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I Measurement and Units

e A microscopic motor, viewed through an
electron microscope. At the center is the
rotor, the part of the motor that turns.
The rotor diameter is 100 microns, or
0.1 millimeters, about the thickness of a
human hair.

Use of Units

uppose you are driving with a friend and your gas tank is nearly empty. When you
S ask your friend how far it is to the nearest gas station, she responds,“About 3, with
no indication of whether she means 3 blocks or 3 miles or perhaps some other measure
of distance. Such a response is not helpful. Your friend gives you no information at all
unless she gives the numerical value of the distance and the unit of length in terms of
which that distance is measured—blocks, miles, whatever. As this example illustrates, it is
important to express the numerical value of a quantity in terms of some unit. Distance
or length may be expressed in units such as meters, feet, miles, or kilometers. Time may
be expressed in units of seconds, hours, days, or years. Speed may be expressed in units
of miles per hour, kilometers per hour, meters per second, and so on. Always remember
to include the unit in expressing the numerical value of any physical quan-

tity. Without the unit the number is meaningless.

Fundamental Quantities

All physical quantities can be defined in terms of a very small number of fundamental
physical quantities. All the quantities studied in the first three chapters of this book
can be defined in terms of just two fundamental quantities: length and time. For
example, the speed of an object is defined as the distance traveled by the object
divided by the elapsed time. In Chapter 4 we shall need to introduce a third funda-
mental quantity, mass, which is measured in units such as kilograms or grams.
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We define the fundamental quantities by defining how we measure them. For
instance, the length of an object is defined by comparing the object with multiples of
some standard length, say, a meter. When we say that a basketball player is 2 meters
tall, we mean that 2 vertical meter sticks, one on top of the other, will just reach from
the floor to the top of the player’s head. The time of any event is defined by measure-
ment of the event’s time on a clock, using standard units of time—hours, minutes, and
seconds. We shall return to certain subtle questions concerning measurement of time
in Chapter 27 when we study Einstein’s theory of relativity.

Base and Derived Units

The units used to express fundamental quantities are called base units, and the units
used to express all other quantities are called derived units. Thus meters, feet,
seconds, and hours are all base units, since they are used to measure the two funda-
mental quantities length and time. The units miles per hour and meters per second are
examples of derived units.

Base units are further characterized as being either primary or secondary. For each
fundamental quantity, one base unit is designated the primary unit and all other units
for that quantity are secondary. For measuring time, the second is the primary base
unit, and minutes, hours, days, and so on are all secondary base units.

SI System of Units

For consistency and reproducibility of experimental results, it is important that all
scientists use a standard system of units. The Systeme International (SI) is the
system now used in most scientific work throughout the world. This system uses
primary base units of meters, kilograms, and seconds for measurements of length,
mass, and time respectively. In this book we shall use SI units primarily. Occasionally,
however, in the early chapters, we shall also use the British system, in which length is
measured in feet and force in pounds, since some of these units will be more familiar
to you than the corresponding SI units.

Definition of the Second

The primary SI unit of time is the second (abbreviated s). Before 1960 the second was
defined as a certain fraction of a day; that is, the second was defined as a fraction of the
time required for one rotation of the earth. According to this definition, there are
86,400 seconds in a day* A difficulty with this standard is that the earth’s rate of rota-
tion is not constant, and so a day is not a constant, reproducible standard of time. The
earth’s rotational rate experiences small random fluctuations from day to day. In addi-
tion there are seasonal variations and a gradual slowing down over the years. To take
these facts into account, the second was defined, before 1960, as 1/86,400 of an
average day during the year 1900.

*1 day = 24 hours, 1 hour = 60 minutes, and 1 minute = 60 s. So 1 day = (24) (60) (60) s = 86,400 s.



Like the other devices shown here, an
atomic clock (bottom) is used to mea-
sure time.
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We now use a more precise and reproducible standard to define the second—a stan-
dard consistent with the earlier definition. The second is now defined in terms of the
radiation emitted by cesium atoms. Radiation is a periodic wave phenomenon. The
time per cycle, called the period, is characteristic of the radiation’s source. The
second is defined to be 9,192,631,770 periods of radiation emitted by cesium
atoms under certain conditions. The device used to measure time with cesium radi-
ation is a large and elaborate device called an atomic clock. Atomic clocks are
extremely accurate. Two of them will agree with one another to within 1 part in 1013.
An atomic clock is maintained by the National Institute of Standards and Technology.

Secondary units of time, such as minutes (min) and hours (h), are defined in terms
of the second (1 min = 60 s, 1 h = 60 min = 3600 s).

