

Characteristic Group Vibrations of Organic Molecules II

_	ortant C-H ation	I stretching vibratio Frequency (cm ⁻¹)	ns at a glance Intensity
Alkane	Stretch	3000-2850	s
Methyl	bending	1450-1375	m
Methylene	bending	1465	m
Alkene	stretch	3100-3000	m
	bend	1000-650	s
Aromatic	stretch	3150-3000	s
	bend	900-690	s
Alkyne	stretch	3300	s

Aromatic Hydrocarbons

Aromatic (C-H) stretching (3130-3030) cm⁻¹

Aromatic (C-H) bending (900-650)

(1225-950) cm⁻¹

Aromatic (C=C-C) (1615-1580)

(1510-1450) cm⁻¹

Monosubstitution (710-690) cm⁻¹

Disubstitution (ortho) (770-730) cm⁻¹

(meta) (810-750) (900-860) cm⁻¹

(para) (860-800) cm⁻¹

Aromatic ring (1600-1500) cm⁻¹

Aromatic Hydrocarbons

Monosubstituted aromatic ring

Monosubstitution (710-690) cm⁻¹

Aromatic (C=C-C) (1510-1450) cm⁻¹

Aromatic (C-H) stretching (3130-3030) cm⁻¹

Disubstituted aromatic ring (para)

The combination and overtone bands in 2000-1650 cm⁻¹ region are also characteristics of aromatic rings. Moreover, they are very weak and are observed only in the case of concentrated solutions of highly symmetric benzene derivatives.

Alcohols and Phenols

- > The (C-O) and (O-H) absorption bands can be recognised from 3700 to 3400 cm⁻¹
- > The presence of (N-H) or moisture causes similar results.
- > The exact position and shape of this band depends largely on the degree of H-bonding.
- A strong and sharp peak in the region as higher 3700 cm⁻¹ in gaseous or extremely dilute solutions represents unbounded or free OH group(s).

Alcohols and Phenols

- Alcohols and phenols in condensed phases (bulk liquid, KBr discs, concentrated solution etc.) are strongly hydrogen bonded, usually in the form of dynamic polymeric association; dimmers, trimers, tetramers etc., and cause broadened bands at lower frequencies.
- ➤ H-bonding involves a **lengthening** of the original **(O-H)** bond. This bond is consequently **weakened**, force constant is **reduced** and so the stretching frequency is **lowered**.
- > (C-O) stretching (1250-1000) cm⁻¹
- > (C-O) with (C-C) stretching mode

These two bands can differentiate the types of alcohols and phenols

Enols and Chelates

- Since these bonds are not easily broken on dilution by an inert solvent, free (O-H) may not be seen at *low concentrations*.
- ❖ In structures, such as 2,6-di -t-butylphenol, in which steric hindrance prevents hydrogen bonding, no bounded O-H band is observed, not even in spectra of neat samples.

Ethers and Epoxides

- Asymmetric (C-O-C) stretching 1150-1000 cm⁻¹
- But a band in this region is also observed in other oxy compounds like alcohols, aldehydes, ketones, and acids etc. *Therefore*, we consider the possibility that a compound is ether or an epoxide <u>only if</u> the unknown oxy compound shows no absorption bands in (O-H) (3750-3000 cm⁻¹) or carbonyl (1850-1550 cm⁻¹) regions. ((How can you recognize ether from other carbonyl groups?))
- The conjugation of ether with (C=C) bond or phenyl ring <u>shifts</u> the (C-O-C) symmetric stretching to ~1250 cm⁻¹. The resonance *increases* the bond order from single to partial double bond and so higher the force constant and higher the absorption frequency.

Carbonyl compounds

■ The absorption peak for (C=O) stretching in the region 1870 to 1600 cm⁻¹ is perhaps the easiest band to recognize in IR spectrum and is extremely useful in analysis of carbonyl compounds.

- The changes in (C=O) stretching frequency in *various carbonyl compounds* can be explained by considering:
- 1. Electronic and mass effects of neighboring substituents
- 2. Resonance effects (both C=C and heteroatom lone pair)
- 3. Hydrogen bonding (inter and intramolecular)
- 4. Ring strain etc.
- It is customary to refer to the absorption frequency of a saturated aliphatic ketone at 1715 cm⁻¹

a. Aldehydes and Ketones

Aliphatic aldehydes show strong (C=O) stretching in the region of 1740 – 1725 cm⁻¹.

- The conjugation of an aldehyde to a (C=C) or a phenyl group lowers (C=O) stretching by ~ 30 cm⁻¹.
- This effect is seen in benzaldehyde in which aryl group is attached directly to the carbonyl group and shifts (C=O) stretch to 1701 cm⁻¹.

■ The higher (C-H) stretching band (2860-2800 cm⁻¹) of aldehyde is often buried under aliphatic C-H band. But the lower C-H band at 2760-2700 cm⁻¹ is usually used to <u>distinguish</u> aldehydes from ketones. The C-H bending vibrations appear between 945-780 cm⁻¹.

