Analytical Chemistry $1^{\text {st }}$ year

Dr. Halah Hamid Hammadi

Introduction to the Analytical Chemistry

- Analytical Chemistry is a measurement science consisting of a set of methods that are vital in all fields of science and medicine. Qualitative information, Structural information, and Quantitative information

The analytical chemistry and The Red plant Mars

- Alpha proton X-ray spectrometer ($A P X S$) used to determine the identity and concentration of the elements of the periodic table.

Types of analysis in analytical chemistry

The pathfinder example demonstrates that both qualitative information and quantitative information are required in an analysis.

* Qualitative Analysis reveals the identity of the elements and compounds in a sample
* Structural analysis is the determination of the special arrangement of atoms in molecule
*Quantitative Analysis indicates the amount of each substance in a sample.

Methods used in Analytical Chemistry

- The methods used to determine the identity and the quantity of the analytes in the field of analytical chemistry can be broadly divided into
$>$ Classical Methods, for example Titration
$>$ Instrumental Methods, for example Mass spectrometry
$>$ Analytical Methods involve separation, identification, and the quantification of matter.

Organic Mass Spectrometry

is a powerful analytical technique used to identify unknown compounds within a sample, to quantify known materials, and to elucidate the structure and chemical properties of different molecules.

MassSpectrometry

Paracetamol

- Paracetamol Molar mass is 151.165

Openlynx Report - James B
Sample: 1
File:JB175 filtsol-1
Description:
Printed: Thu Jun 20 14:20:48 2019

Vial:1:19
Date:19-Jun-2019
\qquad
$\begin{array}{rrrr}\text { Peak ID } & \text { Compound } & \text { Time } & \text { Mass Found } \\ 1 & \text { Found } & 2.01 & 257\end{array}$
257 1:MS ES+
$9.1 e+006$

6

Openlynx Report - James B
Sample: 1
File:JB175 filtsol-1
Description:
Printed: Thu Jun 20 14:20:48 2019

3: UV Detector: TAC: Wavelength Range: (210-400)

Chemical structure of a polypeptide macromolecule

Nuclear magnetic resonance spectroscopy

nanalusis

Acetaminophen
Solvent: DMSO-d6
167.74
$\stackrel{\infty}{\mathrm{M}}$
$\stackrel{\sim}{\circ}$

๗
Concentration: 1 M
Total time: 5.9 h

Quantitative Analysis

\square Volumetric Methods of Analysis
\square Gravimetric Methods of analysis
\square Spectrophotometric Methods analysis
The most quantitative analytical measurements are performed in solutions

The Solutions

\square A solution is a special type of homogeneous mixture composed of two or more substances. In that mixture, a solute is a substance dissolved in another substance, known as a solvent.
\square Aqueous solution is prepared by dissolving a solute $(\mathrm{NaCl} / \mathrm{NaOH} /$ $\mathrm{HCl})$ in solvent water.
\square We must understand the Concentration of solution
\square The concentration of a solution is the quantity of solute present in a given quantity of solution.

Molecular weight

- To calculate the M.wt of NaCl
- The sum of atomic weights that consist the molecule
- M.wt of NaCl is $23+35.5=58.5$
- M.wt of H 2 SO 4 is $2(1)+32.0+4(16)=98$

The Periodic Table of the Elements

*

caceurns

 \qquad ssecrass s.vorim

	Ce	Pr	Nd	Pm	Sm	E	G	Tb ${ }^{\text {Ta }}$	Dy	$\begin{aligned} & 4 \geqslant 67 \\ & \mathrm{Ho} \end{aligned}$		Tr	$Y b$
20-89	2ram 9	2mas 91	2mam 92	93		95	96			99	100	\% 101	
Ac	Th	Pa	U	Np	Pu	Am	C	Bk			Fm	Md	No

- Find the M.wt of Na 2 SO 4
- HNO3
- C 2 H 2 O 4

(12) $\mathrm{Mg}+(12) \mathrm{C}+(3 \times 8) \mathrm{O}=48 \mathrm{MgCO} 3$
$(29) \mathrm{Cu}+(32) \mathrm{S}+(4 \mathrm{x} 8)=93 \quad \mathrm{Cu} \mathrm{SO} 4$
(23) $\mathrm{Na}+(10) \mathrm{B}+(1) \mathrm{H}=34 \mathrm{Na} \mathrm{BH} 4$
(3 X 12) $\mathrm{C}+(3 \mathrm{X} 19) \mathrm{F}+2 \mathrm{X} 8+(1) \mathrm{H}=109 \mathrm{CF} 3 \mathrm{COOH}$
(3 X 1) $\mathrm{H}+(15) \mathrm{P}+(4 \mathrm{X} 16) \mathrm{O}=82$
H3PO4
$(2 \times 23) \mathrm{Na}+(1 \times 32) \mathrm{S}+(4 \times 16) \mathrm{O}=142.04 \mathrm{Na} 2 \mathrm{SO} 4$
$(1 \times 1) \mathrm{H}+(1 \times 14) \mathrm{N}+(3 \mathrm{x} 8) \mathrm{O}=39$ HNO3
$(3 \times 1) \mathrm{H}+(1 \times 12) \mathrm{C}+(2 \times 16) \mathrm{O}=47 \mathrm{CH} 3 \mathrm{COOH}$
$(2 \times 23) \mathrm{Na}+(2 \times 16) \mathrm{S}+(3 \times 8) \mathrm{O}=102 \mathrm{Na} 2 \mathrm{~S} 2 \mathrm{O} 3$
$(2 \times 6) \mathrm{C}+(1 \times 1) \mathrm{H}+(4 \times 8) \mathrm{O}=45 \mathrm{C} 2 \mathrm{H} 2 \mathrm{O} 4$

halahhamid72@gmail.com

Thank you

