# Antibodies

Ass.Prof.Dr.Baydaa Hameed Abdullah

# Acquired (Adaptive) Immunity

Defensive mechanisms include :

1) Innate immunity (Natural or Non specific)

2) Acquired immunity (Adaptive or Specific)

Cell-mediated immunity Humoral immunity

### Aquired (specific) immunity

- \* The acquired immune response is more specialized than innate immune response
- \* The acquired immune response involves a combination of two mechanisms :
  - 1) Humoral immune response
  - 2) cell mediated immune response
- \* They interact with one another to destroy foreign body (microorganisms, infected cells, tumor cells)

## Aquired (specific) immunity

#### Two mechanisms

- 1) Humoral immune response:
  - Antibodies are produced by B-lymphocytes
  - These have the ability to recognize and bind specifically to antigen that induced their formation

#### 2) The cell mediated immune response (CMI)

- It is mediated by certain types of T-lymphocytes
- T-lymphocytes recognize foreign material by means of surface receptors
- T-lymphocytes attack and destroy foreign material directly or through release of soluble mediators
  - i.e. cytokines

#### **Characters Of Acquired Immune Response**

1) Highly specific for the invading organism

2) Discrimination between "self and "non self" molecules The response only occurs to "non self" molecules

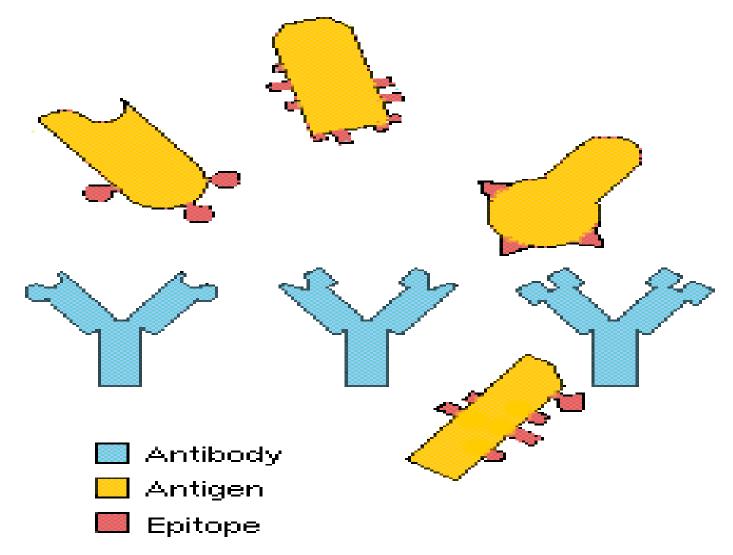
3) Diversity:

- It can respond to millions of different antigens
- Lymphocytes population consists of many different clones (one cell and its progny)
- Each clone express an antigen receptor and responds only to one antigenic epitope

### Mechanism of Humoral immunity

- \* Antibodies induce resistance through:
- 1) Antitoxin neutralize bacterial toxins (diphtheria, tetanus) Antitoxin are developed actively as a result of:
  - a- Previous infection
  - b- Artificial immunization
  - c- Transferred passively as antiserum
- \* Neutralization of toxin with antitoxin prevents a combination with tissue cells

### **Mechanism of Humoral immunity**


2) Antibodies attach to the surface of bacteria an

a- act as opsonins and enhance phagocytosis

b- prevent the adherence of microorganisms to their target cells, e.g. IgA in the gut

c- Activate the complement and lead to bacterial lysis

d- Clump bacteria (agglutination) leading to phagocytosis



Antibodies produced by B-cells of the immune system

recognize foreign antigens and mark them for destruction

# **B-lymphocytes**

in bone marrow

\* The lymphoid stem cells differentiate into B cells

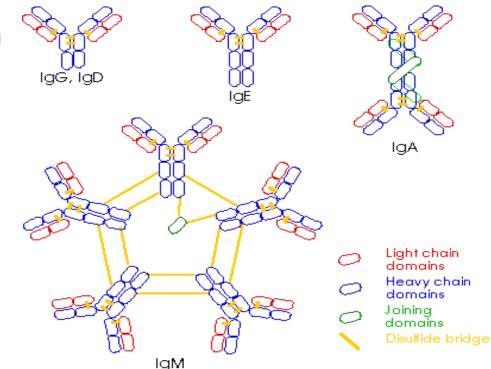
\* B-cells precursors mature, differentiate into immunocomptent Bcells with a single antigen specificity

 \* Immature B-cells that express high affinity receptors for self antigens, die or fail to mature
i.e negative selection or clonal deletion

\* This process induces central self tolerance and reduces autoimmune diseases

#### **B-lympocytes**

- \* Immature B cells express IgM receptors on the surface
- \* Mature B cells express IgM, IgD molecules on surfaces
- \* IgM and IgD molecules serve as receptors for antigens
- \* Memory B-cells express IgG or IgA or IgE on the surface
- \* B-cells bear receptors for Fc portion of IgG and a receptor for C3 component of the complement
- \* They express an array of molecules on their surfaces that are important in B-cells interactions with other cells such as MHC II, B7 and CD40

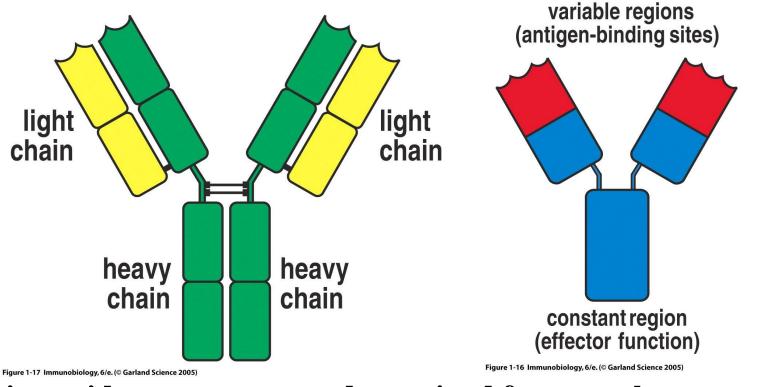

### Antibodies or Immunoglobulins

#### \* Definition:

Glycoprotein in serum and tissue fluid

- \* Produced by: B-lymphocytes in response to exposure to antigen
- \* React specifically with antigen
- \* Five classes of Antibodies: IgG

lgM IgA IgD IgE




## Antibodies

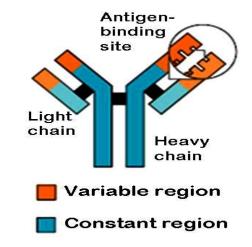
- Proteins that recognize and bind to a particular antigen with very high *specificity*.
- ◆ Made in response to exposure to the antigen.
- One virus or microbe may have several antigenic determinant sites, to which different antibodies may bind.
- Each antibody has at least two identical sites that bind antigen: Antigen binding sites.
- Valence of an antibody: Number of antigen binding sites. Most are bivalent.
- Belong to a group of serum proteins called immunoglobulins (Igs).

## **ANTIBODY STRUCTURE**

An antibody molecule is composed of two identical Ig heavy chains (H) and two identical light chains (L), each with a variable region (V) & constant region (C).



Amino acid sequences were determined from myeloma proteins.

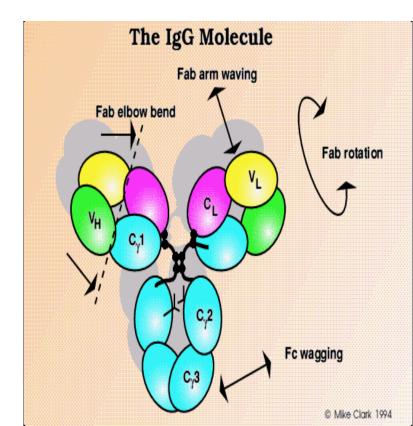

## **Antibody Structure**

- Monomer: A flexible Y-shaped molecule with four protein chains:
  - 2 identical *light* chains
  - 2 identical heavy chains
- Variable Regions: Two sections at the end of Y's arms. Contain the antigen binding sites (Fab). Identical on the same antibody, but vary from one antibody to another.
- Constant Regions: Stem of monomer and lower parts of Y arms.
- Fc region: Stem of monomer only. Important because they can bind to complement or cells.

