

Complexometric Titration II

Indicators

- Indicator is a dye which is capable of acting as a <u>chelating agent</u> to give a <u>dye-metal complex</u>.
- The latter is different in colour from the dye itself and also *has a low stability constant than the chelate-metal complex*.
- The colour of the solution, therefore, remains that of the dye complex until the end point, when an equivalent amount of sodium EDTA has been added.
- As soon as there is the slightest excess of EDTA, the metal-dye complex decomposes to produce free dye; this is accomplished by a change in colour.

Metal indicators must comply with the following requirements:

- Metal-indicator complex *must be less stable than the metal-EDTA complex*.
- Binding between metal and indicator *must not be too weak*. It has to avoid EDTA replacing at the beginning of the titration.
- In general, the metal-indicator complex should be 10 to 100 times less stable than the metal-titrant complex.
- Colour of the indicator and the metal complexed indicator *must be sufficiently different*.

EDTA Titration Techniques

Direct Titration

Many metals can be determined by direct titrations with EDTA.

Weak metal complexes such as Ca²⁺, Zn²⁺and Mg²⁺ should be titrated in basic solution using EBT, Calmagite, or Arsenazo I as the indicator.

- Example
- Direct determination of Zn²⁺ with EDTA
- - The complex of **Zn²⁺** with **EDTA** is more stable than its complex with **EBT** ind.
- Zn^{2+} + H Ind.²⁻ \longrightarrow Zn Ind.⁻ + H⁺
- Zn Ind.⁻ + $H_2Y^{2-} \longrightarrow ZnY^{2-} + H Ind.^{2-} + H^+$ wine red Blue

EDTA Titration Techniques

Back Titration (indirect)

 It can be performed for the determination of several metal ions <u>can not be titrated</u> <u>directly but form stable EDTA complexes</u>.

The procedure, a known amount of EDTA is added to the analyte sample solution and the excess is back titrated with a standard solution of "weak" metal ion, Mg²⁺.

The weak metal ion will not displace the analyte from its EDTA complex.

- It is used in the following cases: (<u>when can be used</u>?)
- A. Insoluble substances e.g. $BaSO_4$, $Ca(C_2O_4)_2$, $PbSO_4$, $Mg_3(PO_4)_2$... etc. Usually soluble in hot EDTA.
- B. The reaction between Mⁿ⁺ & EDTA is slow (incomplete) e.g. Fe³⁺, Al³⁺, Cr³⁺,
 Th⁴, ... etc.
- C. The M^{n+} is pptd. at the pH suitable for titration e.g. $Al(OH)_3$.

EDTA Titration Techniques

- Displacement Titration (what is the conditions??)
- A. The technique **only works** when the unknown metal has tighter binding to EDTA than the Zn²⁺ or Mg²⁺.
- B. Metal ions with no satisfactory indicator.
- MgY²⁻ or ZnY²⁻ complex is added to the solution of unknown metal ion composition.
- • The unknown metal displaces the Mg^{2+} or Zn^{2+} , which is then back titrated.

$$M^{n+} + MgY^{n-2} \longrightarrow MY^{n-4} + Mg^{2+}$$

 K_f' for $MY^{n-2} > K_f'$ for MgY^{n-2}

K_f' is constant of complex formation

Titration of Mixtures

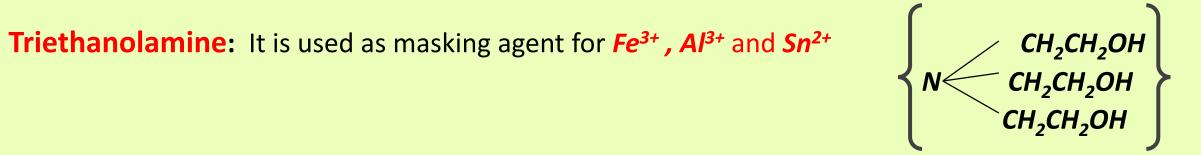
- EDTA is not a selective reagent (it chelates with most metal ions)
- Selectivity of *EDTA* can be increased by one of the following procedures:
 - a) Control of pH of the medium
 - b) Adjustment of oxidation number of metal ion
 - c) Masking and demasking agent

a) <u>Control of pH of the medium</u>

- First group: Trivalent & tetravalent cations e.g. (Bi³⁺, Fe³⁺, Th⁴⁺) and Hg²⁺ titrated (form stable complex) at pH 1-3 using conc. HNO₃.
- Second group: Divalent metals e.g. (Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, pb²⁺ and Cd²⁺) titrated (form stable complex) at pH 4-6 using acetate buffer.
- Third group: Alkaline earth metal e.g. (Ba²⁺, Sr²⁺, Ca²⁺) and Mg²⁺ titrated (form stable complex) at pH=10 using ammonia buffer or 8% NaOH.
- From the mentioned above, we can titrate Mⁿ⁺ of the first group at pH 1-3 without interference of the second and third groups or at pH 4-6 we can titrate Mⁿ⁺ of the second group without interference of the third group.
- e.g. Mixture of Bi³⁺ & pb²⁺: First titrating Bi³⁺ at pH = 2 using xylenol orange as ind., then increased pH to 5 by adding hexamine and titrating pb²⁺.

