

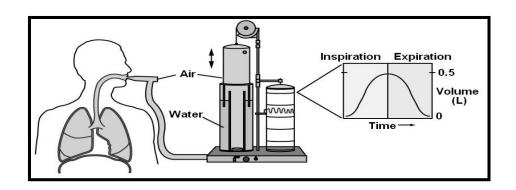
Lung Function Test

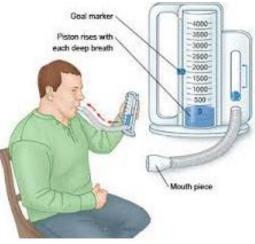
Physiology Lab-4 December, 2022 Lec. Asst. Zakariya A. Mahdi

Lung Function Tests

- Also called pulmonary function tests (PFTs)
- Evaluate how well your lungs work.
- The tests determine <u>how much air your lungs</u> can hold, <u>how quickly you can move air in and</u> out of your lungs, and <u>how well your lungs add</u> oxygen and remove carbon dioxide from your blood.
- The tests can diagnose lung diseases and measure the severity of lung problems

Clinical Significances:


Lung function tests are valuable because they give some measure of


- Lung compliance or elasticity
- Airway resistance
- Respiratory muscle strength

These three factors determine how much air a person can move into lungs per unit of time and this is what the pulmonary function tests measure.

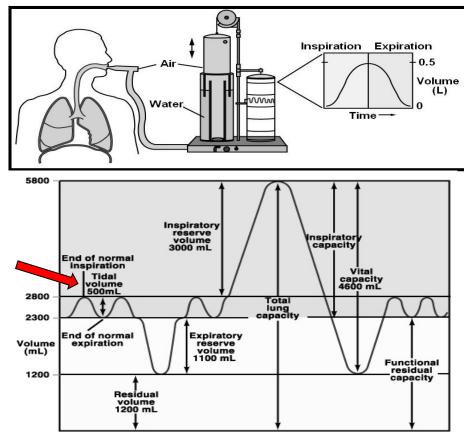
Spirometry

 Is the first lung function test done. It measures how much and how quickly you can move air out of your lungs. For this test, you breath into a mouthpiece attached to a recording device (spirometer).

Spirometer

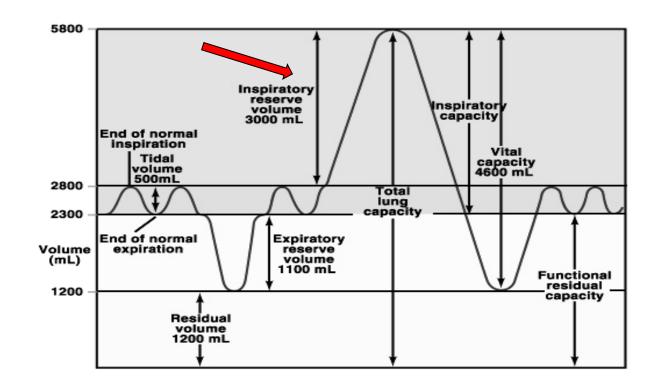
- There are tow types of spirometer:
- 1- Mechanical devices: (Incentive spirometer)

2- Electronic devices

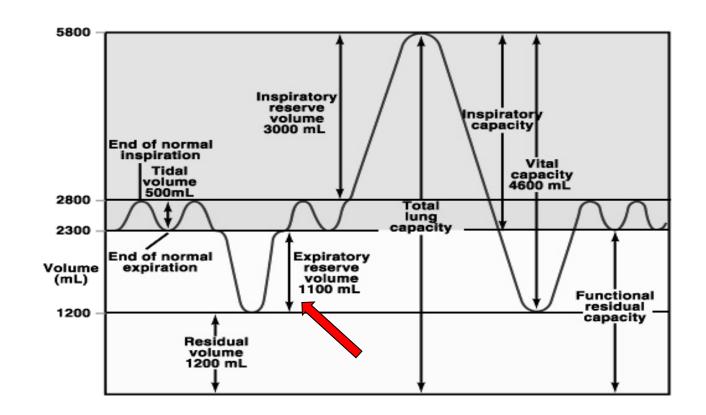

Respiratory Volumes

- The total capacity of the lungs is divided into various volumes and capacities according to the function of these in the intake or exhalation of air.
- The average total lung capacity of an adult human male is about 6 liters of air, but only a small amount of this capacity is used during normal breathing.
- The average human respiratory rate is 30-60 breaths per minute at birth, decreasing to 12-20 breaths per minute in adults.
- The total amount of air one's lung can possibly hold can be subdivided into four **Volumes** defined as follow:

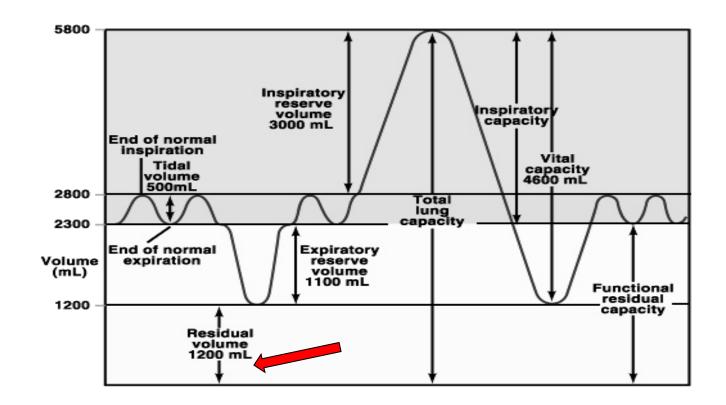
[1] The Tidal Volume (TV):


 Is the volume of air inspired or expired with each normal breath and it is about <u>500 ml</u> in average young adult

man.

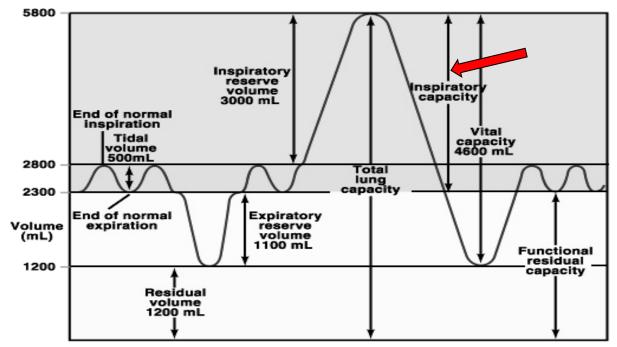

[2] The inspiratory reserve volume (IRV):

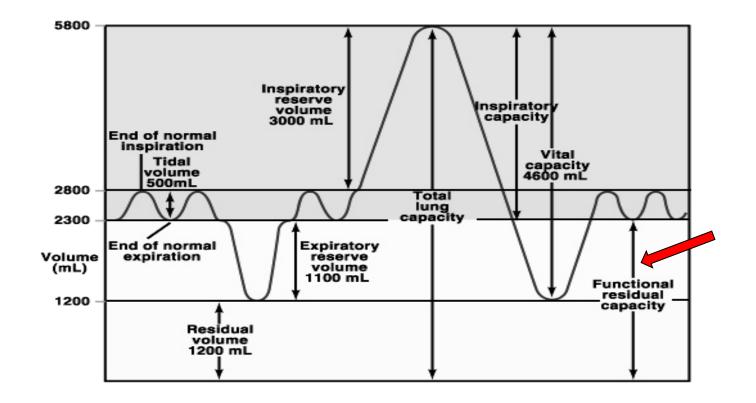
 Is the extra volume of air that can be inspired over and beyond tidal volume and it is about <u>3000 ml</u>.


[3] The expiratory reserve volume (ERV):

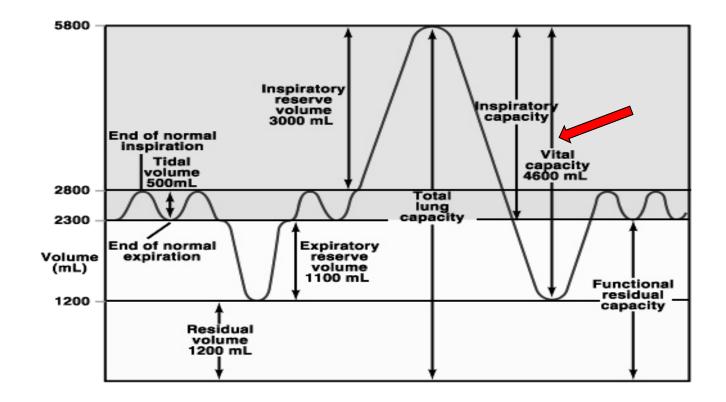
 Is the amount of air that can be expired after the normal tidal expiration, which is about <u>1100 ml</u>

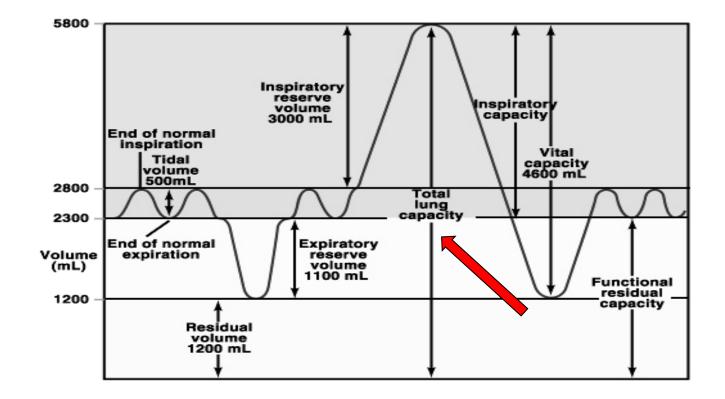
[4] The residual volume (RV):


- Is the volume of air still remaining in the lungs after the most forceful expiration, which is about <u>1200 ml</u>.
- This volume can not be measured directly by spirometer. Therefore, an indirect method must be used usually the helium dilution method.


