Lab(2) physical pharmacy

the Phase Rule and Different Components

Done By:

Lecturer: Hiba Sabah

Lecturer: Zeina Dawoad

Asst. lecturer : Aqeel Abdulridha

- <u>phase rule</u>: is a relationship for determining the least number of variables required to define the state of the system.
- -phase :-is homogeneous physically distinct portion of the system which is separated from other parts of the system by bounding surfaces
- (e.g. water & its vapor is one component two phase system)

Two component systems containing liquid phase

- -as we know ethyl alcohol & water are miscible in all proportions, while water & mercury are completely <u>immiscible</u> regardless the amount of each.
- Between these two extremes lie a whole range of system which exhibit a partial miscibility (or immiscibility) such as water & phenol, as their miscibility affected by two factors conc. & temp.

Two Complaent Systems Containing Liquid Phases:

ethyl alcohol and water

miscible

phenol and water

water and mercury

Phenol and water system:

Partially miscible

Two factors affecting misciblity

- 1- Concentration of phenol in water.
- 2- Temperature.

To see the effect of temp. & conc., we draw graph paper of temp. versus conc.

binodal curve :- is the curve that separates two phase area from one phase area.

-tie line: - is the line drawn across the region of two phases (conjugate phases) as each temp. has its own tie line.

-upper consolute temp. or critical solu. Temp. :- is the maximum temp. at which two phase region exists .

Water & phenol system it is 66.8 as all combinations above this temp. is completely miscible & give one phase system.

-mass ratio:-is the relative amount by wt. of conjugate phase, it depends on the position in tie line & temp.

properties of the tie -line in two component systems:-

1-it is parallel to the base line
2-all systems prepared along the tie line at
equilibrium separated into two conjugate
phases of constant composition.

For instance, consider a system containing 24% by weight of phenol and 76% by weight of water (point d in the diagram). At equilibrium two liquid phases have been presented in the tube.

The upper one, A, has a composition of 11% phenol in water (point b on the diagram), whereas the lower layer, B, contains 63% phenol (point c on the diagram). The relative weights of the two phases can be calculated by the equation

$$\frac{63-24}{24-11} = \frac{39}{11} = \frac{3}{1}$$

advantages of binodal curve :-

Binodal curve or phase diagram is used to formulate systems containing more than component in single liq. phase product

Q: At 25 C a tie line 7%-----70% (w/w)% phenol in water, find the mass ratio and the composition of each phase of 40% w/w phenol by water at this temperature, note that the total weight is 10 gm?

If we want to know the amount of phenol and water in each phase(composition)

For phase A (water rich layer)

For phase B (phenol rich layer)

(mass ratio)

Procedure:

Prepare the following percent W/W phenol/water(10 gm total) 2%,7%,9%,11% ,24%,40%,55 %,63%,70%,75%.

Put test tube in a fixed temperature in water bath (25 C⁰) or (left test tube at room temp.) and keep it for 10 minutes at that temp.

Take the test tubes out and before their temp has changed record which one has 2 phases and which has one phase.

Repeat the work at higher temp using the following temp.40C⁰, 50C⁰, 70C⁰.

Draw a curve temp verses concentrations showing your 2 phases area and one phase area in the curve.

Draw tie line for each temp.

Take 40% W/W for example to find the mass ratio and the composition of each phase at different temp.

Mention the upper consulate temp

2 gm 100 gm X 10gm X=0.2 gm of phenol 10-0.2=9.8gm water

The results of two components (phenol +water)

Temp	2%	7%	9%	11%	24%	40%	55%	63%	70%	75%
25C°										
40C°										
50C°										
70C°										

