(This summary is designed only for the lecture; it never designed for any exam.)

CLINICAL PHARMACOKINETIC FOR AMINOGLYCOSIDE:

A-Initial dose determination.

B-Use of Aminoglycoside concentration to change the dose.

Initial dose determination:

1- pharmacokinetic dosing method.

2-Hull and Sarubbi nomogram method.

3-Harford nomogram method for extended interval dosing.

4-Literature-based recommended dosing method

1-Pharmacokinetic dosing methods

To get the initial dose using pharmacokinetic dosing method, the following should be known:

<u>1- The actual weight of the patient and its relation to ideal body</u> weight.

% $overweight = \frac{(ABW-IBW)}{IBW} \times 100\%$, ABW= Actual body weight, IBW= Ideal body weight

IBW (male) = 50 + 2.3 (H - 60) **IBW** (female) = 45.5 + 2.3 (H - 60)

Where: H = height in inches

IBW (male) = 0.9 H - 88 **IBW** (female) = 0.9 H - 92

Where: H = *height in centimeters*

Designed by Turath Nabeel Ibrahim

2-Creatinine clearance

A-If the patient has stable renal function and not obese, use Cockroft and Gault EQ:

CrCl male =
$$\frac{(140-Age)*wt}{72*Sc}$$

CrCl female = 0.85 $\frac{(140-Age)*wt}{72*Sc}$

(Cockroft and Gault) where Age in years, Wt in Kg, and Sc in mg/dL.

B- If the patient has stable renal function and obese (above 30% of its ideal body weight), use Salazar and Corcoran equation:

$$CrCl male = \frac{(137 - age)[(0.285 * Wt) + (12.1 * Ht^{2})]}{(51 * sc)}$$
$$CrCl female = \frac{(146 - age)\{(0.287 * Wt) + (9.74 * Ht^{2})\}}{(60 * sc)}$$

where Age in years, Wt in Kg, Ht in meter, and Sc in mg/dL.

Note: Inch= 2.54 cm

3- The volume of distribution of Aminoglycoside in the patient

Adult, normal renal fun	0.26 L/kg
Adult, renal failure	0.26 L/kg
burn	0.26 L/kg
Penicillin therapy	0.26 L/kg
Obesity (more than 30% of IBW)	V= 0.26 [IBW+ 0.4(TBT-IBW)]
Cystic fibrosis	0.35
Acites/overhydration	V = (0.26 · DBW) + (TBW – DBW)

4-The elimination rate constant of AG in the patient

ke = 0.00293(CrCl) + 0.014 (h⁻¹)

5- The suitable steady state concentration (peak & trough)

Sever infection (Pseudomonas aeruginosa, OR gram-negative pneumonia or septicemia)	8-10 μg/mL for tobramycin, gentamicin, and netilmicin. 25-30 μg/mL for Amikacin.
Moderate infections such as Intraabdominal infection	5-7 μg/mL for tobramycin, gentamicin, and netilmicin 15-25 for Amikacin.
Mild infection or with penecillin in endocarditis	3-5μg/mL for tobramycin, gentamicin, and netilmicin. 12-15 for Amikacin.

6-Dose model (intravenous bolus or intermittent infusion)

For intravenous bolus:

$$\tau = \frac{\text{InCss max} - \text{InCss min}}{\text{Kel}}$$

$$MD = Css max * Vd (1 - e^{-Kel * \tau})$$

LD = Css max * Vd

For intermittent infusion:

$$\Box \tau = \frac{InCss \ max - InCss \ min}{Kel} + t'$$
$$\Box MD = Css \ max \ * \ kel \ * \ Vd \ \left(\frac{1 - e - Kel \ *\tau}{1 - e - Kel \ *t'}\right)$$
$$\Box LD = \frac{MD}{1 - e - Kel \ *\tau}$$

Hartford Nomogram Method for Extended-Interval Dosing

- 1. Administer 7-mg/kg gentamicin with initial dosage interval
- 2- According to CLcr, choose the INITIAL DOSAGE INTERVAL

ESTIMATED CrCl	INITIAL DOSAGE INTERVAL
≥60 mL/min	q24 h
40–59 mL/min	q36 h
20–39 mL/min	q48 h
<20 mL/min when <1 μg/mL	monitor serial concentration and give next dose

3- The aminoglycoside concentration should be measured 6–14 hours after dose (ideally first dose), and accordingly, the dose interval may be changed:

USE OF AMINOGLYCOSIDE SERUM CONCENTRATIONS TO CHANGE THE DOSE:

Linear Pharmacokinetics Method:

For this method to be valid, it should:

1-The measured concentration is a steady state

2-Make sure that the trough is within recommended range

D new = (Css,new/Css,old) D old

Css is the peak concentration.

Check the trough, it should be <2 μ g/mL for tobramycin, gentamicin or <5–7 μ g/mL for Amikacin.

Css,new = (D new/D old) Css,old

Css is the trough concentration.

Designed by Turath Nabeel Ibrahim