

Complexometric Titration II

Lecture four 2022-2023

Indicators

- Indicator is a dye which is capable of acting as a <u>chelating agent</u> to give a <u>dye-metal complex</u>.
- The latter is different in colour from the dye itself and also has a low stability constant than the chelate-metal complex.
- The colour of the solution, therefore, remains that of the dye complex until the end point, when an equivalent amount of sodium EDTA has been added.
- As soon as there is the slightest excess of EDTA, the metal-dye complex decomposes to produce free dye; this is accomplished by a change in colour.

Metal indicators must comply with the following requirements:

- Metal-indicator complex must be less stable than the metal-EDTA complex, ie. the metal-indicator complex should be 10 to 100 times less stable than the metal-titrant complex.
- Binding between metal and indicator must not be too weak. It has to avoid EDTA replacing at the beginning of the titration.
- Colour of the indicator and the metal complexed indicator must be sufficiently different.

EDTA Titration Techniques

- Direct Titration
- Many metals can be determined by direct titrations with EDTA.
- Weak metal complexes such as Ca²⁺, Zn²⁺ and Mg²⁺ should be titrated in basic solution using EBT, Calmagite, or Arsenazo I as the indicator.
- Example
- Direct determination of Zn²⁺ with EDTA
- The complex of Zn²⁺ with EDTA (Zn-EDTA) is more stable than its complex with EBT.
- Zn²⁺ + H-Ind.²⁻ \longrightarrow Zn-Ind.⁻ + H⁺ (conical flask)

EDTA Titration Techniques

- Back Titration (indirect)
- It can be performed for the determination of several metal ions which can not be titrated directly but form stable EDTA complexes.

The procedure, a known amount of EDTA is added to the analyte sample solution and the excess is back titrated with a standard solution of "weak" metal ion, Mg²⁺.

The weak metal ion will not displace the analyte from its EDTA complex.

/It is used in the following cases: (when can be used?)

Insoluble substances e.g. $BaSO_4$, CaC_2O_4 , $PbSO_4$, $Mg_3(PO_4)_2$... etc. Usually soluble in hot EDTA.

The reaction between Mⁿ⁺ & EDTA is slow (incomplete) e.g. Fe³⁺, Al³⁺, Cr³⁺, Th⁴, ... etc.

The M^{n+} is pptd. at the pH suitable for titration e.g. $Al(OH)_3$.

EDTA Titration Techniques

- Displacement Titration (what is the conditions??)
- A. The technique only works when the unknown metal has tighter binding to EDTA than the Zn²⁺ or Mg²⁺.
- B. Metal ions with no satisfactory indicator.
- MgY²⁻ or ZnY²⁻ complex is added to the solution of unknown metal ion composition.
- The unknown metal displaces the Mg²⁺ or Zn²⁺, which is then back titrated.

$$M^{n+} + MgY^{n-2} \longrightarrow MY^{n-4} + Mg^{2+}$$

 K_f' for $MY^{n-2} > K_f'$ for MgY^{n-2}

 K_f is constant of complex formation

Titration of Mixtures

- EDTA is not a selective reagent (it chelates with most metal ions)
- Selectivity of EDTA can be increased by one of the following procedures:
 - a) Control of pH of the medium
 - b) Adjustment of oxidation number of metal ion
 - c) Masking and demasking agent

a) Control of pH of the medium

- First group: Trivalent & tetravalent cations e.g. (Bi³⁺, Fe³⁺, Th⁴⁺) and Hg²⁺ titrated (form stable complex) at pH 1-3 using conc. HNO₃.
- Second group: Divalent metals e.g. (Co^{2+} , Ni^{2+} , Cu^{2+} , Zn^{2+} , pb^{2+} and Cd^{2+}) titrated (form stable complex) at pH 4-6 using acetate buffer.
- Third group: Alkaline earth metal e.g. (Ba²⁺, Sr²⁺, Ca²⁺) and Mg²⁺ titrated (form stable complex) at pH=10 using ammonia buffer or 8% NaOH.
- From the mentioned above, we can titrate M^{n+} of the first group at pH 1-3 without interference of the second and third groups or at pH 4-6 we can titrate M^{n+} of the second group without interference of the third group.
- e.g. Mixture of Bi^{3+} & pb^{2+} : First titrating Bi^{3+} at pH = 2 using xylenol orange as ind., then increased pH to 5 by adding hexamine and titrating pb^{2+} .

