
Energy

The Concept of Energy

How fast must a spacecraft move to escape the earth? How much electric power can
be generated using water from a certain waterfall? How many calories do you

burn riding a bicycle uphill? To answer questions such as these we shall use a funda-
mental law of nature—the law of conservation of energy. This law states that there
exists a numerical quantity called “energy” that remains fixed in any process that
occurs in nature. We express the law more concisely by saying that “energy is
conserved.” The law of energy conservation applies without exception to all systems.
If a certain isolated system has, say, 50 units of energy initially, that system will con -
tinue to have 50 units of energy, no matter what changes the system undergoes. It is
possible for a system to lose energy only if that system is not isolated. Then the
energy lost shows up as energy gained by some other system with which the first
system has interacted.
Energy comes in many forms. Electrical energy, chemical energy, nuclear energy,

and thermal energy are some forms of energy we shall study in later chapters. In this
chapter we shall study only mechanical energy, which consists of two distinct types:
(1) kinetic energy, associated with the motion of a body, and (2) potential energy,
associated with the position of a body and a particular kind of mechanical force.
In general, the law of conservation of energy applies to the numerical sum of all

forms of energy. If we add up mechanical energy, electrical energy, chemical energy,
and so forth, the total energy of an isolated system is always constant. In this chapter
we shall see that, under certain special circumstances, a system’s mechanical energy
alone is conserved. We shall show how this principle of conservation of mechanical
energy follows from Newton’s laws of motion. Rather than use Newton’s laws directly
to analyze the forces acting on a system, it is often easier to apply energy principles.
For example, we shall use conservation of energy to calculate how fast a spacecraft
must move to escape the earth (Ex. 7), to find the electric power generated in a certain
Bavarian home using water from a small waterfall (Problem 59), and to estimate the
energy needed to ride a bicycle uphill (Ex. 15).
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A drawn bow stores energy, which is
transferred to the arrow as it is shot.
Some bows store enough energy to
shoot an arrow half a mile. (McEwen E
et al: Sci Am 264:76 [cover], June 1991.)
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Work and Kinetic Energy
Definition of Work Done by a Constant Force in One Dimension
In this section we shall define work and kinetic energy and then show how they are
related through the work-energy theorem. The full significance of work and kinetic
energy can be appreciated only after you see how they are connected through this
important theorem.
When a force acts through a distance, we say, “The force does work.” More

precisely, the work W done by a constant force F acting on a body moving in a
straight line (Fig. 7–1) is defined to be the product of the force component Fx in the
direction of motion times the distance �x the body moves:

W  Fx �x (constant force; linear motion) (7–1)

If a body does not move, �x 0, and so, even though forces may act on the body,
no work is done by those forces (Fig. 7–2a), and no work is done on a moving body by
any force that is perpendicular to the direction of the body’s motion (Fig.7–2b), since
such a force has a zero component in the direction of motion.
“Work” is a word commonly used to mean human effort. No such meaning is

implied by the definition of work used in physics. For example, as you sit studying
physics, you may be making an enormous effort, but there is no work being done,
according to our definition of work as force acting through a distance. On the other
hand, little or no effort is required to fall onto your bed. And yet work is done by the
force you exert on your mattress and springs as they are being compressed. It is
important not to confuse the physical concept of work with effort or with any other
meaning attached to the word “work” in everyday language.

Units
The unit of work is the unit of force times the unit of distance—the N-m in SI. This
unit is given the name “joule” (abbreviated J), in honor of James Joule, who demon-
strated by numerous experiments in the nineteenth century that heat is a form of
energy:

1 joule  1 N-m  1 kg-m2/s2 (7–2)

In the cgs system the unit of work is the erg, defined as a dyne-cm. Since 1 N  105

dyne and 1 m  102 cm, 1 N-m  107 dyne-cm or

1 J  107 erg (7–3)

In the British system the unit of work is not given a separate name; it is simply called
a “foot-pound,” ft-lb. From the relationships between N and lb and between m and ft,
it is easy to relate J to ft-lb:

1 J  0.738 ft-lb (7–4)

Fig. 7–1 As a block moves a distance �x, the
force F does work Fx �x.

7–1

(a) (b)

Fig. 7–2 (a) No work is done on a
stationary barbell either by the barbell’s
weight w or by the force F exerted by
the weight lifter. (b) No work is done
by forces N and w acting on a skater,
since neither force has a component
in the direction of motion.
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Net Work
We define the net work on a body, Wnet, to be the sum of the work done by all the
forces acting on the body:

Wnet  � W (7–5)

Net work is important because the effect of work on the energy of a body depends only
on the net work, as we shall see when we discuss the work-energy theorem.

EXAMPLE 1 Pulling a Suitcase

An airline passenger pulls his suitcase a horizontal distance of
40.0 m, exerting a force F of magnitude 25.0 N, directed 30.0°
above the horizontal (Fig. 7–3). Find the work done by the
force F.

SOLUTION To find the work we apply the definition (Eq.
7–1), using the component of force in the forward direction, the
direction of motion.

W � Fx �x � F cos 30.0° �x

� (25.0 N)(cos 30.0°)(40.0 m)

� 866 J Fig. 7–3

EXAMPLE 2 Lifting a Box

A woman slowly lifts a box weighing 40.0 N from the floor to
a shelf 1.50 m above (Fig. 7–4). (a) Find the work done by the
force F the woman exerts on the box. (b) Find the work done on
the box by its weight w. (c) Find the net work done on the box.

SOLUTION (a) Since the box is lifted slowly, we assume
that acceleration is negligible and therefore no net force acts on
the box. This means that the woman exerts an upward force F
of magnitude 40.0 N, balancing the box’s weight. The force F
acts in the direction of motion, and so the force component used
in calculating the work WF done by F is the full force of 40.0 N.

WF � Fx �x � F �x � (40.0 N)(1.50 m)
� 60.0 J

(b) The box’s weight w acts opposite the direction of motion,
and so its component in the direction of motion is negative
(�w). Thus the work Ww done by w is negative.

Ww � wx �x � �w �x � �(40.0 N)(1.50 m)
� �60.0 J

(c) The net work done on the box is the sum of the work done
by each of the forces acting on the box. Net work equals zero:

Wnet � � W � WF � Ww � �60 J � 60 J � 0

Fig. 7–4

Another way to find net work is to calculate the work done
by the net force. Here the net force is zero, and so the work
done by the net force must also be zero. Thus we get the same
answer for Wnet as we found by adding the work done by each
force. It is easy to show that net work always equals the work
done by the net force:

Wnet � � W � � (Fx �x) � (� Fx)(�x) � Fnet �x



(a)

(b)

Fig. 7–5 The total kinetic energy of
pool balls just after the “break” equals
the kinetic energy of the cue ball before
the break. Kinetic energy is conserved.

Fig. 7–6 A body moves from x0 to x, and
the forces acting on the body do work.
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Kinetic Energy
A body’s kinetic energy K is defined to be half its mass m times the square of its
speed v.

K  mv2 (7–6)

From its definition, kinetic energy must have units equal to mass units times velocity
units squared—SI units of kg-(m/s)2. Since 1 N  1 kg-m/s2, the SI unit of kinetic
energy is N-m, or J, the same as the unit of work.
Sometimes kinetic energy is a conserved quantity. The simplest case of this is

when a body moves at constant speed. Since both mass m and speed v are constant,
the body’s kinetic energy mv 2 is also constant. Kinetic energy is conserved. A
more interesting example of conservation of kinetic energy occurs in the game of pool.
Suppose a cue ball is shot into a rack of balls (Fig. 7–5). If the cue ball has a mass of
0.2 kg and is initially moving at 10 m/s, its initial kinetic energy

K  mv2  (0.2 kg)(10 m/s)2  10 J

The other balls are initially at rest and so have no kinetic energy. Just after the collision,
the kinetic energy of 10 J is shared among all balls. That is, if we add up the kinetic
energies of all the balls just after the collision, the total is approximately 10 J. Kinetic
energy is approximately* conserved in the collision of pool balls.