In case of cyclic ketones, the coupling between (C=O) stretching and C(=O)-C single bond causes increase in C=O stretching frequency as the C-C(=O) angle decreases.

$$H_3C$$
 CH_3
 1715 cm^{-1}
 1715 cm^{-1}
 1715 cm^{-1}
 1745 cm^{-1}
 1780 cm^{-1}
 1815 cm^{-1}
 1735 cm^{-1}
 1725 cm^{-1}
 1770 cm^{-1}
 1750 cm^{-1}

b. Carboxylic Acids, Esters and Carboxylates

Wavenumbers (cm⁻¹)

aromatic C=C

<u>In case of carboxylic acids</u>, the appearance of strong (C=O) stretching along with broad hydroxyl peak centered at ~ 3000 cm⁻¹ in an IR spectrum certainly shows the presence of carboxylic acid. In addition a medium intensity (C=O) stretch appears between 1320 – 1260 cm⁻¹. *In dilute solutions*, the carboxylic acids attain monomeric structures and the *inductive effect* of oxygen shifts the (C=O) absorption band to higher values 1760 – 1730 cm⁻¹ than observed in **ketones** (1710 cm⁻¹).

3070-2840

O-H

stretch

100

80

20

% Transmittance

b. Carboxylic Acids, Esters and Carboxylates

In case of α , θ -unsaturated or aryl carboxylic acids esters, the esters of due to conjugation absorb at lower frequency.

If in an ester, (C-O) oxygen bears *electron-withdrawing group* like **vinyl**, **Ph** etc., then the (C=O) stretching is shifted to *higher* values (~1770 cm⁻¹) This increases the electron-withdrawing ability of oxygen causing increase in carbonyl double bond character.

Figure 35: Resonance effects in vinyl esters

In cyclic esters (lactones) **(C=O)** stretching is shifted to *higher frequency with decreasing ring size*. Because of ring strain.

In salts of carboxylic acids, expected due to partial (C=O) bond character, the C=O stretching frequency is shifted to lower frequencies at ~ 1600 cm⁻¹.

c. Acid Chlorides and Anhydrides

- Both carboxylic acid halides and anhydrides show strong (C=O) absorptions at frequencies > 1800 cm⁻¹, and are easily differentiated form other carbonyl compounds.
- The acid anhydrides show two absorption bands in carbonyl region at 1820 cm⁻¹ due to symmetric and at 1760 cm⁻¹ due to asymmetric stretching vibrations.
- In case of anhydrides of conjugated carboxylic acids, the frequencies due to these bands are shifted to 1775 and 1720 cm⁻¹.

c. Acid Chlorides and Anhydrides

The effect of conjugation is clearly visible in IR spectrum of benzoyl anhydride. The strong and broad
 (C-O) stretching vibrations appear in the region 1300 – 900 cm⁻¹.

■ <u>In case of acid chlorides</u>, the (C=O) stretching frequencies appear at 1810-1790 cm⁻¹ which is attributed to high electronegativity of chlorine

d. Amides

■ In case of amides strong resonance participation of lone pair of electrons by amide nitrogen *weakens* the carbonyl bond, Consequently:

- The (C=O) stretching band in IR spectra of amide is called amide I band.
- *In primary and secondary amides,* (N-H) deformation band appears in the region 1655 1595 cm⁻¹ and is called amide II band.
- In the solid or pure liquid state, *primary amides*, which are highly hydrogen bonded, **exhibit two N-H stretching bands**, **one at 3550 cm**⁻¹ **due to N-H asymmetric stretching and other at 3180 cm**⁻¹ **due to N-H symmetric stretching**.
- In dilute solutions, due to lowering in degree of hydrogen bonding, the absorption bands shift to higher frequencies at 3500 and 3400 cm⁻¹, respectively. The secondary amides show only one (N-H) band at ~ 3300 cm⁻¹.

	COOR	1750-1730	s
	$CONH_2$	1680-1630	S
	Anhydride	1810 and 1760	S
	Acid chloride	1800	s
C=N	Imines	1690-1640	m-s
C=X	Allenes, ketenes, isocyanates	2270-1940	m
N=O	Nitro	1550 and 1350	S
Triple bonds			
C <u>=</u> C	Alkyne	2250-2100	m-w
C <u>=</u> N	Nitriles	2260-2240	m

N—H sp C—H sp ² C—H sp ³ C—H		Doub C=C C=O Aldehydes and ketones Carboxylic acids Acid anhydrides	1620–1680 1710–1750 1700–1725
-O-H (alcohols) -O-H (carboxylic acids) N-H sp C-H sp ² C-H sp ³ C-H	3200-3600 2500-3600 3350-3500 3310-3320 3000-3100	C=C C=O Aldehydes and ketones Carboxylic acids	1620–1680 1710–1750 1700–1725
—O—H (carboxylic acids) N—H sp C—H sp² C—H sp³ C—H	2500-3600 3350-3500 3310-3320 3000-3100	Aldehydes and ketones Carboxylic acids	1710–1750 1700–1725
N—H sp C—H sp ² C—H sp ³ C—H	3350-3500 3310-3320 3000-3100	Aldehydes and ketones Carboxylic acids	1700–1725
sp C—H sp ² C—H sp ³ C—H	3310-3320 3000-3100	Aldehydes and ketones Carboxylic acids	1700–1725
sp ² C—H sp ³ C—H	3000-3100	Carboxylic acids	1700–1725
sp ² C—H sp ³ C—H	3000-3100		
		Acid anhydrides	1000 1000 1740 17
sp ² C—O		Acyl halldes	1800–1850 and 1740–17 1770–1815
- C O	1200 1025-1200	Esters	1730-1750
sp C=0	1025-1200	Amides	1680–1700
		Triple bonds	
		c=c	2100-2200
		-c=N	2240-2280
	Bending vibration	ns of diagnostic value	
Alkenes:		Substituted derivatives o	of benzene:
	910, 990	Monosubstituted	730-770 and 690-710
	890 665–730	Ortho-disubstituted Meta-disubstituted	735–770 750–810 and 680–730
trans-RCH=CHR'	960-980 790-840	Para-disubstituted	790–840