Definition of the Meter

The primary SI unit of length is the meter (abbreviated m). Originally the meter was
defined as one ten-millionth (107) of the distance from the earth’s equator to the
North Pole. Later the meter was redefined to be the distance between two lines
engraved on a certain bar made of a platinum-iridium alloy and carefully preserved in
a French laboratory. The distance between the engraved lines was consistent with the
older, less precise definition. Copies of the standard meter bar were distributed
throughout the world.
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In 1960 the meter was redefined as a certain multiple of the wavelength of the
orange light emitted by krypton atoms under certain conditions. This newer atomic
definition was again made consistent with the older definitions.

The most recent definition of the meter was made in 1983. By that time measure-
ments of the speed of light had become so precise that their accuracy was limited by
the precision of the krypton standard meter. The speed of light in a vacuum is a
fundamental constant of nature. And since time could be measured on an atomic
clock with much greater precision than distance could be measured, it made sense to
turn the definition of the unit of length around, defining it in terms of speed and time.
As of 1983 the meter is defined to be the distance traveled by light in a vacuum
during a time interval of 1/299,792,458 second. So now, by definition, the speed of
light is 299,792,458 m/s.

Names of Units

Some derived units in the SI system are given no special name. An example is the unit
of speed, m/s. Other derived units are given special names. An example is the SI unit
of force, the newton (abbreviated N), defined as 1 kg-m/s>. The names of some SI
derived units and their definitions are given on the inside front cover of this book.

Powers of Ten

Units that are powers-of-ten multiples of other units are often convenient to use, and
so we use certain prefixes to denote those multiples. For example, centi- means a factor
of 102, milli- means a factor of 103, and kilo- means a factor of 10**. Thus 1 centimeter
(cm) = 10?2 m, 1 millimeter (mm) = 10~ m, and 1 kilometer (km) = 10"* m. The most
commonly used powers-of-ten prefixes are listed on the inside front cover of this book.

Conversion of Units

It is often necessary to convert units from one system to another. For example, you may
need to convert a distance given in miles to units of meters. To do this, you can use the
conversion factor 1 mile = 1609 meters. A table of useful conversion factors is given on
the inside front cover of this book.

EXAMPLE | Astronomical Distance
The star Sirius is about 8 light-years from earth. A light-year the equation expressing distance in light-years by this factor

(abbreviated LY) is a unit of distance—the distance light travels without changing the equation. We then cancel units of light-
in 1 year. One LY equals approximately 10'¢ m. Express the years and find the distance in meters.
distance to Sirius in meters.
. 10" m "
106 m distance = 8 LY =8 X 10"m
SOLUTION Since the ratio equals 1, we can multiply 1LY
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EXAMPLE 2 Speed in Sl Units

Express a speed of 60 miles per hour (mi/h) in meters per second.
speed
SOLUTION We use the conversion factors 1 mi = 1609 m
and 1 h = 3600 s, expressed as ratios, in such a way that when
we multiply by these ratios we can cancel out miles and hours,
leaving units of meters per second.
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Consistency of Units

In solving problems, we shall often use equations expressing relationships between
various physical quantities. Algebraic symbols such as x and ¢ are used to represent the
physical quantities. Whenever we solve for the value of one quantity by substituting
numerical values for other quantities in an equation, it is important to include the units
along with the numerical values. The units are carried along in the calculation and
treated as algebraic quantities. We then obtain from the calculation both the numerical
answer and the correct units.

Using units in this way will alert you when you make certain common errors. For
example, consider the following equation from Chapter 2:

x=3ar’
where x represents distance, a represents acceleration, and ¢ represents time. Suppose

we wish to calculate x at time t = 5 s, given an acceleration a = 4 m/s*. We substitute
these values into the equation and find:

x= l(4 22) 55y
S

2
L™ o
‘2(4)(5)(52)(5)
=50m

‘We obtain our answer in meters, a correct unit for distance.
Suppose we had mistakenly written the equation as x = $at, forgetting the expo-
nent 2 on the z. When we substitute values into this incorrect equation, we obtain

units for x of
m m
—2>(S) =—
S S

which are clearly incorrect units for a distance. These incorrect units reveal that we
have made some kind of mistake—either we have used an incorrect equation or we
have substituted a quantity with incorrect units into a correct equation.

Of course, getting the units to come out correctly is no guarantee that you have not
made some other kind of error. But at least it allows you to eliminate some kinds of
errors.
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Significant Figures

When you measure any physical quantity, there is always some uncertainty in the
measured value. For example, if you measure the dimensions of a desk with a meter
stick marked with smallest divisions of millimeters, your measurements may be accu-
rate to the nearest millimeter but not to the nearest tenth of a millimeter. When you
state the dimensions, you could explicitly indicate the uncertainty in your measure-
ments. For example, you might measure the length of a desk to the nearest millimeter
(or tenth of a centimeter) and express the desk’s length as 98.6 = 0.1 cm. This means
that you believe the length to be between 98.5 cm and 98.7 cm.

In this text, we shall not explicitly indicate the uncertainty in a measured value. We
shall, however, imply this uncertainty by the way we express a value. Saying that the
length of the desk is 98.6 cm means that we have some confidence in the three meas-
ured digits, in other words, confidence that the true length differs from this number by
no more than 0.1 cm. We say that there are three significant figures in this measure-
ment. If you say that the length is 98.60 cm, giving four significant figures, you are
implying that your measurement is accurate to four significant figures, in other words,
that the uncertainty is no more than 0.01 cm. Since your measurement does not have
this degree of precision, it would be misleading to state the result in this way. The
measured length is 98.6 cm, not 98.60 cm.

Sometimes the number of significant figures is unclear. For example, if we say a
certain distance is 400 m, are the two zeroes significant figures or are they included just
to indicate the location of the decimal point? Do we mean that the uncertainty in
distance is 1 meter? Using powers-of-ten notation avoids such ambiguity. For example,
if we say the distance is 4.00 X 10* m, we give three significant figures, meaning that the
uncertainty in distance is 0.01 X 10> m, or I m. But if we say the distance is 4.0 X 10> m,
we give two significant figures, meaning that the uncertainty is 0.1 X 10> m, or 10 m.

Often it is tempting to state a result you have calculated with too many significant
figures, simply because this is the way the numerical value appears on your calculator.
For example, suppose you wish to calculate the area of a desk top. You measure a
length of 98.6 cm and a width of 55.2 cm. You compute the rectangular area by
multiplying these two numbers. Your calculator reads 5442.72. But each of your
measurements is accurate to only three significant figures, and so the product is also
accurate to only three significant figures. Thus you should round off the calculator
reading and state the area as 5440 cm’ or, better yet, 5.44 X 10° cm’.

Now suppose you had measured the width of the desk with less precision than the
length—measuring only to the nearest centimeter, so that the result is 55 cm. The
length is known to three significant figures, but the width is known to only two signifi-
cant figures. The less precise measurement is the limiting factor in the precision with
which you can calculate the area. When two or more numbers are multiplied or
divided, the final answer should be given to a number of significant figures equal
to the smallest number of significant figures in any of the numbers used in the
calculation. So, when you multiply a length of 98.6 cm times a width of 55 cm, do not
state the area as 5423 cm’, as indicated on your calculator. Rather, round off to two
significant figures and state the area as 5400 cm’ or as 5.4 X 10° cm”.

When numbers are added or subtracted, the uncertainty in the calculated value is
limited by the number having the greatest uncertainty. Thus, when you add or
subtract, the number of decimal places retained in the answer should equal the
smallest number of decimal places in any of the quantities you add or subtract.
For example, the sum 12.25 m + 0.6 m + 44 m should not be written as 56.85 m but
rather should be rounded off to 57 m.
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Often numbers that appear in equations do not represent measured values and so
are not subject to the rules for significant figures. For example, the numerical factor
5 appears in the equation x = 2. This number is exact. There is no uncertainty in its
value, and it places no limitation on the number of significant figures to which x can
be calculated. If, for example, values for a and ¢ are known to 3 significant figures, x
may be calculated to 3 significant figures.

Order-of-Magnitude Estimates

It is often useful to estimate a number to the nearest power of ten. Such an estimate is
called an order-of-magnitude estimate. Estimating is appropriate either when the
available data do not permit any greater accuracy or when you don’t need to know the
number with any greater accuracy. Estimates can also be useful in checking the results
of a more careful calculation, simply because it is so easy to calculate when you are
working only with powers of ten.

For example, suppose we want to estimate the number of high schools in the
United States. We could begin by estimating the country’s high school age population.
Since high school takes 4 years and an average lifetime is roughly 80 years, we might
estimate that one person in 20 of the 200 million or so people in the country is of
high school age. This gives a high-school-aged population of about 10 million, or 10".
Of course this estimate is not very accurate, since not all age groups are equally
represented in the population, and certainly not everyone of high school age is in high
school. But 107 high school students is a reasonable order-of-magnitude estimate.
Next we estimate that the average high school has an enrollment on the order of 10°.
This means that the number of high schools in the United States is on the order of
107710° = 10*.

Standards of Length and Time

I Two atomic clocks keep almost exactly the same time,
but one runs faster than the other by 1 part in 10®. How
long would you have to wait before the clocks’ read-
ings differed by 1 s?

2 Before 1799 the legal standard of length in France was
the foot of King Louis XIV. Since the king could not
personally measure the length of everything with his
foot, what was needed to make this standard unit of
measure at all useful?

3 In 1983 the meter was redefined as the distance traveled
by light in a vacuum during a time interval of
1/299,792,458 s, so that now the speed of light is exactly
299,792,458 m/s. Why wasn’t the number rounded off
so that the speed could be exactly 300,000,000 m/s?

Unit Conversion

4 How many picoseconds are in 1 h?
5 How many volts are in 30 megavolts?
6 How many milliamps are in 0.2 amp?
7 A picture has dimensions of 20 cm by 30 cm. Find the
area in m’.
8 A rectangular metal plate has dimensions of 8 cm by
5 cm by 3 mm. Find the plate’s volume in m’.
9 A football field is 100 yards long. Express this length in
meters.
10 A room has dimensions of 5 m by 4 m. How many
square yards of carpet are required to carpet the room?
11 Express the speed of light in units of mi/s.
12 You are driving on the Autobahn in Germany at a
speed of 180 km/h. Express your speed in mi/h.



Consistency of Units

13 In the following equations, ¢ is time in s, v is velocity in
m/s, and «a is acceleration in m/s*
2

a

v =at v= " v = at’

Which of these equations is consistent with the units?
14 In the following equations, ¢ is time in s, x is distance in
m, v is velocity in m/s, and a is acceleration in m/s*

a‘t’

v’ = 2ax v = v = Vxat

X
Which of the equations is consistent with the units?

15 If you calculate v¥/a, where v is in m/s and a is in
m/s?, what units will your answer have?

Significant Figures

16 How many significant figures are in each of the follow-
ing numbers: (a) 25.673; (b) 2200; (c) 2.200 X 10%
(d) 3005; (e) 0.0043; (f) 4.30 X 10?7

17 How many significant figures are in each of the follow-
ing numbers: (a) 165; (b) 500; (c) 5.00 X 10%
(d) 40,001; (e) 0.0070; (f) 7.000 X 10?7

18 Round off each number in Problem 16 to two signifi-
cant figures.

19 Round off each of the following quantities to three
significant figures: (a) 5782 m; (b) 2.4751 X 10° s;
(c) 3.822 X 107 kg; (d) 0.06231 m.

20 A nickel has a radius of 1.05 cm and a thickness of
1.5 mm. Find its volume in m®.

21 A rectangular plot of land has dimensions of 865 m by
2234 m. How many acres is this? (1 acre = 43,560
square feet.)

22 Find the sum of the following distances: 4.65 m,
31.5 cm, 52.7 m.

23 Find the sum of the following masses: 21.6 kg, 230 kg,
55¢g.
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Order-of-Magnitude Estimates

24 Estimate the total volume of water on earth.

25 Estimate the total volume of the earth’s atmosphere.

26 Estimate the number of heartbeats in an average life-
time.

27 Estimate the total time you will spend during your
lifetime waiting for traffic lights to change from red
to green.

28 Estimate the total time you will spend during your
lifetime waiting in line at the grocery store.

29 Estimate the total number of pediatricians in the United
States.

30 Estimate the total number of teachers of college English
composition courses in the United States.

31 Estimate the surface area of a water reservoir that is
10 m deep and big enough to supply the water needs of
the Los Angeles area for 1 year.

32 (a) Estimate the maximum traffic capacity in one direc-
tion on an interstate highway in units of cars per minute.
(b) Estimate how long it would take to evacuate a city
of 1 million on one interstate highway.

33 Estimate the number of M&Ms needed to fill a I-liter
(10° cm?®) bottle.

34 Suppose you are a visitor on another planet and observe
the setting sun. You notice that your little finger, which
is 1 cm wide, just covers the sun when you extend
your arm out and hold your finger 1 m away from your
eyes. The bottom edge of the sun begins to dip below
the horizon, and 5 minutes later the sun completely
disappears. Estimate the length of a day on the planet.

=
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N-Rays, Polywater, and Cold Fusion

Most non-scientists believe that science
advances inexorably—facts leading to
theory, leading to further facts that allow
refinement of the theory, and so on. It may
appear that simple adherence to a cook-
book like “scientific method” is a surefire
route to success—good scientific law, like a
good cake, coming from careful measure-
ment and mixing of the right ingredients
under just the right conditions. The history
of science, however, teaches otherwise.
Sometimes a scientist’s insight leads to a
brilliant and unexpected discovery, for
example, Einstein’s theory of relativity. And
sometimes what appears at first to be a
revolutionary discovery turns out to be a
disappointing mistake.