## **Antibody Structure**

#### Immunoglobulins are glycoproteins made up of Four polypeptid chains (IgG):

- a- Two light (L) polypeptide chainsb- Two heavy (H) polypeptide chains
- The four chains are linked by disulfide bonds
- Terminal portion of L-chain contains part of antigen binding site
- H-chains are distinct for each of the five immunoglobulins
- Terminal portion of H-chain participate in antigen binding site
- The other (Carboxyl) terminal portion forms Fc fragment




### Variable(V) and Constant (C) Regions

- Each H-chain and each L-chain has V-region and C-region
- V-region lies in terminal portion of molecule
- V-region shows wide variation in amino a. sequences
- Hypervariable region form region complementary to Ag determinant . It is responsible for antigen binding
- C-region lies in carboxyl or terminal portion of molecule
- C-region shows an unvarying amino acid sequence. It is responsible for biologic functions

## **Antibody Fragments**

- Fab fragment: antigen binding site
- Fc (crystallizable fragment):
  - a- Complement fixation (IgM and IgG)
  - b- Opsonization (IgG)
  - C- Placental attachment (IgG)
  - d- Mucosal attachment (IgA)
  - e-Binding to mast cells (IgE)



#### Immunoglobulin Classes

### I. IgG

- Structure: Monomer
- Percentage serum antibodies: 80%
- Location: Blood, lymph, intestine
- Half-life in serum: 23 days
- Complement Fixation: Yes
- Placental Transfer: Yes
- Known Functions: Enhances phagocytosis, neutralizes toxins and viruses, protects fetus and newborn.



#### Properties

- Major serum Ig
- Major Ig in extravascular spaces
- The only Placental transfer Ig
- Fixes complement
- Phagocytes opsonization

#### Immunoglobulin Classes

#### II. IgM

- Structure: Pentamer
- Percentage serum antibodies: 5-10%
- Location: Blood, lymph, B cell surface (monomer)
- Half-life in serum: 5 days
- Complement Fixation: Yes
- Placental Transfer: No
- Known Functions: First antibodies produced during an infection. Effective against microbes and agglutinating antigens.

# lgM

Properties

- First Ig made by fetus and B cells
- Present in colostrum and mother milk protect newly born.
- Fixes complement

#### Immunoglobulin Classes

#### III. IgA

- Structure: Dimer
- Percentage serum antibodies: 10-15%
- Location: Secretions (tears, saliva, intestine, milk), blood and lymph.
- Half-life in serum: 6 days
- Complement Fixation: No
- Placental Transfer: No
- Known Functions: Localized protection of *mucosal* surfaces. Provides immunity to infant digestive tract

# lgA

- -Found in serum and body secretion:
  - Tears, saliva, gastric and pulmonary
  - secretions
    - Major secretory Ig on Mucous surfaces give Local Immunity by coating m.o(bacteria or viruses) preventing their adherence to mucosal cells
    - Does not fix complement (unless aggregated)
    - Present in colostrum and mother milk protect newly born.

#### Immunoglobulin Classes

### IV. IgD

- Structure: Monomer
- Percentage serum antibodies: 0.2%
- Location: B-cell surface, blood, and lymph
- ♦ Half-life in serum: 3 days
- Complement Fixation: No
- Placental Transfer: No
- Known Functions: In serum function is unknown. Or B cell surface, initiate immune response.