Work-Energy Theorem
Suppose a body moves along the x-axis and is subject to a number of constant forces
F1, F2, F3, … , whose resultant � F is a constant force directed along the x-axis (Fig.
7–6). According to Newton’s second law, the body experiences an acceleration ax given
by

ax  (7–7)

where m is the body’s mass. The body is accelerated, and so, as it moves through the
distance �x  x � x0, its velocity changes. The final velocity vx is related to the
initial velocity vx0, to the distance �x, and to the acceleration ax by the kinematic equa-
tion (from Chapter 2) vx

2  vx 0
2 
 2ax �x. There is only one component of velocity,

v2  vx
2, and so we may write the kinematic equation as

v2  v0
2 
 2ax �x

Substituting for ax from Newton’s second law (Eq. 7–7), we obtain

v2  v0
2 
 2� �(�x)

Multiplying this equation by m/2 and rearranging, we can express this result

mv2 � mv0
2  � (Fx �x) (7–8)

Thus we equate the change in kinetic energy (�K K� K0  mv2 � mv0
2) to the

net work [Wnet  � W  � (Fx �x)].

�K  Wnet (7–9)

This result is known as the work-energy theorem.

*A small part of the initial kinetic energy is converted to thermal energy and sound energy during the colli-
sion, and so kinetic energy is not exactly conserved.
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According to the work-energy theorem, when there is no net work done on an
object, the object’s change in kinetic energy is zero, or, in other words, kinetic energy
is conserved. In Fig. 7–2a no work is done on the barbell, and so the barbell’s kinetic
energy remains constant—equal to zero. The skater in Fig. 7–2b has nonzero kinetic
energy that remains constant, assuming that forces F and w are the only forces, since
neither of these forces does work.
Fig. 7–7 shows two examples in which kinetic energy is not conserved. In Fig. 7–7a

positive work is done by the normal force on a diver and negative work is done by the
diver’s weight, as the diver springs upward. Since the normal force is greater than the
weight, the net work is positive. So, according to the work-energy theorem, the diver’s
kinetic energy increases (�K� 0); in other words, the diver’s speed increases. We can
also see this from Newton’s second law: the resultant force produces an upward
acceleration.
In Fig. 7–7b only the force of friction does work on a baseball player sliding into

second base. The other two forces have no component in the direction of motion and
therefore do no work. The work done by friction is negative, since this force has a
negative component along the line of motion. Thus the net work on the sliding player
is negative, and, from the work-energy theorem, the player loses kinetic energy
(�K� 0); in other words, the player slows down. We can also predict this by applying
Newton’s second law: the resultant force is the frictional force, which produces an
acceleration opposite the direction of motion and therefore slows the player.

Fig. 7–7 (a) A diver’s kinetic energy increases as she springs upward because positive net work
is done on her, since N > w. (b) A baseball player’s kinetic energy decreases as he slides into
second because friction does negative work on him.

EXAMPLE 3 Final Speed of a Sled

A child and sled having a combined weight of 335 N start
from rest and slide 25.0 m down a 15.0° slope. Find the speed of
the sled at the bottom of the slope, assuming negligible air
resistance and a constant force of kinetic friction of 20.0 N.

SOLUTION The speed at the bottom of the slope may be
calculated once the kinetic energy at that point is found from
the work-energy theorem. Since the sled is initially at rest,
K i � 0. So the change in kinetic energy, which according to the
work-energy theorem equals the net work done by the forces
acting on the sled (shown in Fig. 7–8), is

�K � Kf � 0 � Wnet � WN � Ww � Wf

Fig. 7–8

The normal force does no work, since it is perpendicular to the
motion:

WN � 0

The weight does positive work, since there is a positive compo-
nent wx in the direction of motion:

Ww � wx �x � (335 N)(cos 75.0°)(25.0 m) � 2170 J

The work done by friction is negative since f opposes the motion:

Wf � fx �x � (�20.0 N)(25.0 m) � �500 J

Adding the various work terms, we obtain

K f � 0 � 2170 J � 500 J �1670 J

Since K f � mvf
2, vf may be expressed

vf � ��
Since the mass m � w/g � (335 N)/(9.80 m/s2) � 34.2 kg, we
find

vf � ��� 9.88 m/s

1
�
2

2(1670 J)
��
34.2 kg

2K f�
m

(a) �K = Wnet > 0

(b) �K = Wnet < 0



Fig. 7–10 The work done by the force
F on a particle as it moves from i to f
equals the area under the graph of Fs

versus s (shaded blue).

(a)

(b)

Fig. 7–9 (a) Force F acts on a particle
as it moves along a curved path from i
to f. (b)The total work done by F on
the particle is the sum of the work done
over small subintervals of length �s.
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Variable Force in Three Dimensions
We could have solved the previous example by first calculating the resultant force on
the sled, then using Newton’s second law to find the sled’s acceleration, and finally
applying the kinematic equation relating the velocity to the acceleration and distance.
So the work-energy theorem has merely provided an alternative method for solving this
kind of problem. However, the work-energy theorem may be generalized to deal with
problems in which the forces are not constant and for which the path may not be linear.
Direct solution of such problems from Newton’s second law is much more difficult,
since acceleration is not constant and the kinematic equations derived in Chapter 2 are
not valid. The energy method then offers a significant advantage.
Consider a particle moving along a curved path and subject to a single variable

force F, as shown in Fig. 7–9a. Let the path be divided into small intervals of length
�s, each of which is approximately linear and over each of which F is approximately
constant in magnitude and direction, with a component Fs along the path (Fig. 7–9b).
For each small interval, the change in kinetic energy is approximately equal to Fs �s,
and therefore the total change in kinetic energy from i to f is approximately equal to the
sum of the Fs �s terms:

�K  Kf � Ki 	 � (Fs �s) (7–10)

The smaller the intervals, the better the approximation becomes, since then the inter-
vals are more nearly linear and the force more nearly constant over each interval. Eq.
7–10 leads us to generalize our definition of work as follows. The total work done by
a force acting on a particle as the particle moves from position i to position f is a
sum of terms Fs �s:

W  � (Fs �s) (7–11)

The intervals of length �s used in this definition of work must be small enough that Fs

is nearly constant over each interval.
Combining the two preceding equations, we may write

�K  W

When two or more forces act on a particle moving along a curved path, it is the sum
of the work done by all the forces that equals the change in kinetic energy. In other
words, the change in kinetic energy equals the net work:

�K  Wnet (work-energy theorem) (7–12)

Graphical Interpretation of Work
Next we shall interpret our definition of work graphically, a technique that is useful in
evaluating the work done by a varying force. Suppose we graph Fs as a function of s—
in other words, graph the component of force acting on a particle as a function of the
distance the particle moves over some interval i to f. Such a graph is shown in Fig.
7–10 for an arbitrary force. The interval i to f is divided into small subintervals of
length �s over which Fs is nearly constant. The product Fs �s is the area of a single
rectangle. According to our definition of work (Eq. 7–11), the work is equal to a sum
of terms Fs �s for very short intervals. Since Fs �s is the area of a rectangle, the work
is equal to the sum of the areas of all the rectangles. But this is very nearly just the area
under the curve, shaded blue.* Thus we see that the work done by a force is the area
under the Fs versus s curve between the initial and final points.

*The difference between the area of the rectangles and the area under the curve disappears as we make the
rectangles narrower.
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In the next two sections we shall see how work done by certain forces is related to
another form of energy, called “potential energy.” Under certain conditions the sum of
a system’s kinetic energy plus potential energy is conserved.

