$$

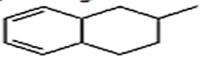
The position of absorption that involves nonbonding electrons n to  $\delta$  and n to  $\pi$  is particularly sensitive to polarity of the solvent used.


How do you explain the fact that  $\lambda_{max}$  for compounds I and II are vastly different whereas those of III and IV are very similar?



I and II: II more or less planar, extended conjugation over both rings

III and IV: IV considerably twisted, conjugation only over one ring as in III; IV is just twice III


A diene  $C_{11}H_{16}$  was thought to have the structure below. Its UV spectrum showed a  $\lambda_{max}$  of 263 nm. Can the structure below be correct? If not, draw a structure with the same skeleton that satisfies the spectral data.



Answer: I not correct one because

 $215 + 4 \times 5 + 5 = 240 \text{ nm}$ , too far off. Probably due to wrong base system:

II is the correct one because  $:263 - 253 = 10 \text{ nm} > 2 \times 5$ , 2 alkyl substituents:

