

Precipitation Titration

Dr Wathig Al-Hachami

Precipitation Reactions

- Precipitation is the formation of a solid in a solution
- solid formed is called the precipitate
- A precipitation reaction occurs when water solutions of two different ionic compounds are mixed and an <u>insoluble solid</u> separates out of solution.

The precipitate is itself ionic; the cation comes from one solution and the anion from another.

Precipitation Reactions

- Precipitation titration is a titration method based on the formation of precipitate, which is slightly soluble
- The basic requirements are:
- The reaction must be sufficiently rapid and complete,
- lead to a product of reproducible composition and of low solubility.
- And a method must exist to locate the end point.
- Precipitation titrations are not so popular in present-day routine analysis. Why????

Some difficulties in meeting these requirements must be noted. (Precipitation reactions are generally)

- Slow
- Involving periods of digestion, cooling, filtration etc.
- This tends to limit the reactions that are available for titration.

Argentometric titration:

- Titrations involving silver are termed argentometric, from the Latin name for silver, argentum.
- The major precipitation reaction used is that of silver with a range of anions. These anions include:
- Halides (Cl⁻, Br⁻, I⁻)
- ✓ Pseudo halides (S²⁻, HS⁻, CN⁻, SCN⁻)
- The reaction rates for the silver salt precipitation is <u>rapid</u>.
- The reaction ratio is <u>1:1</u> and silver salts formed are generally quite <u>insoluble</u>.
- Argentometric methods involving precipitation <u>titrimetry</u>:
- Mohr's Method
- Volhard's Method
- Fajan's Method

Mohr's Method:

- This direct method uses potassium chromate (chromate ions (CrO₄²⁻⁾) as an indicator in the titration of (Cl⁻, Br⁻, and CN⁻)ions (analyte) with a silver nitrate standard solution (titrant).
- After all the chloride has been precipitated as <u>white silver chloride</u>, the first excess of titrant results in the formation of a red silver chromate precipitate, which signals the end point. The reactions are:

White ppt

 $K_{sp} = 1.8 \times 10^{-10}$

End point determination by <u>brick red color precipitate</u>, Ag₂CrO_{4(s)}:

 $2 \text{ Ag}^{+}(aq) + CrO_4^{2-}(aq) \rightarrow \text{Ag}_2CrO_4(s) \qquad \text{K}_{sp} = 1.2 \times 10^{-12}$ red ppt

AgCl is <u>less soluble than</u> Ag₂CrO₄ so it will precipitate first

Conditions for Mohr's method:

The titrations are performed only in <u>neutral or slightly basic medium</u> to prevent silver hydroxide formation (at pH > 10).

Or the formation of chromic acid at pH < 7.

$$CrO4^{2-} + H_3O^{+} \longrightarrow HCrO4^{-} + H_2O$$

$$2 CrO4^{2-} + 2 H_3O^{+} \longrightarrow Cr_2O_7^{2-} + H_2O$$
bright-orange

Reducing [CrO4²⁻] will delay the formation of the precipitate although more Ag⁺ to be added to reach end point, which cause error.

Volhard method:

- This method uses a back titration with potassium thiocyanate and is suitable for the determination of (Cl⁻, Br⁻, and I⁻) in acidic solutions.
 - First, Cl⁻ is precipitated by excess AgNO₃

 $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$

Removing AgCl(s) by filtration / washing

Excess Ag⁺ is titrated with KSCN in the presence of Fe³⁺

 $Ag^{+}(aq) + SCN^{-}(aq) \rightarrow AgSCN(s)$

When Ag⁺ has been consumed, a <u>red complex</u> forms as a result of:

 $\operatorname{Fe}^{3+}(aq) + \operatorname{SCN}^{-}(aq) \rightarrow \operatorname{FeSCN}^{2+}(aq)$

Red complex

The Volhard titration can be used for any anion that forms an insoluble salt with silver

Conditions for Volhard's method:

- The solution must be acidic, with a concentration of about 1 M in nitric acid to ensure the complex formed is stable, and to prevent the precipitation of Iron(III) as hydrated oxide.
- The indicator concentration should not be more than 0.2M.
- In case of I⁻, indicator should not be added until all the I⁻ is precipitated with Ag⁺, since it would be oxidized by the Fe(III).

$$2Fe^{3+} + 2I^{-} \longrightarrow 2Fe^{2+} + I_2$$

The AgX ↓precipitate must be filtered off, before titrating with SCN⁻ to prevent any error, for example in the case of chloride ion, AgCl will react with the titrant (SCN⁻) and cause a diffuse end point.

$$AgCI + SCN^{-} \longrightarrow AgSCN + CI^{-}$$

OR

Use tartrazine (E.P bright lemon-yellow) as indicator instead of Iron(III).

Fajan's Method

- This method uses an adsorption indicator such of Fluorescein (Dichlorofluorescein) and Eosin.
- The indicator adsorb onto the surface of the silver salt precipitate at the endpoint.
- The adsorption process causes a change in the color of the indicator.
- Common Fajans adsorption indicators are weakly acidic organic compounds and in alkaline conditions will exist as the conjugate base (or Ind⁻).

This form of the indicator which interacts with the precipitate.