EXAMPLE 4 Speed of an Arrow as it Leaves a Bowstring

The force exerted by a certain bow on an arrow decreases
linearly after the arrow is released by the archer, starting at a
value Fs � 275 N when the bow is fully drawn and decreasing
to Fs � 0 as the arrow leaves the bowstring. The tail of the
arrow moves from s � 0 to s � 0.500 m as the arrow is shot
(Fig. 7–11a). Find the final speed of the arrow, which has a
mass of 3.00 �10�2 kg.

SOLUTION After we find the net work, we may use the
work-energy theorem to find the final kinetic energy and the
final velocity. Only the force F does work. This work equals the
shaded area under the curve in Fig. 7–11b—the area of the
triangle of base 0.500 m and height 275 N:

Wnet � (275 N)(0.500 m) � 68.8 J

We apply the work-energy theorem, setting the initial kinetic
energy equal to zero, since the arrow is initially at rest:

�K � Kf � 0 � Wnet � 68.8 J

Kf � mvf
2 � 68.8 J

Solving for vf, we find

vf � ��� ���� 67.7 m/s

(a)

(b)

Fig. 7–11

1
�
2

1
�
2

2(68.8 J)
��
3.00 �10–2 kg

2K f�
m



Fig. 7–12 A roller coaster moves along
a curved track from point i to point f.
Path I is an alternate path between the
same points.
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Gravitational Potential Energy;
Constant Gravitational Force

In this section we shall find a simple general expression for the work done on a body
on or near the earth’s surface by the constant force of gravity. We shall find that this
work always equals the decrease in a quantity called “gravitational potential energy,”
which depends on the body’s elevation. We shall see that when gravity is the only force
doing work on a body, the sum of the body’s kinetic energy plus its gravitational poten-
tial energy is conserved.

Work Done by a Constant Gravitational Force
Suppose a roller coaster starts from rest and accelerates down a curving track, falling
through a vertical distance yi � yf, as it moves from point i to point f (Fig. 7–12). We
shall obtain an expression for the work done on the roller coaster by its weight.
Rather than use the actual path from i to f, we use an alternative path (path I in Fig.
7–12) to derive an expression for work, since it is much easier to derive the work for
this alternative path than for the actual path. The expression we obtain, however, will
apply to any path between points i and f, as shown at the end of this section.
Path I consists of a vertical displacement followed by a horizontal displacement.

Work is done by the gravitational force only along the vertical part, for which there is
a constant force mg along the direction of motion (Fig. 7–12). The work WG equals the
product of this force and the distance yi � yf:

WG  mg(yi � yf)
WG  mgyi � mgyf (7–13)

There is no work done along the horizontal part of path I because the force mg has no
component along the direction of motion.
We have derived Eq. 7–13 by considering the work done by gravity on a roller

coaster for a specific path. However, this equation applies to the work done on any
body of mass m by its weight mg, as the body moves from initial elevation yi to final
elevation yf along any path. According to Eq. 7–13, the work equals the difference in
the values of the quantity mgy, which we call gravitational potential energy and
denote by UG:

UG  mgy (7–14)

Thus the work equals the decrease in gravitational potential energy—the initial value
UG,i minus the final value UG,f:

WG  UG,i � UG,f (7–15)

7–2



Fig. 7–13 The sum of this falling body’s
kinetic energy and its gravitational
potential energy is a constant 9.8 J.
The body’s total mechanical energy
is conserved.

For example, suppose a roller coaster weighing 104 N starts at an elevation of 40 m,
where its potential energy mgy 4 � 105 J, and falls to an elevation of 10 m, where its
potential energy mgy 105 J. No matter what path the roller coaster follows, the grav-
itational force does work on it equal to its decrease in potential energy of 3 � 105 J.

Conservation of Energy
Suppose the gravitational force alone does work. Then

Wnet  WG  UG,i � UG,f

From the work-energy theorem, however, we also know that

Wnet  �K  Kf � Ki

Equating these two expressions for the net work, we obtain

Kf � Ki  UG,i � UG,f

Thus, for example, in the case of the roller coaster, if there is negligible work done by
friction or any other force except gravity, the roller coaster will gain kinetic energy
equal to its lost potential energy of 3 � 105 J.
Rearranging terms in the equation above, we can express our result:

Kf 
 UG,f  Ki 
 UG,i (7–16)

We define the total mechanical energy E to be the sum of the kinetic and gravitational
potential energies:

E  K 
 UG (7–17)

Then Eq. 7–16 may be written

Ef  Ei (7–18)

When gravity is the only force doing work on a body, the sum of the body’s
kinetic energy plus its gravitational potential energy—the total mechanical
energy—is conserved.
As a simple example of conservation of mechanical energy, consider a body in free

fall. As a body falls, its speed increases. Its kinetic energy increases while its potential
energy decreases, so that the sum of the two—the total mechanical energy—remains
constant. This is illustrated in Fig. 7–13 for a 1 kg body falling from rest through a
distance of 1 m.

U K E = K = U

170 CHAPTER 7 Energy
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It is a general characteristic of projectile motion that, in the absence of air resist-
ance, the projectile has the same speed for points at the same elevation (Fig. 7–14).
This follows from the fact that the potential energy will be the same at such points, and
conservation of total mechanical energy then implies that the kinetic energy will also
be the same.

EXAMPLE 5 Energy of a Thrown Ball

A ball of mass 0.200 kg is thrown vertically upward with an
initial velocity of 10.0 m/s. Find (a) the total mechanical energy
of the ball, (b) its maximum height, and (c) its speed as it
returns to its original level. Neglect air resistance.

SOLUTION (a) The total mechanical energy is the sum of
the kinetic energy plus the gravitational potential energy:

E � K � UG � mv 2 � mgy

We take the origin of the y-axis to be the initial position; then
the initial energy E i is purely kinetic:

E i � mv 2 � 0 � (0.200 kg)(10.0 m/s)2 � 10.0 J

Since the gravitational force is the only force doing work on the
ball (with air resistance being neglected), E will remain equal to
10.0 J throughout the motion of the ball.

(b) When the height is maximum, the ball is momentarily at rest
and K � 0. The total mechanical energy E is purely potential
energy at this point:

E � mgy
Solving for y, we obtain

y � �

� 5.10 m

(c) When the ball returns to its initial height, y again equals 0,
and the potential energy is zero. Then the total energy is again
purely kinetic, and the kinetic energy therefore equals 10.0 J.
This is the same as the initial value of kinetic energy, and so the
speed of the ball must also be the same.

E � K � 10.0 J
v � 10.0 m/s

1
�
2

1
�
2

10.0 J
���
(0.200 kg)(9.80 m/s2)

E
�
mg

1
�
2

EXAMPLE 6 Speed of a Skier at the Bottom of a Hill

A skier starts from rest at the top of a ski slope and skis down-
hill (Fig. 7–15a). Find the skier’s speed after her elevation
decreases by 10.0 m, assuming no work is done by friction or air
resistance.

Continued on next page.

(a)

Fig. 7–15

Fig. 7–14 A projectile has the same
speed at points with the same elevation,
if air resistance is negligible.



Fig. 7–16 Finding the work done by
gravity as a body moves over an arbitrary
path from i to f. The body’s elevation
decreases by yi � yf .

172 CHAPTER 7 Energy

Proof That Work Done by Gravity Is Path-Independent
We shall now show that the work done by the gravitational force on a body is inde-
pendent of the path the body travels from its initial position to its final position. Fig.
7–16 shows an arbitrary path between points i and f at respective elevations yi and yf.
(To be specific you can think of a roller coaster moving along any path between
points i and f.) Since the motion is not linear, we must use the general expression for
work (Eq. 7–11):

WG  � (Fs �s)

Fig. 7–16 shows a blowup of a short, approximately linear, segment of the path. The
component of the force mg along the path is mg cos ', and so the work done by gravity
over the interval �s is

Fs �s  (mg cos ')(�s)  mg (�s cos ')

EXAMPLE 6 Speed of a Skier at the Bottom of a Hill—continued

SOLUTION The forces acting on the skier are shown in
Fig. 7–15b. Since the normal force is perpendicular to the
motion, it does no work. Only the weight does work. Therefore
the total mechanical energy is conserved.

Ef � Ei

Kf � UG,f ��Ki � UG,i

mvf
2 � 0 � 0 � mgy i

Notice that we have arbitrarily chosen the origin so that yf � 0.
Solving for vf, we find

vf � �2�g�yi� � �2�(9�.8�0� m�/s�2)�(1�0�.0� m�)�

� 14.0 m/s

Fig. 7–15, continued

The skier would have this same final speed if she had fallen
straight down through a vertical distance of 10.0 m, since her
decrease in gravitational potential energy is determined solely
by her vertical drop.

(b)

1
�
2



Fig. 7–17 Finding the work done by
the gravitational force exerted by a
mass M (a planet, for example) on a
smaller mass m, as m moves from i to f.

1737–3 Gravitational Potential Energy; Variable Gravitational Force

But �s cos ' equals the vertical drop, as indicated in the figure; thus

Fs �s  mg(vertical drop)

We obtain the total work over the entire path by adding the contributions arising
from all vertical drops in the interval from i to f:

WG  mg[� (vertical drops)]  mg(net vertical drop)
 mg(yi � yf)
 mgyi � mgyf

This is the same result we obtained in Eq. 7–13, thus completing our proof that the
work done by gravity is independent of path.

Gravitational Potential Energy;
Variable Gravitational Force

In the last section we obtained an expression for the gravitational potential energy of
a body on or near the earth’s surface, where the gravitational force is constant. In this
section we shall consider problems in which the gravitational force varies. Suppose a
mass M (a planet, for example) exerts a gravitational force F on a smaller mass m (such
as an approaching spacecraft). This force does work as m moves from an initial posi-
tion i to a final position f (Fig. 7–17). If mmoves over a significant distance compared
to the separation of the two masses, the gravitational force F is not constant. Then one
finds the work done by this force by breaking the path up into short intervals over
which the force is nearly constant and calculating the sum:

W  � (Fs �s)

Evaluation of this sum requires the use of integral calculus, and so we will not evaluate
it here. But the result turns out to be quite simple. The work done by gravity equals the
decrease in the gravitational potential energy, UG:

WG  UG,i � UG,f

where the potential energy depends on the distance r between the centers of the two
masses, as given by the equation

UG  � (7–19)

According to this equation, gravitational potential energy is always a negative quantity
for all finite values of r. At r  � the potential energy equals zero, whereas at r R
(the radius of the larger body), UG  �GmM/R. Suppose, for example, a spacecraft of
mass m approaches the earth from a very great distance, so that its potential energy
starts out equal to zero. The spacecraft’s potential energy steadily decreases to a
minimum value of �GmM/R at the surface of the earth. The potential energy decreases
by GmM/R.

GmM
*
r
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Since the work done by gravity equals the difference in two values of the potential
energy, we can always add an arbitrary constant to the potential energy at every point
to provide a more convenient reference level of zero potential energy. Since the same
constant is added to both the initial and final values, the difference in potential energy
is unchanged. For example, if we add the constant GmM/R to the expression for
potential energy given in Eq. 7–19, we obtain a second equally valid potential energy
function UG�:

UG�  � 
 (7–20)

The zero of potential energy in this case occurs when r  R:

UG�  � 
  0

whereas at r �, we have

UG� 

The decrease in potential energy of a spacecraft of mass m, approaching the earth from
a great distance, equals

UG�, i � UG�, f  � 0 

the same decrease we calculated using the function UG.
Most terrestrial bodies are always at nearly the same distance from the center of the

earth. For example, when a batter hits a home run, the distance of the baseball from the
center of the earth varies little over its trajectory. For such bodies the difference in grav-
itational potential energy between any two points can be calculated using one of the
expressions just given (Eq. 7–19 or 7–20), or using Eq. 7–14 (UG  mgy), which is
valid when the gravitational force is constant. Problem 72 outlines a proof that these
different equations for gravitational potential energy are consistent.

GmM
*
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*
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EXAMPLE 7 Speed of a Meteoroid Entering the Atmosphere

Find the speed of a meteoroid (Fig. 7–18) as it first enters the
earth’s atmosphere, if, when it is very far from the earth, it is
moving relatively slowly, so that its initial kinetic energy is
negligible.

SOLUTION Since the earth’s gravitational force is the only
force acting on the body, its mechanical energy is conserved:

Ef � Ei

or

K f � UG,f � K i � UG,i

Since the body is initially very far from the earth, its initial
potential energy is approximately zero.

UG,i � 0

And we are given that its initial kinetic energy is approximately
zero.

K i � 0

Substituting into the energy conservation equation, we obtain

K f � UG,f � 0
or

mvf
2 � � 0

where m is the meteoroid’s mass, M is the earth’s mass, and rf

is approximately the earth’s radius. Solving for vf, we find

vf � ��

� ��2�6.67���10��11���(5.98 � �1024 �kg)

�1.12 �104 m/s �11.2 km/s

Most meteoroids have higher speeds as they enter the atmos-
phere (typically 13 to 70 km/s), since they usually have a signifi-
cant kinetic energy when they are far from the earth.

(a)

(b)

Fig. 7–18 (a) A meteor. (b) A 15-ton meteorite. A meteor, or
“shooting star,” is the bright streak of light that occurs when a
solid particle (a “meteoroid”) from space enters the earth’s
atmos phere and is heated by friction. Billions of meteoroids hit
the earth each day. You can usually see several meteors per hour
on a clear, moonless night. Fortunately, most meteoroids are no
larger than a small pebble and vaporize before they reach the
ground.  Occasionally, a very large meteoroid strikes the earth
(the fallen body is called a “meteorite”). For example, one such
body formed the great meteor crater in Arizona over 5000
years ago (see p. 87). Another weighing about 105 tons destroyed
hundreds of square miles of forest in Siberia in 1908. Most
 meteoroids originate from bodies that are already within the
solar system.

6.38 �106 m

2GM
�

rf

1
�
2

N�m2

���
kg2

GmM
�

rf



Fig. 7–19 A ball leaving the earth with
an extremely large initial velocity would
escape the earth. As it moves away
from the earth, the ball's velocity at first
decreases, but eventually its velocity is
nearly constant.

Fig. 7–20 If the initial speed is greater
than or equal to the escape velocity
(vE  �2�G�M�/R�), the spacecraft will
escape the planet.
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Escape Velocity
What goes up must come down. If you throw a ball vertically upward, it always
comes down again. But suppose you could give a ball an extremely large initial
velocity, say, 50,000 km/h. The ball would escape the earth, never to return (if we
assume negligible air resistance*). Initially, as the ball rose, it would decelerate at the
rate of 9.80 m/s2. However, because of the large initial velocity, it would rise to great
heights, and the gravitational force and gravitational acceleration (which vary as 1/r2)
would decrease as it rose. The ball could then rise still higher with less gravitational
acceleration. Eventually, when the ball was far from the earth, the earth’s gravity
would no longer produce a significant effect. The ball would then continue with
nearly constant velocity (Fig. 7–19).
Of course it is not possible to simply throw a ball with such a large initial velocity.

However, rocket engines have given spacecraft large enough velocities to leave the
earth’s surface and explore the solar system. Some spacecraft are even able to escape
the solar system.
Suppose that a spacecraft blasts off from a planet and reaches a large velocity while

still close to the planet’s surface. The rocket engines are then turned off. From that
point on, the planet’s gravitational force is the only force acting on the spacecraft, and
its mechanical energy is therefore conserved.

Ei  Ef

mvi
2 �  mvf

2 �

The minimum initial velocity necessary to escape the planet is called the escape
velocity, denoted by vE. This is the value of the initial velocity that results in a final
velocity vf approaching zero as the distance rf approaches infinity. We insert vf  0,
rf  �, vi  vE and set ri equal to the planet’s radius R, and the energy conservation
equation becomes

mvE
2 �  0

Solving for vE, we obtain

vE ��
In deriving this equation, we did not need to assume any particular direction for the
spacecraft’s initial velocity vector, since kinetic energy is a scalar quantity, involving
only the magnitude of velocity (K  mv2). So our conclusion is valid for a space -
craft moving away from the earth in any direction. If the initial speed exceeds vE, the
spacecraft escapes, never to return (unless acted upon by some other force) (Fig. 7–20).

*Air resistance would actually be a very large force on the ball at such a large velocity. However, our
assumption of negligible air resistance is correct if we take the initial velocity to be the velocity of the ball
at an elevation of about 100 km, above which the atmosphere is very thin.
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Fig. 7–21 When a ball is shot from
a pinball machine, its kinetic energy
comes from the potential energy of
a compressed spring.

Fig. 7–22 The force F exerted on a
body by a spring does work on the
body as it moves.

Fig. 7–23 Finding the work done by the
spring force.

1777–4 Spring Potential Energy; Conservation of Energy

Spring Potential Energy;
Conservation of Energy

There are other kinds of potential energy besides gravitational; that is, there are other
forces for which the work can be expressed as a decrease in some kind of potential
energy. One of these is spring potential energy. For example, the compressed spring
that launches the ball in a pinball machine stores spring potential energy (Fig. 7–21).
We shall see that under certain circumstances spring potential energy can be converted
into kinetic energy (for example, the kinetic energy of the ball in a pinball machine).

Work Done by a Spring Force
Suppose a body is attached to a spring that can be either stretched or compressed (Fig.
7–22). As discussed in Chapter 4, the force that the spring exerts on the body has an x
component given by

Fx  �kx (7–22)

where x is the displacement from the equilibrium position. Since this force varies with
position, we compute the work by applying the general definition of work (Eq. 7–11),
expressing the work as a sum:

W  � (Fx �x)

As shown in Section 7–1, the work equals the area under the force versus displacement
curve, between the initial and final points. The shaded area in Fig. 7–23 gives the work
done by the spring force on a body in contact with the spring, as the body moves from
xi to xf. This area is counted as negative because the force Fx is negative over the
interval, the displacement is positive, and so each of the products in the sum (Fx �x) is
negative. The shaded area can be computed as the difference in the areas of two
triangles. The larger triangle has a base extending from 0 to xf and an area of
(�kxf)(x f)  � kxf2. The smaller triangle has a base extending from 0 to xi, and an
area of (�kx i)(x i)  � kx i2. The work WS done by the spring is the difference in these
two areas:

WS Area of larger triangle �Area of smaller triangle

 � kxf2 � (� kx i2)

 kx i2 � kxf2
1
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EXAMPLE 8 Earth’s Escape Velocity

Find the value of the escape velocity on earth.

SOLUTION Inserting values for the earth’s mass and radius
into Eq. 7–21, we find

vE � �� � �����
� 1.12 � 104 m/s � 11.2 km/s

Any object on earth with a velocity of at least 11.2 km/s in any
direction away from the earth will leave the earth and never
return, unless it is acted upon by forces other than just the
earth’s gravitational force.

2(6.67 � 10–11 N-m2/kg2)(5.98 � 1024 kg)
�����

6.38 � 106 m
2GM
�

R



We see that the work is expressed as the difference in the values of the function kx2,
evaluated at the two points xi and xf. This function we call the spring potential
energy and denote by US.

US  kx2 (7–23)

Now we can express the work WS done by the spring as the decrease in spring poten-
tial energy.

WS  US,i � US,f (7–24)

For example, the work done by a spring of force constant 103 N/m on an attached mass
moving from x 0 to x  0.1 m is

WS  kxi2 � kxf2  0 � (103 N/m)(0.1 m)2

 �5 J

The spring does �5 J of work on the attached mass, meaning that the kinetic energy of
the mass will decrease by 5 J, if no other forces act on it.

Conservation of Energy
If the spring force is the only force that does work on the body, then Wnet  WS 
US,i � US,f, and applying the work-energy theorem, we find

�K  Wnet

Kf � Ki  US,i � US,f

or

Kf 
 US,f  Ki 
 US,i (7–25)

In this case we define the total mechanical energy E to be the sum of the kinetic energy
and the spring potential energy:

E  K 
 US (when only the spring force does work) (7–26)

and Eq. 7–25 may be written

Ef  Ei (7–27)

Total mechanical energy is conserved when the spring force is the only force
that does work. This is the same result obtained for the gravitational force, except that
a different kind of potential energy is used here in defining the mechanical energy.
Both the spring force and the gravitational force are called conservative forces.
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Work Done by Both a Spring Force and a Gravitational Force
Suppose that both a spring force and a gravitational force do work on a body and that
these are the only forces doing work. The net work is then the sum of the work done
by the two forces.

� W  WG 
 WS

The work done by each force can still be expressed as a decrease in potential energy
of the respective type.

� W  UG,i � UG,f 
 US,i � US,f

or

� W  (UG,i 
 US,i) � (UG,f 
 US,f) (7–28)

We shall find that a generalization of our definition of mechanical energy will allow us
to maintain the principle of conservation of mechanical energy. We first define the total
potential energy to be the sum of the gravitational potential energy and the spring
potential energy.

U  UG 
 US (7–29)

Then Eq. 7–28 may be written

� W  Ui � Uf

But according to the work-energy theorem, �W  Kf � Ki. Therefore

Kf � Ki  Ui � Uf

or

Kf 
 Uf  Ki 
 Ui
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EXAMPLE 9 Energy of a Bow and Arrow

When an archer pulls an arrow back in a bow, potential energy
is stored in the stretched bow. Suppose the force required to
draw the bowstring back in a certain bow varies linearly with
the displacement of the center of the string, so that the bow
behaves as a stretched spring. A force of 275 N is required to
draw the string back 50.0 cm. (a) Find the potential energy
stored in the bow when fully drawn. (b) Find the speed of an
arrow of mass 3.00 �10�2 kg as it leaves the bow, assuming that
the arrow receives all the mechanical energy initially stored in
the bow.

SOLUTION (a) First we find the force constant, using
Eq. 7–22 (Fx � �kx):

k � 

A force of 275 N is exerted by the string on the arrow in the
forward direction when the string is displaced 50.0 cm back-
wards. Thus

k � � 550 N/m

Now we can apply Eq. 7–23 to find the potential energy.

US � kx2 � (550 N/m)(�0.500 m)2

� 68.8 J

(b) Here we assume that no other forces do work, and so
mechanical energy is conserved. As the bow leaves the string,
the system’s energy is the kinetic energy of the arrow.

Ef � Ei

K f � US,f � K i � US,i

mvf
2 � 0 � 0 � US,i

vf � �� � ���
� 67.7 m/s

2US,i�
m

1
�
2

1
�
2

1
�
2

2(68.8 J)
��
3.00 �10–2 kg

�275 N
��
�0.500 m

�Fx�
x



Fig. 7–24 The work done by friction on
a skier moving from A to B depends on
the skier’s path between these points.
Friction is a nonconservative force.

If we define the total mechanical energy E to be the sum of the kinetic energy and the
total potential energy, we find once again that the total mechanical energy is conserved.

Ef  Ei (7–30)

E  K 
 U (7–31)

Conservative and Nonconservative Forces
Conservation of Mechanical Energy
The principle of conservation of total mechanical energy is satisfied when any number
of forces act, so long as the work done by each of the forces can be expressed as a
decrease in some kind of potential energy. When only such forces, called conservative
forces, act on a body, the body’s mechanical energy is conserved—the mechanical
energy being defined as kinetic energy plus the sum of the potential energies corre-
sponding to each of the conservative forces. As we have seen, both the gravitational
force and the spring force are conservative. Another example of a conservative force
is the electric force. In Chapter 18 we introduce electrical potential energy. Friction is
an example of a force that is not conservative. There is no potential energy associated
with friction, and so the mechanical energy of a body is not conserved when friction
does work on it.
For example, suppose a skier skis down a slope from point A to point B (Fig. 7–24).

The work done by friction depends on the path the skier chooses between points A and
B. Little work is done by friction if the path is direct. But if the skier turns back and
forth, there is considerable negative work done by friction, which tends to cancel the
positive work done by gravity and to keep the skier’s kinetic energy more or less
constant.

7–5
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EXAMPLE 10 Maximum Height of an Arrow

Suppose the arrow described in the preceding example is shot
vertically upward. Find the maximum height the arrow rises
before falling back to the ground. Neglect air resistance.

SOLUTION The forces acting on the arrow are the spring-
like force of the bowstring (as the arrow is shot) and the grav-
itational force. There are no other forces that do work on the
arrow (neglecting friction and air resistance). Therefore the
total mechanical energy (the sum of kinetic energy, spring
potential energy, and gravitational potential energy) is con -
served. To find the maximum height the arrow rises, we equate
the initial energy (when the bow is drawn and the arrow is at
rest) to the final energy (at the top of the flight).

Ef � Ei

K f � UG,f � US,f � K i � UG,i � US,i

Both the initial and final kinetic energies equal zero. We choose
the origin of our y-axis at the arrow’s starting point, so that the
initial gravitational potential energy is zero. The final spring
potential energy is zero because the bow is no longer stretched.
Thus the conservation of energy equation becomes

UG,f � US,i

mgy f � US,i

Using the potential energy found in Ex. 9, we solve for yf.

yf � �

� 234 m

In solving this problem we did not need to calculate the arrow’s
speed as it left the bow. Since mechanical energy is conserved
throughout, we simply equated the energy when the bow was
drawn to the energy when the arrow reached its highest point.

68.8 J
���
(3.00 �10–2 kg)(9.80 m/s2)

US,i�
mg



1817–5 Conservative and Nonconservative Forces

Nonconservation of Mechanical Energy
In general both conservative and nonconservative forces act on a body. If we label the
sum of the work done by all the conservative forces �Wc and the sum of the work done
by all the nonconservative forces �Wnc, then the net work is the sum of these two terms.

Wnet  � Wc 
 � Wnc

But �Wc equals the decrease in the total potential energy, Ui � Uf, and Wnet equals the
increase in kinetic energy, Kf � Ki, and so we find

Kf � Ki  Ui � Uf 
 � Wnc

or

Kf 
 Uf  Ki 
 Ui 
 � Wnc

Using the definition of the total mechanical energy (E K
 U), we may write this as

Ef  Ei 
 � Wnc (7–32)

Using �E to denote the change in mechanical energy, Ef � Ei, we may express this
result as

� Wnc  �E (7–33)

The nonconservative work may be either positive or negative. If it is positive, E
increases, and if it is negative, E decreases. For example, friction is a nonconservative
force that, since it always opposes the motion of a body, always does negative work on
the body. Therefore, when friction is the only nonconservative force acting on a body,
the body’s mechanical energy decreases: �E Wf � 0.

EXAMPLE 11 Increasing the Energy of a Barbell by Lifting It

A weight lifter lifts a 1.00 �103 N (225 lb) weight a vertical dis -
tance of 2.00 m (Fig. 7–25). (a) Find the increase in the total
mechanical energy of the weight, assuming that there is little or
no increase in the weight’s kinetic energy. (b) Find the work
done by the force F exerted on the weight by the weight lifter.

SOLUTION (a) The weight’s change in mechanical energy,
�E, equals its increase in gravitational potential energy.

�E � �UG � mgyf � mgyi

� mg (yf � yi) � (1.00 � 103 N)(2.00 m)
� 2.00 � 103 J

(b) The contact force F exerted on the weight by the weight
lifter is a nonconservative force. The work WF done by this
force equals the total nonconservative work done on the weight
and, according to Eq. 7–33, equals the weight’s increase in
mechanical energy.

WF � � Wnc � �E � 2.00 � 103 J

It is easy to verify this result by directly computing the work
done by F as the product of the force times the distance. Since
the force F balances the weight, it has a magnitude of 1.00 �103

N. We can compute the work as

Fx �x � (1.00 � 103 N)(2.00 m) � 2.00 � 103 J

Fig. 7–25 A weight lifter provides a nonconservative force F,
doing positive work and increasing the weight’s mechanical energy.



(a)

(b)

Fig. 7–26 (a) A block slides down
an incline and then comes to rest. The
mechanical energy of the block decreases.
(b) An electric motor, powered by a
battery, raises a weight. The mechanical
energy of the weight increases.
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Other Forms of Energy
Eq. 7–32 (Ef  Ei 
 Wnc) might seem to imply that the principle of conservation of
energy is not always valid. However, this equation implies only that mechanical
energy is not always conserved. It is always possible to identify a change in energy of
some system that exactly balances a change in the mechanical energy of a body,
though this compensating energy may be some other form of energy. To have a
universal law of conservation of energy, we must enlarge the definition of energy to
include more than just mechanical energy.
Fig. 7–26 shows examples of nonconservation of mechanical energy. In Fig. 7–26a

the friction force on a block sliding down an incline causes the block to come to rest.
Friction does negative work on the block, which accounts for the block’s loss of
mechanical energy (�EWf � 0). But there is an increase in the temperature and the
“thermal energy” of both the block and the surface. It turns out that the block’s loss of
mechanical energy is exactly balanced by the increase of thermal energy (to be studied
in Chapter 13). In Fig. 7–26b an electric motor, powered by a battery, raises a weight.
The mechanical energy of the weight increases as the result of the positive work
done by the nonconservative force exerted on the weight by the tension T in the line
(�EWT � 0). It turns out that the weight’s gain in mechanical energy is balanced by
a loss in the battery’s chemical energy (if we assume there is negligible friction and
electrical resistance). The chemical energy of batteries is discussed in Chapter 19.

Power
The rate at which work is performed by a force is defined to be the power output
of the force. The average power, denoted by –P, is the work divided by the time �t over
which the work is performed.

–P (average power) (7–34)

The instantaneous power, P, is the limiting value of this ratio, for a time interval
approaching zero.

P  limit
�t → 0

(instantaneous power) (7–35)

In our previous discussion of work and energy, we did not consider the time during
which work is performed, or the rate at which work is performed. But this is an
important consideration in many applications. For example, suppose you carry a
heavy piece of furniture up a flight of stairs. The work required is the same, whether
you walk or run up the stairs. However, you may find it difficult or impossible to run
with such a heavy load. The key difference is that if you run, the rate at which work is
done is much greater; that is, the power required is much greater. And you may not be
capable of producing that much power.

W
*
�t

W
*
�t
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1837–6 Power

Units
The SI unit of power is the J/s, which is called the “watt” (abbreviated W), in honor of
James Watt, the inventor of the steam engine.

1 W  1 J/s (7–36)

In the British system, the unit of power is the ft-lb/s. The horsepower, abbreviated hp,
is a larger, more commonly used unit.

1 hp  550 ft-lb/s (7–37)

This definition was introduced by Watt, based on his estimate of the maximum average
power that could be delivered by a typical horse, over a period of a work day. One
horsepower equals approximately three fourths of a kilowatt, or more precisely

1 hp  746 W (7–38)

A convenient unit of work or energy is the kilowatt-hour, abbreviated kWh. It is
defined as the work or energy delivered at the rate of 1 kilowatt for a period of 1 hour.
Since W

–P�t,

1 kWh  (1 kW)(1 h)  (103 W)(3.60 � 103 s)

1 kWh  3.60 � 106 J (7–39)

The kilowatt-hour is commonly used by utility companies to measure the use of elec-
trical energy. For example, if you are using electrical energy at the rate of 2 kW for a
period of 10 hours, your energy consumption is 20 kWh.

It is sometimes convenient to express the instantaneous power in terms of the
instantaneous speed of the body on which work is performed. Since the work done by
force F during a displacement �s is Fs �s, the power P may be written

P  limit
�t→0

 limit
�t→0

or, since speed v  limit
�t→0

,

P  Fsv (7–40)

�s
*
�t

W
*
�t

Fs �s
*
�t

EXAMPLE 12 The Power Required to Lift a Chamber From the Ocean Floor

A deep sea, underwater observation chamber is raised from
the bottom of the ocean, 1 mile below the surface, by means of
a steel cable. The chamber moves upward at constant velocity,
reaching the surface in 5.00 minutes. The cable is under a
constant tension of 2.00 � 103 lb. Find the power output
required of the electric motor that pulls the cable in.

SOLUTION The power output of the motor is the rate of
production of work by the tension force it supplies.

P� � � �

� (3.52 �104 ft-lb/s)� �
� 64.0 hp

1 hp
��
550 ft-lb/s

(2.00 �103 lb)(5280 ft)
���
(5.00 min)(60 s/min)

Fx �x
�

�t
W
�
�t
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EXAMPLE 13 The Power Required to Drive Uphill or to Accelerate

(a) A car weighing 1.00 �104 N travels at a constant velocity of
20.0 m/s up a 5.00° incline. Find the power that must be
supplied by the force moving the car up the hill, assuming
negligible friction and air resistance. (b) Find the power that
must be supplied to accelerate the car at 0.100g on level ground
when its speed is 10.0 m/s.

SOLUTION (a) Since the car’s velocity is constant, the road
must exert a force F that balances the component of weight
down the incline (Fig. 7–27).

F � w sin 5.00°

The power delivered by this force is found by applying Eq.
7–40.

P � Fsv � (w sin 5.00°)v

� (1.00 � 104 N)(sin 5.00°)(20.0 m/s)

� 1.74 � 104 W

or, since 1 hp � 746 W,

P � (1.74 � 104 W)� � � 23.4 hp

(b) From Newton’s second law, we know that the force F accel-
erating the car has magnitude

Fig. 7–27

F � ma � m(0.100g) � 0.100w

The power supplied by this force is

P � Fsv � (0.100w)v

� (0.100)(1.00 � 104 N)(10.0 m/s)

� 1.00 � 104 W  (or 13.4 hp)

1 hp
�
746 W

Why is it so much harder to run than to
ride a bicycle at the same speed? When
you ride a bicycle, it is after all your own
body that produces your motion, just as
when you run. And yet cycling requires
much less effort than running. After 30
minutes or an hour of running along a level
road at a moderate pace, even a well-
conditioned runner may tire, whereas a
cyclist can keep the same pace with little
effort (Fig. 7–A). In everyday language, we
say that “running burns calories” or that

“running uses a lot of energy.” To under-
stand the physical basis of such expres-
sions, to see why running requires so much
energy and is so much less energy efficient
than bicycle riding, we shall apply concepts
of work and energy to the human body. In
the next (optional) section, we shall show
in detail how to extend concepts of work
and energy to systems of particles such as
human bodies and machines. Here we shall
simply describe in a general way how
energy is used by the body when muscles

contract and specifically how that energy is
used in running and cycling.
The following are some general prop-

erties of work and energy associated with
muscular exertion:

Work Done by Muscles

Muscles consist of bundles of muscle fibers.
Under tension, these fibers can shorten,
or “contract,” as protein filaments within
the fibers slide over each other. (See
Chapter 10, Fig. 10–4 for a detailed descrip-

The Energy to Run

A Closer Look



Fig. 7–A An exhausted runner and a
still fresh cyclist have traveled the same
distance at the same speed.

Continued.

tion of the mechanism of muscle contrac-
tion.) Contraction of a muscle fiber means
that a force (the tension in the muscle
fiber) acts through a distance (the distance
the fiber contracts). Hence work is done
by contracting muscle fibers. The direct
effect of a muscle’s contraction may be to
move one of the body’s limbs. The moving
limb, in turn, may exert a force on the sur -
roundings and do work on the surround-
ings. For example, if you hold a weight in
your hand and contract the biceps muscle
in your arm, your hand and forearm swing
upward, raising the weight. The work done
by your biceps muscle is approximately
equal to the work done by the force your
hand exerts on the weight. The effect of
this work is to increase the weight’s gravi-
tational potential energy. (See Chapter 10,
Example 3 and Problem 36 for details.)

Heat Generated by the Body When
Muscles Contract

Heat, a disordered form of energy, is gener-
ated whenever muscles do work. Typically
the quantity of heat generated when mus -
cles contract is about three times as great
as the work done by the muscles. When
your muscles do very much work, you can
usually feel the heat generated by your
body. You may begin to sweat, which is a
way the body gets rid of excess heat.

Internal Energy of the Body

The body’s internal energy is the total
energy of all the particles within the body.
Chemical reactions within the body
provide the energy necessary to produce
muscle contraction. The energy released
by these chemical reactions produces the
work and heat associated with muscle
contraction. The body thereby loses some
of its internal energy. Conservation of
energy implies that the body’s loss of

internal energy equals the sum of the work
and heat generated.
Loss of internal energy 

Work done by muscles 

Heat generated

When your body loses much internal
energy in a short time interval, you tend to
feel tired. Your body’s internal energy is
replenished by the consumption of food.
Now we can use these basic concepts

of work and energy to understand why
cycling requires less energy than running. A
good bicycle is an exceptionally efficient
means of using the body’s internal energy
to produce motion. Suppose you ride a
high-tech bicycle with thin, well-inflated
tires and very little friction in its moving
parts. Riding such a bike over flat, level
pavement at, say, 10 km/h, requires little
effort. Once moving, both the kinetic
energy and the gravitational potential
energy of the bicycle and your body stay
constant with just a little pedaling required.

A Closer Look
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At such a low bike speed, there is not
much air resistance. Consequently, only a
little work needs to be done by your legs
as they push against the pedals and your
body loses little internal energy in pro -
ducing this small amount of work. The
work that is done by your legs is needed to
compensate for the small negative work
done by friction and air resistance. If you
did not pedal at all, your bike would gradu-
ally slow down.
If you were to ride a bike uphill or at a

much higher speed, or if your tires were
not well inflated, or if there were much
friction in your wheel bearings, you would
have to do considerably more work.
In contrast to riding a bike, when you

run on a flat, level surface, your kinetic
energy and gravitational potential energy
can never be exactly constant. Watch a
runner and you will see that the runner’s
head moves up and down somewhat, an
indication of some change in elevation of
the runner’s center of mass. This means
that the runner’s gravitational potential
energy is not constant. Some of that
energy is lost each time the runner’s body
moves downward, and this energy must
then be supplied as the body moves up -
ward again. More efficient runners, espe-
cially champion marathoners, bob up and
down less than average runners do and
thereby use less energy.
A runner’s center-of-mass kinetic

energy also necessarily varies somewhat,
again in contrast to that of a cyclist.
Although this effect is more difficult to
see, a runner’s center of mass continually
alternates between speeding up and
slowing down with each stride. Although
the variation in center-of-mass speed is
slight, it does require a significant amount
of work for the legs to increase the center-
of-mass kinetic energy from the minimum
value to the maximum value during each
stride.