Such mistakes are not always easy to
recognize. An erroneous claim of an im-
portant discovery can arise from a desire
to interpret facts in a way that confirms a
scientist’s own theories. It can be difficult
for one to refute such a claim by attempt-
ing to reproduce an experiment because
no two experiments are ever performed
under exactly the same conditions. The
scientist who claims to have observed a
new effect can always say to another scien-
tist who has repeated the experiment and
not seen the effect: “But you have not
carried out my experiment in exactly the
way | did. You did not use reagents from
the same source; you did not observe long
enough or carefully enough; your instru-
ments were faulty...”

Our first example occurred long ago, in
1903—before, you might think, we knew
as much as we know today. In that year, the
French scientist Rene Blondlot, who had
been working with the newly discovered

X-rays, claimed to have found another new

type of radiation. Blondlot named his rays
“N-rays” after Nancy, the city in which he
was working. He turned out paper after
paper on the subject and became quite
famous, drawing many well-known scien-
tists into the ranks of his supporters and
giving birth to an entire school of N-ray
research.

Reports of failures to confirm Blondlot’s
findings began to appear, but defenders of
Blondlot offered critiques of the challen-
gers’ experimental methods and powers of
observation. Finally, in late 1904, Blondlot
was visited by the American Robert Wood,
professor of physics at Johns Hopkins Uni-
versity. Through some clever sleight of
hand, Wood fooled Blondlot into claiming
to observe N-rays under conditions in
which, given Blondlot’s own theories, they
could not possibly have appeared. When
Wood described his trick in a letter to
Nature, a prestigious scientific journal, it
was the beginning of the end for N-rays.

Our second example dates back only to
the late 1960s. In those years, a Soviet sci-
entist studying the properties of water
discovered what he claimed to be a poly-
merized form of water. This so-called poly-
water, which had been produced by long
and repeated heating of the water in an
elaborate glassware apparatus, was ob-
served to be a clear, plastic-like material.
The discovery sent shock waves through
the scientific community and was given
apocalyptic coverage in the press, which
claimed with some scientific support that
the clumping of the water molecules into
this undrinkable form could, if not con-
tained, eventually spread to all the water in
the world. The supposed polywater, after
careful measurement and analysis, was fin-

ally unmasked as ordinary water containing
certain impurities. This simple conclusion
took nearly 7 years to reach! That much
time was required before all the research-
ers who had failed to reproduce the exper-
iment were finally believed.

Our third example is of still more re-
cent vintage. In April 1989, chemists Stanley
Pons and Martin Fleischmann called a press
conference to announce the discovery of
an amazing new process called “cold fusion.”’
Fusion is the combining of light atomic
nuclei to form heavier nuclei and is the
process by which the sun generates energy.
The process was believed to require sun-
like conditions of extremely high tempera-
ture in order to overcome the electrical
repulsion between the positively charged
nuclei and get them close enough together
so that they could fuse and release energy.
Huge research efforts around the world
have been devoted to controlling fusion in
enormously large and expensive machines,
producing high temperatures (Fig. A).
Although steady progress has been made,
these machines are not yet energy efficient;
that is, they do not generate as much
energy as is needed to operate them.

Pons and Fleischmann claimed to have
bypassed the usual way of creating fusion at
high temperatures by producing cold fusion
in a small beaker containing heavy (deu-
terium-rich) water and a palladium coil
carrying electricity (Fig. B). This process, if it
had actually worked, would have provided
virtually limitless low-cost energy and would
have solved the world’s energy problems.

Not surprisingly, government and indus-
try were anxious to invest in this work,
and other scientists around the world were

eager to reproduce the cold fusion effect.
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Fig. A Inside the Princeton fusion reactor. Fig. B Cold fusion apparatus.

However, very few of the many labs that
repeated the “cold fusion” experiment
found any evidence that fusion was taking
place. Pons and Fleischmann attacked their
critics and maintained their claim. Lack of
positive experimental results by others
eventually took its toll. The general con-
sensus today is that, whatever Pons and
Fleischmann may have observed, it was not
fusion. Like the proponents of N-rays and
polywater before them, Pons and Fleis-
chmann had been too caught up in visions
of a grand discovery, and had abandoned
the openness required to successfully probe

the secrets of nature.

Fig. C Enormous energy is displayed in a solar flare, seen during a solar eclipse.