Adsorption indicator whose color when adsorbed to the precipitate is different from that when it is in solution

Indicator	Solution	Surface of precipitate	lons
Fluoroscein	greenish yellow	pink	Cl⁻
Eosine	yellowish-red	redish - violet	Br⁻, I⁻

Comparison of argentometric titration methods

Method		Advantages	Disadvantages	
	Mohr	Simple	 Alkaline solution only Not suitable for I⁻ Requires a blank 	
	Volhard	 Capable for direct Ag⁺ and indirect halide analyses Very clear colour change 	 Must use 1M of nitric acid solution Some problems with some ions 	
	Fajans	 Capability for different pH ranges and selectivity with different indicators 	 Difficult with dilute solutions Should not be a high background ionic level 	

Titration Curves for Argentometric Methods

- A titration curve is the plot of the pAg (or pAnalyte) versus the volume of the titrant (AgNO₃) added as the titration progresses.
- Example: Titration of chloride with silver.
- A useful relationship can be derived by taking the negative logarithm of both sides of a solubility-product expression. Thus, for silver chloride,

 $K_{sp} = [Ag^{+}][Cl^{-}]$ -logK_{sp} = -log([Ag^{+}][Cl^{-}]) -logK_{sp} = -log[Ag^{+}] - log[Cl^{-}] pK_{sp} = pAg^{+} + pCl^{-}

The points on the curve can be calculated, given the analyte concentration, $AgNO_3$ concentration and the appropriate K_{sp} .

Plotting precipitation titration curves

- Consider titration of Cl⁻ with a standard solution of AgNO₃. Titration curve prepared by plotting pCl (-log[Cl⁻]) against the volume of AgNO₃ in a manner similar to acid-base titration.
- Before titration started only have Cl⁻.

 $pCl = -log[Cl^-]$

Titration proceed - part of Cl⁻ is removed from solution by precipitation as AgCl.

pCl = -log [remaining Cl⁻]

At equivalence point - we have solution a saturated solution of AgCI.

[*C*I⁻]= √K_{sp}

Excess AgNO₃ added - excess Ag⁺. [Cl⁻] is determine from the concentration of Ag⁺ and K_{sp}.

 $[CI^{-}] = K_{sp}/[Ag^{+}]$

Example

Calculate pCl for the titration of 100.0 ml 0.100 M NaCl with 0.100 M AgNO₃ for the addition of 0.0, 20.0, 99.0, 100.0 and 100.5 ml AgNO₃. K_{sp} AgCl is 1.0 x10⁻¹⁰

Solution

a) Addition of 0.0 ml Ag⁺ [Cl⁻] = 0.100 M

= 1

b) Addition of 20.0 ml Ag⁺

Initial mmol Cl⁻ = 100.0 ml \times 0.100 M = 10.0 mmol mmol added Ag^{*} = 20.0 ml \times 0.100 M = 2.0 mmol mmol Cl⁻ left = 8.0 mmol [Cl⁻] left = 8.0 = 0.0667 M

(100+20) ml pCl = -log [Cl⁻] = -log 0.0667 = 1.18

Volume AgNO ₃	PCI			
0.0	1			
20.0	1.18			
99.0				
100.0				
100.5				

c) Addition of 99.0 ml Ag

Initial mmol Cl⁻ = 100.0 ml x 0.100 M = 10.0 mmol mmol added Ag⁺ = 99.0 ml x 0.100 M = 9.9 mmol mmol Cl⁻ left = 0.1 mmol

$$\begin{bmatrix} CI^{-} \end{bmatrix} \text{ left} = \underbrace{0.1}_{(100+99)\text{ml}} = 5.01 \times 10^{-4} \text{ M} \\ \underbrace{(100+99)\text{ml}}_{\text{pCl} = -\log [CI^{-}]} = -\log 5.01 \times 10^{-4} \\ = 3.3 \\ \hline \begin{array}{c} Volume \\ AgNO_{3} \\ \hline 0.0 \\ 1 \\ 20.0 \\ 1.18 \\ 99.0 \\ 3.3 \\ 100.0 \\ 5 \\ 100.5 \\ \hline \end{array}$$

d) Addition of 100.0 ml

Initial mmol Cl⁻ = 100.0 ml × 0.100 M = 10.0 mmol

mmol added Ag* = 100.0 ml × 0.100 M= 10.0 mmol

Equivalence point is reached. The solution contain saturated AgCl solution

$$K_{sp} = [Ag^+][Cl^-] = 1.0 \times 10^{-10}$$

$$[CI^{-}] = \int K_{sp} = \int 1.0 \times 10^{-10}$$

 $= 1.0 \times 10^{-5}$

$$pCl = -log 1.0 \times 10^{-5}$$

= 5

e) Addition of 100.5 ml Ag⁺

Initial mmol Cl = 100.0 ml × 0.100 M = 10.0 mmol mmol added Ag*= 100.5 ml × 0.100 M =10.05 mmol mmol Ag* excess = = 0.05 mmol

 $[Ag^{+}]$ excess = 0.05/200.5 ml = 2.5 x 10⁻⁴ M

$$K_{sp} = [Ag^+][Cl^-] = 1.0 \times 10^{-10}$$

$$[Cl^-] = \frac{K_{sp}}{[Ag^+]} = \frac{1.0 \times 10^{-10}}{2.5 \times 10^{-4}} = 4.0 \times 10^{-7}$$

$$pCl = -\log 4.0 \times 10^{-7}$$

$$= 6.4$$

Volume AgNO ₃	PCI
0.0	1
20.0	1.18
99.0	3.3
100.0	5
100. 5	6.4