

INTRODUCTION

Milling: Is a mechanical process of reducing particle size of solids. Milling also termed synonymously as **comminution** which represent:

Disintegration

Crushing

All of these depend on product, equipment and process.

Dispersion

Grinding

Pulverization

https://www.youtube.com/watch?v=cA7gG8gbj8l

INTRODUCTION- MILLING EQUIPMENT

Milling equipment classified according to the size of the milled product into:

Coarse milling (particles > 20-mesh)

Intermediate (particles 200-20 mesh [74-840 micron])

Fine (particles < 200 mesh)

NOTE: SIZE EXPRESSED IN TERM OF MESH (NUMBER OF OPENINGS PER LINEAR INCH OF A SCREEN).

PHARMACEUTICAL APPLICATIONS

Increasing therapeutic efficacy of low solubility drugs due to increasing specific surface area (S.A per unit wt.) thus increasing area of contact with dissolving fluid, e.g. griseofulvin.

Facilitate drying of wet masses due to increase surface area and reduce the distance (I thickness) the moisture travel within particle to reach outer surface, e.g. granulation of wet mass in tablet preparation.

Facilitate easier and uniform mixing or blending

The ingredients are approximately of same size.

SIZE DISTRIBUTION AND MEASUREMENT

METHODS OF MEASUREMENT OF SIZE DISTRIBUTION

	Microscopy	Sorption= Absorption + Adsorption	
2	Sieving	Hydrophabic compound	Hydrophilic, ionic, compound
3	Sedimentation	SLUDGE FLOC CELL	
4	Other methods (sorption, electrical conductivity, light and x-ray scattering, permeametry, and particle trajectory).	Absorption	Adsorption - desorption
V I	https://www.youtube.com/watch?v https://www.youtube.com/watch?v	<u>v=QQTb5J</u> v=Gmhc7	MQ4-s hsY7P4

1- MICROSCOPY

Direct Method for measuring P.S. distribution.

Diradvantager: can't resolve particles if it's size is close to the wave length of the light source.

<u>https://www.youtube.com/watch?v=_CkcYrns-61</u> <u>https://www.youtube.com/watch?v=JuRyaDxERF4</u>

2-SIEVING

C5YM_AxoM

U.S. Standard		Tyler Standard		
cron	Mesh	Micron	Mesh	
660	31/2	5613	3½	
760	4	4699	4	
000	5	3965	5	
360	6	3327	6	
830	7	2794	7	
380	8	2362	8	
000	10	1651	10	
680	12	1397	12	
410	14	1168	14	
190	16	991	16	
000	18	883	20	
40	20	701	24	
10	25	589	28	
90	30	495	32	
00	35	417	35	
20	40	351	42	
50	45	295	48	
97	50	246	60	
50	60	208	65	
10	70	175	80	
77	80	147	100	
49	100	124	115	
25	120	104	150	
05	140	88	170	
38	170	74	200	
4	200			
62	230			
53	270			
4	325			
37	400			

2- SIEVING

Measuring diameter of powder bypass series of sieves: 30-mesh and retained on 45-mesh (diameter= 590 + 350)/2 or 470 microns.

MILLING OPERATIONS

A- open-circuit milling: Materials is reduced to the desired size by passing it through the mill.

B- closed-circuit milling:

Materials discharge from mill pass through classifier or size-separation device, and the oversize are returned to the grinding chamber for further reduction in size.

https://www.youtube.com/watch?v=XYC5YM_AxoM

https://www.youtube.com/watch?v=f25qZT7ZZkM

PARTS OF MILLS

IMPORTANT NOTE

The rate of discharge should be equal to the rate of feed.

A- If rate of feed is slow

the product discharge readily and the <u>amount of undersize or fines is minimized.</u>

B- If rate of feed is fast

the material remain in the milling chamber for long time because its discharge is impeded by large amount of material <u>leads to greater size</u> reduction and lower mill capacity.

TYPES OF MILLS

General Characteristics of Various Types of Mills

Type of Mill	Action	Product Size	Used For	Not Used For
Cutter	cutting	20- to 80-mesh	fibrous, crude animal and vegetable drugs	friable material
Kevolving	attrition and impact	20- to 200-mesh	fine grinding of abrasive material	soft material
Hammer	impact	4- to 325-mesh	almost all drugs	abrasive material
Roller	pressure	20- to 200-mesh	soft material	abrasive material
Attrition	attrition	20- to 200-mesh	soft and fibrous material	abrasive material
Fluid-energy	attrition and impact	1 to 30 µm	moderately hard and friable <i>material</i>	soft and sticky material

MECHANISM OF SIZE REDUCTION

Cutting: materials cut by sharp blades

Compression: materials is crushed by pressure.

Impact: stationary materials hit moving materials at high speed or strikes a stationary surface (case of machine) **materials** to small pieces.

Attrition: materials subjected to pressure and surfaces are moving relative to each other ______ shear forces which breaks particles.

HAMMER MILL

Principle:

Operates as an impact between rapidly moving hammers mounted on the rotor and the powder material.

Used for almost any type of size reduction (dry material, wet filterpress cakes, ointment, slurries).

It is popular in pharmaceutical industry because of versatility

https://www.youtube.com/watch?v=fST vbE77ucE

BALL MILL

Principle: Combination of impact and attrition.

A horizontal rotating hollow vessel of cylindrical shape filled with balls of steel or pebbles (grinding medium).

It includes

A- Pebble mill B- Rods or bars mill

https://www.youtube.com/watch? v=L6sgGXXYdEU

ROLLER MILL

PRINCIPLE:

combination of compression and shearing action.

MECHANISM OF ACTION: 2-5 smooth rollers operating at different speed.

https://www.youtube.com/watch?v =yffPcrHcy3c

CUTTING MILL

PROCEDURE

- 1. weigh the beaker (200 g).
- 2. weigh the brown sugar granules (150 g) in a beaker and subtract from the weigh of the beaker.

350 g (weight of beaker + brown sugar)

- 3. Mill the brown sugar in the hammer mill for 1 min to allow the powder to pass through the sieve [18 mesh] then weigh the remaining.
- Sieve the remaining powder through series of sieves (0.59 mm [30 mesh], 0.297 mm [50 mesh], 0.210 mm [70 mesh] and weigh the powder remaining.

WHOLE WEIGHT OF BROWN SUGAR = 150 G

Particle size	Wt. of sugar retained	Cumulative wt. retained	% cumulative retained	% pass (100 - % cumulative)
1 mm	2 g	2 g	2/150 x 100 = 1.33 %	100 – 1.33 = 98.67%
0.59 mm	14 g 🗖 🗖	16 g	16/150 x 100 = 10.66%	100 - 10.66 = 89.34%
0.297 mm	36 g	52 g	52/150 x 100 = 34.66%	100 – 34.66 = 65.34%
0.21 mm	97 g**	149 g	149/150 x 100 = 99.3%	100 - 99.3 = 0.7%

* This means that most of sugar can not pass through the sieve

https://www.youtube.com/watch?v=JcLtXblqqGg

Particle Size Distribution

https://www.youtube.com/watch?v=o5fTAuwSGRE