Lung Capacities

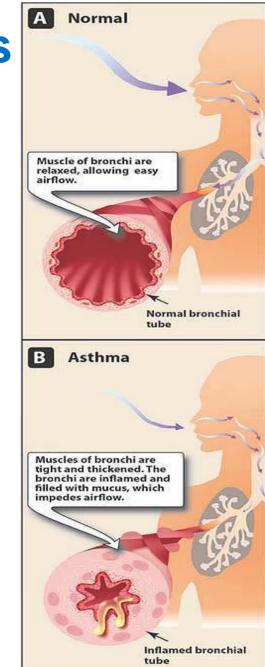
In addition to four volumes, there are four **capacities**, which are combined of two or more volumes:


[1] The inspiratory capacity (IC) = TV +IRV = 500 +3000 = <u>3500 ml</u>. This is the amount of air that a person can breathe beginning at the normal expiratory level and distending the lungs to the maximum amount.


[2] The functional residual capacity (FRC) = ERV + RV = 1100 + 1200 = <u>2300 ml</u>. This is the amount of air remaining in the lungs at the end of normal expiration.

[3] The vital capacity (VC) = IRV + TV + ERV = 3000 + 500 + 1100 = <u>4600 ml</u>. This is the maximum amount of air that a person can expel from the lungs after filling the lungs first to their maximum extent, and then expiring to the maximum extent.

[4] The total lung capacity (TLC) = VC + RV = 4600 + 1200 = <u>5800</u> <u>ml</u>. This is the maximum volume to which the lungs can be expanded with the greatest possible inspiratory effort.


Peak expiratory flow (PEF):

- Is the maximum or peak rate (or velocity), in liters per minute, with which air is expelled with maximum force after a deep inspiration.
- It can be measured by <u>wright peak flow meter</u>. The maximum expiratory flow is much greater when the lungs are filled with a large volume of air than when they are almost empty

Is spirometry the same as peak flow readings?

- No. A peak flow meter is a small device that measures the fastest rate of air that you can blow out of your lungs.
- Like spirometry, it can detect airways narrowing. It is more convenient than spirometry and is commonly used to help diagnose asthma and COPD.

Normal ranges of PEF

Normal values are related to the patient's height as follows:

Height (cm)	PEFR (L/min)*
120	215
130	260
140	300
150	350
160	400
170	450
180	500

 An easy to remember approximation is: PEFR (L/min) = [Height (cm) - 80] x 5

Factors affecting lung volume

Several factors affect lung volumes, some that can be controlled and some that can not. These factors include:

Larger volumes

Males Taller people Non-smokers Professional athletes People living at high altitudes

Smaller volumes

females shorter people heavy smokers non-athletes people living at low altitudes

Restrictive and obstructive Pulmonary disease

Pulmonary function testing primarily detects two abnormal patterns: **1- Obstructive ventilatory defects**

- such as asthma and COPD.
- There is obstruction to the outflow of air
- The main feature is a decrease in expiratory flow rate throughout expiration

2- Restrictive (constricted) ventilatory defects

- such as interstitial fibrosis and chest wall deformities.
- That reduce the air in the lungs. There is no obstruction to the outflow of air.
- The main feature is reduced lung volume (mainly TLC and RV).

Is there any risk in having spirometry?

Spirometry is a very low risk test. However, blowing out hard can increase the pressure in your chest, abdomen and eye. So, you may be advised not to have spirometry if you have:

- 1- Unstable angina.
- 2- Had a recent pneumothorax (air trapped beneath the chest wall).
- 3- Had a recent heart attack or stroke.
- 4- Had recent eye or abdominal surgery.
- 5- Coughed up blood recently and the cause is not known.

Experimental procedure

1- Tidal Volume(TV)

Set the spirometer dial at zero. Take normal exhalation then place your mouth over the mouthpiece into spirometer. You will to make a conscious effort inhalation not to exceed your normal volume.

Read the amount inhaled on the dial

2- Inspiratory Reverse Volume (IRV)

Set the Spirometer dial at zero. After a normal inspiration, place your mouth over the mouthpiece and forcefully inspire as much air as possible from the spirometer. Read the amount inspired on the dial

3- Vital Capacity(VC)

Set the spirometer dial at zero, exhale deeply as you can then place your mouth over the mouthpiece, and inhale as deeply as possible with a maximal effort.