Mathematics and Biostatistics

Probability
1st Semester 2021
Lecture 6

Review

- Things we look for in a distribution

1. Central Tendency
a. MEAN -- average
b. MEDIAN -- middle value
c. MODE -- most frequently observed value.
2. Variability of values and their spread
a. Quartiles -- Median
b. Standard deviation -- Mean
3. Shape of the distribution.
a. Normal Curve
b. Normal distribution (Gaussian distribution)
c. The 68-95-99.7 rule
4. Gaps and clumping of values

Probability

- Probability can be defined as a measure of how likely an event was to occur.
- A probability of 0 indicates the event would not occur.
- A probability of 1 indicates the event was sure to occur.
- Values between 0 and 1 indicated occurrence somewhere in between the extremes.
- We will denote events with capital letters: A, B, C etc. These can be viewed as generic forms of an outcome in a statistical analysis.
- If we want to write the probability of an event A we will use the notation $P(A)$.
- Read as the probability of A.

Probability

- Determine a single event with a single outcome.
- Identify the total number of outcomes that can occur.
- Divide the number of events by the number of possible outcomes.
- Example When a coin is tossed, there are two possible outcomes: heads (H) or tails (T)
- We say that the probability of the coin landing H is

$$
\mathrm{P}(\mathrm{H})=\frac{\text { the number of heads }(\mathrm{H})}{\text { the number of possible outcomes }}=\frac{1}{2}
$$

- And the probability of the coin landing T is

$$
\mathrm{P}(\mathrm{~T})=\frac{\text { the number of tails }(\mathrm{T})}{\text { the number of possible outcomes }}=\frac{1}{2}
$$

Probability

- The probabilities over the entire sample space must sum to 1.
- The first of these is that if we have an event A in some sample space. Then

$$
P(A)+P(\operatorname{Not} A)=1
$$

- This rule becomes useful in situations where you cannot directly determine $P(A)$ but you can compute the probability of not A events.
Then

$$
P(A)=1-P(\operatorname{Not} A)
$$

- Note $(\operatorname{Not} A) \leftrightarrow(-A)$, read as not A.

Probability

- A simple example is a sample space of two events: A and B. Then

$$
P(A)+P(B)=1, \quad P(B)=1-P(A)
$$

and likewise, $\mathrm{P}(\mathrm{A})=1-\mathrm{P}(\mathrm{B})$.

Types of Events

- The term mutually exclusive is used to describe events which cannot simultaneously occur.
- The occurrence of one rules out the occurrence of the other.
- A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both.
- $P(A$ and $B)=0$.
- If the events are not mutually exclusive, then this rule does not hold.

Types of Events

- A joint event is the simultaneous occurrence of two or more events.
- Joint probability is the probability of event A occurring while event B occurs.
- The events must not be able to influence each other.

$$
P(A \text { and } B)=P(A) \times P(B) \text {. }
$$

Types of Events

- Example: rolling two six-sided dice in a fair.
- Event "A" = The probability of rolling a 6 in the first roll is

$$
P(A)=1 / 6=0.1666 \text {. }
$$

- Event " B " = The probability of rolling a 6 in the second roll is

$$
P(B)=1 / 6=0.1666 .
$$

- Therefore, the joint probability of event " A " and " B " is

$$
P(A \text { and } B)=P(A) \times P(B)=0.02777=2.8 \%
$$

Joint Probability

Types of Events

- Conditional events are the possibility of an events or outcomes occurring based on the occurrence of a preceding events or outcomes.
- This probability is written $P(B \mid A)$, notation for the probability of B given A .
- Conditional probability is derived by multiplying the preceding event's probability by the updated likelihood of the subsequent, or conditional, occurrence.

$$
P(B \mid A)=P(A \text { and } B) / P(A)
$$

Types of Events

- For example:
- Event A is that an individual applying for college will be accepted. There is an 80% chance that this individual will be accepted to college.
- Event B is that this individual will be given free scholarships. Scholarships will only be provided for 60% of all of the accepted students.

$$
P(B \mid A)=P(A \text { and } B) / P(A)
$$

- $P($ Accepted and Scholarships) $=P$ (Scholarships \mid Accepted) \times P (Accepted)

$$
=(0.60)^{*}(0.80)=0.48
$$

Types of Events

- Two events A and B are said to be independent or not associated if and only if:

$$
P(A \text { and } B)=P(A) * P(B)
$$

- In the case where events A and B are independent (where event A has no effect on the probability of event B), the conditional probability of event B given event A is simply the probability of event B, that is $P(B)$.

$$
P(B \mid A)=P(A \text { and } B) / P(A)
$$

Types of Events

- Example of independence.

The data Yield:

- $P(D)=13 / 100$
- $P(E)=50 / 100$
- $P(D$ and $E)=10 / 100$
- from these we can determine if disease and exposure are independent.
- If they are independent, then 0.10 should be close to the produce of 0.13 and 0.50 $0.13 * 0.50=0.065$

Disease Exposure $\boldsymbol{\nabla}$	Yes	NO	Total
Yes	10	40	50
No	3	47	50
Total	13	87	100

The end of lecture

