

Precipitation Titration

Precipitation Reactions

- Precipitation is the formation of a <u>solid</u> in a <u>solution</u>
- solid formed is called the precipitate
- A precipitation reaction occurs when water solutions of two different ionic compounds are mixed and an <u>insoluble solid</u> separates out of solution.
 - KCl +AgNO3<</th>AgCl + KNO3Cl solutionPrecipitating
agentWhite
precipitate

The precipitate is itself ionic; the cation comes from one solution and the anion from another.

Precipitation Titrations

- *Precipitation titration* is a titration method based on the formation of precipitate, which is slightly soluble
- The basic requirements are:
- The reaction must be sufficiently rapid and complete,
- lead to a product of reproducible composition and of low solubility.
- And a method must exist to locate the end point.
- Precipitation titrations are not so popular in present-day routine analysis. Why????

Some difficulties in meeting these requirements must be noted. (Precipitation reactions are generally)

- Slow
- Involving periods of digestion, cooling, filtration etc.
- This tends to limit the reactions that are available for titration.

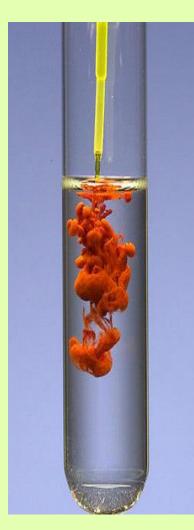
Argentometric titration:

- Titrations involving silver are termed argentometric, from the Latin name for silver, argentum.
- The major precipitation reaction used is that of silver with a range of anions. These anions include:
- ✓ Halides (Cl⁻, Br⁻, l⁻)
- ✓ Pseudo halides (S²⁻, HS⁻, CN⁻, SCN⁻)
- The reaction rates for the silver salt precipitation is **rapid**.
- The reaction ratio is **<u>1:1</u>** and silver salts formed are generally quite **insoluble**.
- Argentometric methods involving precipitation *titrimetry*:
- ➢Mohr's Method
- ➢Fajan's Method
- ➢Volhard's Method

Mohr's Method:

- This direct method uses potassium chromate (chromate ions (CrO₄²⁻⁾) as an indicator in the titration of (Cl⁻, Br⁻, and CN⁻)ions (analyte) with a silver nitrate standard solution (titrant).
- After all the chloride has been precipitated as <u>white silver chloride</u>, the first excess of titrant results in the formation of a silver chromate precipitate,
- which signals the end point . The reactions are:

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$


$$K_{sp} = 1.8 \times 10^{-10}$$

white precipitate

- End point determination by <u>brick red color precipitate</u>, $Ag_2CrO_{4(s)}$: 2 Ag ⁺(aq) + CrO₄ ²⁻(aq) \rightarrow Ag₂CrO₄(s) K_{sp} = 1.2 x 10⁻¹²
- AgCl is less soluble than Ag₂CrO₄ so it will precipitate first

Conditions for Mohr's method:

- 193 Sin Carpon
- The titrations are performed only in <u>neutral or slightly basic medium</u> to prevent silver hydroxide formation (at pH > 10).

$$2Ag++2OH^{-} \longrightarrow 2AgOH(s) \longrightarrow Ag_{2}O(s) + H_{2}O$$

black precipitate

• Or the formation of chromic acid at pH < 7.

$$CrO4^{2-} + H_3O^+ \longrightarrow HCrO4^- + H_2O$$

2 $CrO4^{2-} + 2 H_3O^+ \longrightarrow Cr_2O_7^{2-} + H_2O$
hright-orange

 Reducing [CrO4²⁻] will delay the formation of the precipitate although more Ag⁺ to be added to reach end point, which cause error.

Volhard method:

- This method uses a back titration with potassium thiocyanate and is suitable for the determination of (Cl⁻, Br⁻, and l⁻) in acidic solutions.
 - First, Cl⁻ is precipitated by excess AgNO₃

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

Removing AgCl(s) by filtration / washing

• Excess Ag⁺ is titrated with KSCN in the presence of Fe³⁺

 $\operatorname{Ag}^{+}(aq) + \operatorname{SCN}^{-}(aq) \rightarrow \operatorname{AgSCN}(s)$

• When Ag⁺ has been consumed, a <u>red complex</u> forms as a result of:

$$\operatorname{Fe}^{3+}(aq) + \operatorname{SCN}^{-}(aq) \rightarrow \operatorname{FeSCN}^{2+}(aq)$$

Red complex

The Volhard titration can be used for any anion that forms an insoluble salt with silver

Conditions for Volhard's method:

- The solution must be *acidic*, with a concentration of about 1 M in nitric acid to ensure the *complex formed is stable*, and to prevent the precipitation of Iron(III) as hydrated oxide.
- The indicator concentration should not be more than 0.2M.
- In case of I⁻, indicator should not be added until all the I⁻ is precipitated with Ag⁺, since it would be oxidized by the Fe(III).