b) Adjustment of oxidation number of metal ion

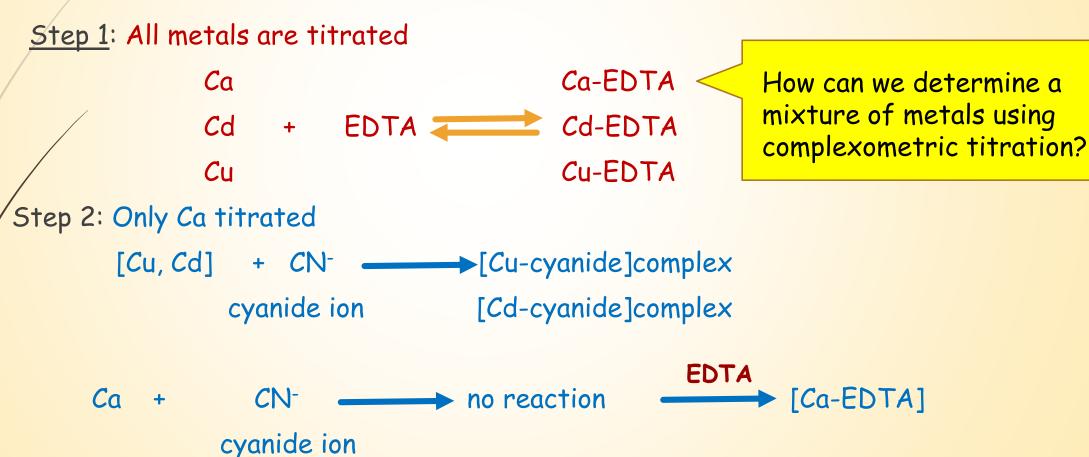
- This solves the interference between Mn+ of the same group of property.
- Examples:
- Ascorbic acid (vit. C) is reducing agent used in:
- Removal of interference of Fe^{3+} in first group (pH 1-3) \longrightarrow reduced to Fe^{2+}
- Removal of interference of Hg^{2+} in <u>first group (pH 1-3)</u> \longrightarrow reduced to Hg^{0+} (pptd.).
- Removal of interference of Cu^{2+} in second group (pH 4-6) \longrightarrow reduced to cuprous Cu^{1+} .
- \Leftrightarrow Oxidation of $Cr^{3+} \xrightarrow{\text{alkaline} \atop H_2O_2}$ to CrO_4^{2+}
- ightharpoonup Fe²⁺ , Hg°, Cu¹⁺ , CrO₄²⁻ do not react with EDTA

c) Masking and demasking agent

- Masking agents: Protects some component of analyte from reacting with EDTA. These reagents form complexes with interfering ions which are more stable than complexes formed with ind. & EDTA.
- Examples of masking agent: (give examples of masking agent)

KCN: It is used as masking agent for $Ag^+,Cu^{2+},Cd^{2+},Co^{2+},Ni^{2+},Zn^{2+},...$ etc.

$$M^+ + 2 CN^- \longrightarrow [M(CN)_2]^-$$


$$M^+ + 4 CN^- \longrightarrow [M(CN)_4]^{2-}$$

Triethanolamine: It is used as masking agent for Fe3+, Al3+ and Sn2+

Fluoride (e.g. NH_4F): It is used as masking agent for Fe^{3+} and Al^{3+} to give $[FeF_6]^{3-}$ and $[AlF_6]^{3-}$

Iodide (KI): It is used as masking agent for Hg^{2+} to give tetraiodo complex (HgI_4)

- Demasking agent : Releasing masking agent from analyte.
- Example of using masking and demasking agents in complexometry is the analysis of 3 metals, Cu, Cd and Ca. the following method of analysis is followed

- Step 3: Cd and Cu are titrated
- [Cd-cyanide]complex + HCHO Cd2+ (free)

[Cu-cyanide]complex + HCHO — no reaction

Oxidation with H₂O₂ releases Cu²⁺ from [Cu⁺-Thiourea] complex.