Three Component Systems Lab. 3

Done By:

Lecturer Zeina Dawood Lecturer Hiba Sabah Asst. lecturer

The comparison between two component and three component system.

2 component system	3 component system	
2 materials	3 materials	
Drawn on ordinary graph paper	Drawn on triangular graph paper	
Factors affecting are temp. and concentration	The exp. is done under constant pressure and temperature	
The tie line is always parallel to base line	The tie line may be parallel or not	When the
Example phenol/water system	Example HAC,CHCl3,H2O system	A R

¥ K

V

Two component system

Three component system

<u>Rules relating to triangular</u> <u>diagram:</u>-

1)Each of the corners or apexes of O triangle represent 100% by wt. of one component (A,B & C) as a result, the same apex will represents 0% of the other two components.

Triangular graph paper

N/ W

*

F

K

waterproof-paper.com

Triangular graph paper

¥

 \ll

<u>Rules relating to triangular</u> <u>diagram:</u>-

2) The three lines joining the corner points represent two component mixture of the three possible combination of A, B & C.

Three component phase diagram above: Blue point M : X = 40% w/w , Z = 60% w/w Red point F : X = 50% w/w , Y = 50% w/w Black point N : Y = 70% w/w , Z = 30% w/w

3-The area within the triangle represents all possible combinations of A,B&C to give three component system.

Three component phase diagram above: Red point M : X = 50% w/w , Z = 20% w/w and Y=100-(50+20)=30 % w/w //

4) If a line is drawn through any apex O to a point on the opposite side ,then all systems represented by points on such line have constant ratio of two components.

Three component phase diagram (above):

Red point M : X = 60% w/w, Z = 20% w/w and Y=100-(60+20)=20% w/w, ratio y/z=20/20=1 Green point A : X = 20% w/w, Z = 40% w/w and Y=100-(20+40)=40% w/w, ratio y/z=40/40=1

5) Any line drawn parallel to one side of the triangle represents ternary systems in which the proportion (or % by wt)of one component is constant.

Three component phase diagram (above): Point M : X = 40% w/w, Z = 30% w/w and Y=100-(40+30)=30% w/wPoint K : X = 40% w/w, Z = 50% w/w and Y=100-(40+50)=10% w/w

Procedure:

1-Prepare 10 gm of the following combination of HAC & CHCl₃:5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90% w/w HAC:CHCl₃ in a small clean & dry flask which form one single phase.

2-To these mixtures slowly add water from a burette until a turbidity just appears. Check the weight of water (which is equal to its volume).

<u>Note:-</u>To prepare samples in step no.1, the required amount of HAC&CHCI3 from burettes by converting the weight in to volume according to the law:

Specific gravity (sp.gr) = weight/volume

Sp.gr of HAC = 1.009 and for CHCl3 = 1.4

Group NO.	HAC/ CHCl ₃	HAC ml HAC gm	CHCl ₃ gm	CHCl ₃ ml	H2Ogm ml	
1	5%	0.5	9.5	6.79		₹ ▼
2	20%	2	8	5.7		
3	40%	4	6	4.3		XY4
4	70%	7	3	2.14		AN AN
5	80%	8	2	1.42		
6	90%	9	1	0.71		

THE REAL

*

3-Obtain a miscibility curve by calculating the percent w/w of each component in the turbid mixture and plot this triangular diagram.

For example Group no. 1 if the amount of water consumed for turbidity just appears =0.5ml Total weight of the system= wt of HAC+ wt of CHCL3 +wt of H20 =0.5gm +9.5gm+0.5gm =10.5gm FOR HAC: 0.5/10.5*100=4.76%w/w FOR CHCl3: 9.5/10.5*100=90.5%w/w FOR H2O: 0.5/10.5*100=4.76%w/w *Tabulated the amount of HAC ,CHCl3 and H2O *Calculate the % of each point, then drown the binodal curve which separate one phase from two phases area