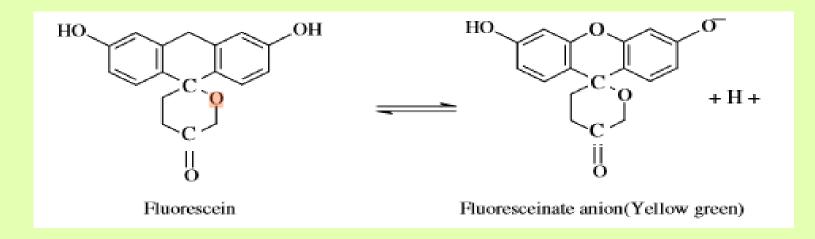
$$2Fe^{3+} + 2I^{-} \longrightarrow 2Fe^{2+} + I_{2}$$

The AgX ↓ precipitate *must be* filtered off, before titrating with SCN⁻ to prevent any error, for example in the case of chloride ion, AgCl will react with the titrant (SCN⁻) and cause a diffuse end point.

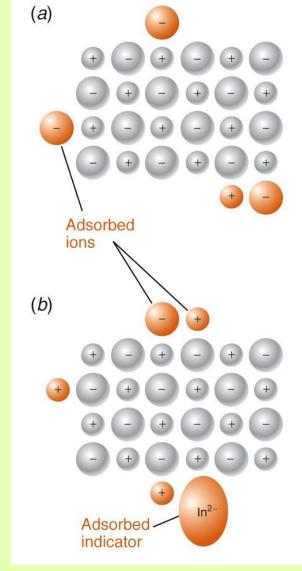
$$AgCI + SCN^{-}$$
 AgSCN + CI⁻

OR

Use tartrazine as indicator instead of Iron(III).


Fajan's Method

- This method uses an adsorption indicator such of Fluorescein (Dichlorofluorescein) and Eosin.
- The indicator adsorb onto the surface of the silver salt precipitate at the endpoint.
- The adsorption process causes a **change in the color** of the **indicator**.
- Common Fajans adsorption indicators are weakly acidic organic compounds and in alkaline conditions will exist as the conjugate base, (or Ind⁻).
- This form of the indicator which interacts with the precipitate.


The mechanism of indicators action:

 The best-known adsorption indicator is *fluorescein*, which is used to indicate the equivalence point in the titration of Cl⁻ with Ag⁺. Fluorescein is a weak acid, which partially dissociates in water to form fluoresceinate anion.

The fluoresceinate anion has a <u>yellow–green colour</u> in solution.

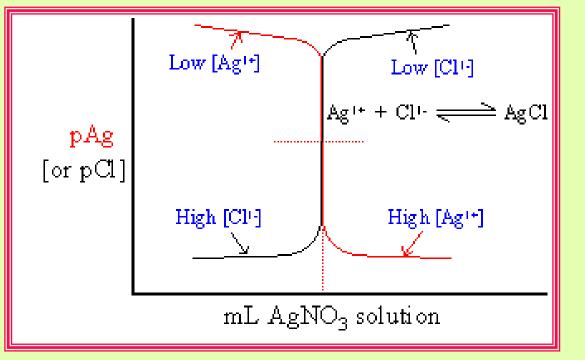
- When Cl⁻ is titrated with Ag⁺ in the presence of fluorescein, the negatively charged fluoresceinate anions are initially repelled by the negatively charged AgCl colloidal particles, with their primary adsorption layer of Cl⁻ ions.
- Thus the **fluorescein** remains in a <u>yellow–green colour</u> prior to the equivalence point.
- <u>At the equivalence point</u>, the colloidal AgCl particles undergo an abrupt change from a negative charge to a positive charge by virtue of Ag⁺ ions adsorbed in the primary adsorption layer.
- The fluoresceinate ions are strongly adsorbed in the counter-ion layer of the AgCl colloids, giving these particles a red colour and providing an end point colour change from yellow-green to red or pink.