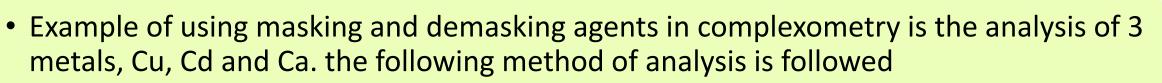
- b) Adjustment of oxidation number of metal ion
- This solves the interference between *Mⁿ⁺* of the same group of pH.
- Examples:
- Ascorbic acid (vit. C) is reducing agent used in:
- Removal of interference of Fe^{3+} in <u>first group (pH 1-3)</u> \longrightarrow reduced to Fe^{2+}
- Removal of interference of *Hg²⁺* in <u>first group (pH 1-3)</u> → reduced to *Hg^o* (pptd.).
- Removal of interference of Cu^{2+} in second group (pH 4-6) \longrightarrow reduced to cuprous (Cu^{1+}).

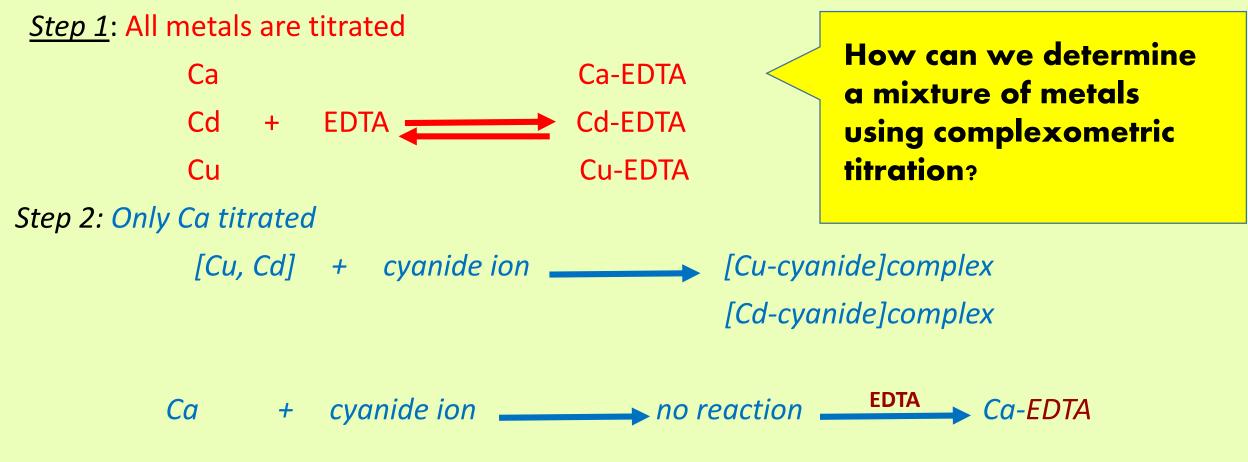
• Oxidation of
$$Cr^{3+} \xrightarrow{\text{alkaline}} \text{to } CrO_4^{2+}$$


• Fe²⁺, Hg^o, Cuprous, CrO₄²⁻ do not react with EDTA

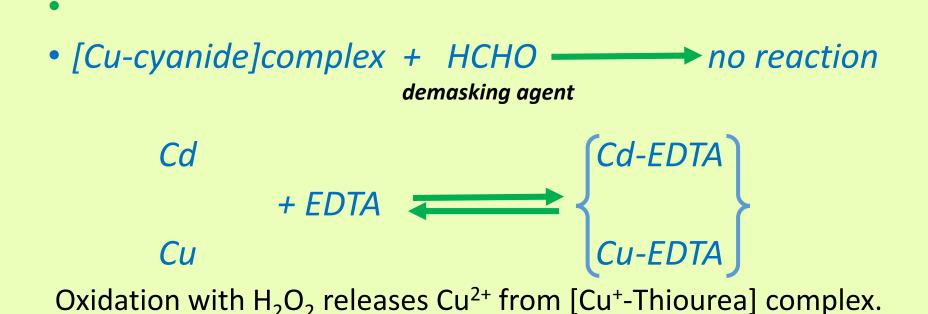
c) Masking and demasking agent

- Masking agents: Protects some component of analyte from reacting with EDTA. These reagents form complexes with interfering ions which are more stable than complexes formed with ind. & EDTA.
- Examples of masking agent: (give examples of masking agent) KCN: It is used as masking agent for Ag⁺, Cu²⁺, Cd²⁺, Co²⁺, Ni²⁺, Zn²⁺, ... etc. $M^+ + 2 CN^- \longrightarrow [M(CN)_2]^-$


 $M^+ + 4 CN^- \longrightarrow [M(CN)_A]^{2-}$



Fluoride (e.g. NH_4F): It is used as masking agent for Fe^{3+} and AI^{3+} to give $[FeF_6]^{3-}$ and $[AIF_{c}]^{3-}$ **Iodide (KI):** It is used as masking agent for Hg^{2+} to give tetraiodo complex (HgI_{A})


- **Demasking agent :** Releasing masking agent from analyte.
- Example:

- Step 3: Cd and Ca are titrated
- [Cd-cyanide]complex + HCHO Cd²⁺ (free)