# lgD

- Present in very small amount in serum
- B cell surface Ig
- Does not bind complement

#### Immunoglobulin Classes

### V. IgE

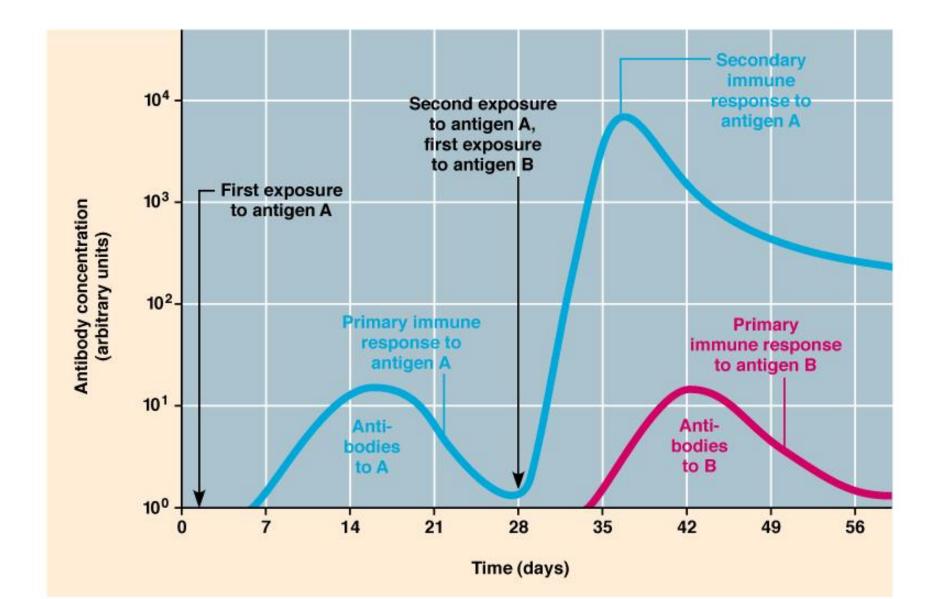
- Structure: Monomer
- Percentage serum antibodies: 0.002%
- Location: Bound to mast cells and basophils throughout body. Blood.
- Half-life in serum: 2 days
- Complement Fixation: No
- Placental Transfer: No
- Known Functions: Allergic reactions. Possibly lysis of worms.

# lgE

- Least common serum lg
  - Binds to basophils and mast cells (Does not require Ag binding)
- Allergic and hypersensitivity reactions
- Parasitic infections (Helminths)
  - Binds to Fc receptor on eosinophils
- Does not fix complement

#### Properties of Immunoglobulins

| Property                  | IgG        | IgA            | IgM        | IgE        | IgD        |
|---------------------------|------------|----------------|------------|------------|------------|
| Heavy chain<br>symbol     | γ          | a              | μ          | 3          | δ          |
| Molecular<br>weight       | 150<br>KDa | 170-400<br>KDa | 900<br>KDa | 190<br>KDa | 180<br>KDa |
| Percentage<br>in serum    | 75 %       | 15 %           | 10 %       | 0.004 %    | % 0.2      |
| Complement<br>fixation    | Yes        | No             | Yes        | No         | Νο         |
| Transplacental<br>passage | Yes        | No             | No         | No         | No         |
| Opsonization              | Yes        | No             | No         | No         | No         |


#### Immunological Memory

- Antibody Titer: The amount of antibody in the serum.
- Pattern of Antibody Levels During Infection
- **Primary Response:**
- After *initial* exposure to antigen, no antibodies are found in serum for several days.
- A gradual increase in titer, first of IgM and then of IgG is observed.
- Most B cells become plasma cells, but some B cells become long living *memory cells*.
- Gradual decline of antibodies follows.

Immunological Memory (Continued) Secondary Response:

- Subsequent exposure to the same antigen displays a faster and more intense antibody response.
- Increased antibody response is due to the existence of memory cells, which rapidly produce plasma cells upon antigen stimulation.

#### **Antibody Response After Exposure to Antigen**



#### Primary and Secondary antibody response

#### **Primary antibody response**

- \* first exposure to antigen
- \* lag period: days or weeks (slow onset)
- \* Small amount immunogl. low Ab level with gradual increase
- Ab Persist for short duration Weeks then decline rapidly
- \* Antibody is IgM

#### Secondary antibody response

- \* Subsequent exposure
- \* Lag period: hours (rapid onset)
- \* large amount immunogl.
  - high Ab with rapid increase
- \* Persist for long periods (monthes or years)
- \* Antibody is IgG