• Adsorption indicator whose color when adsorbed to the precipitate is different from that when it is in solution

Indicator	Solution	Surface of precipitate	lons
Fluoroscein	greenish yellow	pink	Cl
Eosine	yellowish-red	redish - violet	Br⁻, l⁻

Comparison of argentometric titration methods

Method	Advantages	Disadvantages
Mohr	Simple	 Alkaline solution only Not suitable for I⁻ Requires a blank
Volhard	 Capable for direct Ag⁺ and indirect halide analyses Very clear colour change 	 Must use 1M of nitric acid solution Some problems with some ions
Fajans	 Capability for different pH ranges and selectivity with different indicators 	 Difficult with dilute solutions Should not be a high background ionic level


Titration Curves for Argentometric Methods

Plots of titration curves are normally sigmoidal curves consisting of pAg (or pAnalyte) versus volume of AgNO₃ solution added.

A useful relationship can be derived by taking the negative logarithm of both sides of a solubility-product expression. Thus, for silver chloride,

$$K_{sp} = [Ag^{+}][Cl^{-}]$$
$$logK_{sp} = -log([Ag^{+}][Cl^{-}])$$
$$logK_{sp} = -log[Ag^{+}] - log[Cl^{-}]$$
$$pK_{sp} = pAg^{+} + pCl^{-}$$

Example: Titration of chloride with silver.

The points on the curve can be calculated, given the analyte concentration, $AgNO_3$ concentration and the appropriate K_{sp} .

Plotting precipitation titration curves

- Consider titration of Cl⁻ with a standard solution of AgNO₃.
- Titration curve prepared by plotting pCl (-log[Cl⁻]) against the volume of AgNO₃ in a manner similar to acid-base titration.
- Before titration started only have Cl⁻.

 $pCl = - log[Cl^-]$

• Titration proceed – part of Cl⁻ is removed from solution by precipitation as AgCl.

pCl = -log [remaining Cl⁻]

• At equivalence point - we have solution a saturated solution of AgCl.

 $[CI^{-}] = \sqrt{K_{sp}}$

Excess AgNO₃ added – excess Ag⁺. [Cl⁻] is determine from the concentration of Ag⁺ and K_{sp}.

 $[CI^{-}] = K_{sp}/[Ag^{+}]$

Example

Calculate pCl for the titration of 100.0 ml 0.100 M NaCl with 0.100 M AgNO₃ for the addition of 0.0, 20.0, 99.0, 99.5, 100.0 and 110.0 ml AgNO₃. K_{sp} AgCl is 1.0 x10⁻¹⁰

Solution

a) Addition of 0.0 ml Ag⁺

[Cl⁻] = 0.100 M

```
pCl = -log [Cl⁻]
```

```
= -log 0.100
```

= 1

b) Addition of 20.0 ml Ag⁺

Initial mmol Cl⁻ = 100.0 ml x 0.100 M = 10.0 mmol mmol added Ag⁺ = 20.0 ml x 0.100 M = 2.0 mmol mmol Cl⁻ left = 8.0 mmol

```
[Cl<sup>-</sup>] left = 8.0
(100+20) ml
```

```
pCl = -log [Cl<sup>-</sup>]
= -log 0.0667
= 1.18
```


c) Addition of 99.0 ml Ag

Initial mmol Cl⁻ = 100.0 ml x 0.100 M = 10.0 mmol mmol added Ag⁺ = 99.0 ml x 0.100 M = 9.9 mmol mmol Cl⁻ left = 0.1 mmol

= 3.3

d) Addition of 100.0 ml

Initial mmol Cl⁻ = 100.0 ml x 0.100 M = 10.0 mmol mmol added Ag⁺ = 100.0 ml x 0.100 M= 10.0 mmol Equivalence point is reached. The solution contain saturated AgCl solution $K_{sp} = [Ag^+][Cl^-] = 1.0 \times 10^{-10}$ $[Cl^-] = \sqrt{K_{sp}} = \sqrt{1.0 \times 10^{-10}}$ $= 1.0 \times 10^{-5}$ pCl = -log 1.0 x10⁻⁵ = 5

<u>e) Addition of 100.5 ml Ag</u>⁺ Initial mmol Cl = 100.0 ml x 0.100 M = 10.0 mmol mmol added Ag⁺= 100.5 ml x 0.100 M =10.05 mmol mmol Ag⁺ excess = = 0.05 mmol

```
[Ag<sup>+</sup>] excess = 0.05/200.5 ml = 2.5 x 10<sup>-4</sup> M
```

```
K_{sp} = [Ag^{+}][Cl^{-}] = 1.0 \times 10^{-10}
[Cl^{-}] = K_{sp} = \frac{1.0 \times 10^{-10}}{2.5 \times 10^{-4} \text{ M}} = 4.0 \times 10^{-7}
pCl = -\log 4.0 \times 10^{-7}
= 6.4
```