the Phase Rule and Different Components

Lecturer: Zeina Dawoad
Asst. lecturer :Aqeel Abdulridha

- phase rule : is a relationship for determining the least number of variables required to define the state of the system.
- -phase :-is homogeneous physically distinct portion of the system which is separated from other parts of the system by bounding surfaces
- (e.g. water \& its vapor is one component two phase system)

Number of component :is the smallest number of constituents by which the phase of equilibrium system can be expressed as a chemical formula or equation.

Two component systems containing liquid phase

- -as we know ethyl alcohol \& water are miscible in all proportions, while water \& mercury are completely immiscible regardless the amount of each.
- Between these two extremes lie a whole range of system which exhibit a partial miscibility (or immiscibility) such as water \& phenol, as their miscibility affected by two factors conc. \& temp.

THO Comp ${ }^{1}$ Bent Systems Containing Liquid Phases:

ethyl alcohol and water

phenol and water

water and mercury

Phenol and water system:

Partially miscible
Two factors affecting misciblity
1- Concentration of phenol in water. 2- Temperature.

To see the effect of temp. \& conc. ,we draw graph paper of temp. versus conc.

The curve $g \not q \subset c i$ shows limits of temperature and Edncentration Rethin which two liquid phases exist in equilibrium.

1 phase

11 \% phenol
24\% phenol
water rich phase contains water+ phenol(11\%)

Phenol rich phase contains Phenol (63\%)+ water
$>63 \%$ phenol
1 phase
binodal curve :- is the curve that separates two phase area from one phase area.
-tie line :- is the line drawn across the region of two phases (conjugate phases) as each temp. has its own tie line.

- upper consolute temp. or critical solu. Temp. :- is the maximum temp. at which two phase region exists .
Water \& phenol system it is 66.8 as all combinations above this temp. is completely miscible \& give one phase system. -mass ratio.-is the relative amount by wt. of conjugate phase, it depends on the position in tie line \& temp.

properties of the tie -line in two component systems:-

1 -it is parallel to the base line 2-all systems prepared along the tie line at equilibrium separated into two conjugate phases of constant composition.

For instance, consider a system containing 24% by weight of phenol and 76% by weight of water (point d in the diagram). At equilibrium two liquid phases have been presented in the tube. The upper one, A, has a composition of 11% phenol in water (point b on the diagram), whereas the lower layer, B, contains 63% phenol (point c on the diagram). The relative weights of the two phases can be calculated by the equation

[^0]
advantages of binodal curve :-

Binodal curve or phase diagram is used to formulate systems containing more than component in single liq. phase product

Q: At 25 C a tie line $7 \%-------70 \%(\mathrm{w} / \mathrm{w}) \%$ phenol in water, find the mass ratio and the composition of each phase of $40 \% \mathrm{w} / \mathrm{w}$ phenol by water at this temperature, note that the total weight is 10 gm ?

```
7%-------40%-------------70%
b--------------------------
Wt of A =length dc }\\quad70-40=30=10 (mass ratio
Wt of B length bd
40-7 33 11
10+11=21 (total parts)
10 21
x 10 (total wt.) x= 4.76 gm wt of phase A(water rich layer)
10-4.76 = 5.24 gm wt of phase B (phenol rich layer)
If we want to know the amount of phenol and water in each phase(composition)
For phase A (water rich layer)
7 100
X 4.76 x=0.33gm of phenol in A
    4.76-0.33=4.42 gm of water in A
```

For phase B (phenol rich layer)

```
For phase B (phenol rich layer)
70 100
70 100
X 5.24 X=3.6gm of phenol in B
X 5.24 X=3.6gm of phenol in B
5.24-3.6=1.57gm of water in B
```

```
5.24-3.6=1.57gm of water in B
```

```


The results of two components (phenol + water)
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline Temp & \(2 \%\) & \(7 \%\) & \(9 \%\) & \(11 \%\) & \(24 \%\) & \(40 \%\) & \(55 \%\) & \(63 \%\) & \(70 \%\) & \(75 \%\) \\
\hline \(25 \mathrm{C}^{\circ}\) & & & & & & & & & & \\
\hline \(40 \mathrm{C}^{\circ}\) & & & & & & & & & & \\
\hline \(50 \mathrm{C}^{\circ}\) & & & & & & & & & & \\
\hline \(70 \mathrm{C}^{\circ}\) & & & & & & & & & & \\
\hline
\end{tabular}
```


[^0]: Weight of phase A Length dc $\overline{\text { weight of phase } B}=\overline{\text { Length } b d}$ $\frac{63-24}{24-11}=\frac{39}{11}=\frac{3}{1}$