To obtain a more detailed understand -
ing of just how runners use energy, exper-
imental studies have been performed using
force platforms and high-speed photog-
raphy (see Chapter 4, Example 11). Such
studies* indicate that the body’s internal
work is used in four ways:

1 To raise the body’s center of mass a
few centimeters each step, increas -
ing gravitational potential en -
ergy. Fig. 7–B indicates how running
tends to produce an up-and-down
motion. Gravitational potential en -
ergy is lost as the center of mass
falls to its original level, with the
energy being converted first into
kinetic energy and then lost as the
foot strikes the ground. So even
though the ground you run on may
be level, you are in a sense always
going uphill. Of course, if you do 

*See Alexander R McN: Biomechanics, 1975,
Halstead Press, New York, pp 28–30.

actually run up a hill, your leg mus -
cles must do more work to pro vide
extra gravitational potential energy.
Running downhill can reduce the
work your legs do.

2 To increase slightly the body’s
center-of-mass speed and hence its
center-of-mass kinetic energy
at the beginning of each stride.
This is necessary because as each
stride is completed a backward
force must be exerted on the
forward foot by the road to stop
the foot’s forward motion and begin
its backward motion. The entire
body then experiences a backward
external force (Fig. 7–C). This force
slightly decelerates the runner’s
center of mass, which then must be
accelerated again to its maximum
speed. This is accomplished by the
leg muscles doing work, pushing the
foot backward against the road, so
that the road now pushes the
runner forward.

A Closer Look

Fig. 7–B The runner’s center of
mass moves from point P to point P�,
increasing elevation by a distance h.

Fig. 7–C The road exerts a backward
force on a runner’s foot as it hits the
surface. This force tends to reduce the
runner’s speed.
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3 To provide the kinetic energy of the
legs as they swing back and forth.
This energy, called rotational kin -
etic energy, is lost as the foot
strikes the ground and must be pro -
vided by the leg muscles that do
work as they push the legs back and
forth relative to the body’s center
of mass. (Rotational kinetic energy
will be discussed in Chapter 9,
Section 9–4.)

4 To compensate for the negative
work done by air resistance. If you
run at a slow or moderate pace
with no wind, air resistance is not
a very significant factor—certainly
less significant than the other three.
However, if you run directly into a

strong wind, air resistance can
become very significant, sometimes
requiring more work than any of
the other forms of energy used
in running.

In Section 9–6, we shall use a rough
mechanical model of running to estimate
the power that must be provided by a
runner’s legs for each of the four types of
energy use we have just described.
There, for a running speed of 3.0 m/s
(9 minutes per mile), we obtain the follow -
ing estimates:

1 Center-of-mass potential energy,
94W

2 Center-of-mass kinetic energy, 77 W
3 Rotational kinetic energy of legs,
58W

4 Air resistance, 11 W
This gives a total power estimate of 240 W,
or about one third horsepower! Although
this is just a crude estimate,* it does give
some idea of the considerable energy we
use when we run.

*Studies of the power output of muscular forces
have been made, using situations where this
power is easily measured directly. For example,
in the case of cycling, the power output of the
muscular forces is very nearly the power deliv-
ered to the bike’s pedals, and this power can be
measured. The maximum power output that the
human body can produce depends very much on
the strength and conditioning of the individual.
Exceptional athletes can maintain a power output
of *

1
3
* hp for about 1 hour, or 1 hp for about 1

minute, or 2 hp for about 6 seconds.

A Closer Look

Energy of a System of Particles
When a gymnast performs the “iron cross” (Fig. 7–28), his body is stationary and
therefore no work is done by any force he exerts on his surroundings. And yet the
gymnast’s muscles tire after a few seconds of performing this difficult feat. Energy is
used because the muscle fibers are under tension and are continually contracting and
relaxing. Work is done by these internal tension forces, and energy must be supplied
by the gymnast’s body to do this work. In an example such as this, energy does not
belong to a single particle. Instead, we have to regard the total energy as being distrib-
uted over the system of particles in the gymnast’s body. We need to extend our treat-
ment of energy to systems of particles so that we will be able to introduce some of the
most interesting applications of energy concepts, such as work done by internal forces
within a human body or a machine.
Eq. 7–33 (� Wnc  �E) applies to each particle in a system of n particles; that is,

a particle’s increase in mechanical energy equals the net work done by internal or
external forces acting on that particle. If we write out this equation for each particle of
the system and add the equations, we obtain a useful equation, applicable to the
system as a whole.

� Wnc,1  �E1 (for particle 1)
� Wnc,2  �E2 (for particle 2)

. .

. .

. .
� Wnc,1 
 � Wnc,2 
…  �E1 
 �E2 
 …

 �(E1 
 E2 
…) (7–41)

*7–7

Fig. 7–28 A gymnast performs the iron
cross.



EXAMPLE 14 The Power Required to Run Up a Flight of Stairs

Compute the mechanical power provided by internal forces
within the body of a person of mass 80.0 kg who runs up a
flight of stairs, rising a vertical distance of 3.00 m in 3.00 s.

SOLUTION The only nonconservative forces doing work
on the body are internal forces within the body. We find the
average power output of these forces, P

–
int, by applying Eq.

7–44.
–Pint � �

–Pnc �

If the body’s kinetic energy is approximately constant during
the climb, the only change in energy is the increase in gravita-
tional potential energy.

�E � �UG � mgyf � mgyi � mg(yf � yi)

Inserting this into the expression for power, we obtain

–Pint � �

� 784 W (or 1.05 hp)

(80.0 kg)(9.80 m/s2)(3.00 m)
����

3.00 s

mg(yf � yi)
��

�t
�E
�
�t

We define the system’s energy E to be the sum of the single particle energies.

E  E1 
 E2 
… (7–42)

If we now let �Wnc denote the sum of the work done on all particles of the system,
we can express Eq. 7–41 as

� Wnc  �E (7–43)

This equation looks identical to Eq. 7–33 for a single particle. Here, however, we inter-
pret E as the energy of a system and � Wnc as the total work done on the system.
Sometimes internal forces do work, for example, forces within the muscles of the

gymnast in Fig. 7–28, or forces on the pistons in the cylinders of an automobile
engine. However, internal work is not present in a rigid body, a body in which there is
no relative motion of the body’s particles. This follows from the fact that the internal
forces occur in oppositely directed, action-reaction pairs. Interacting particles within
a rigid body experience the same displacement. Therefore the work done on one
particle by an internal force F is the negative of the work done on the other interacting
particle by the reaction force �F. The net work is then zero.
The nonconservative forces acting on a body deliver average power, � –Pnc, which is

the net work per unit time performed by these forces.

�
–Pnc  � 

Using Eq. 7–43 (�Wnc  �E), this may be expressed

�
–Pnc  (7–44)

�E
*
�t

Wnc
*
�t

� Wnc
*
�t
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EXAMPLE 15 Energy and Power Required for Hill Climbing on a Bicycle

A cyclist rides up Latigo Canyon, rising from sea level to a final
elevation of 869 m (2850 ft) (Fig. 7–29). The combined weight
of the cyclist and the bicycle is 825 N (185 lb).

(a) Find the increase in mechanical energy in the system of
the cyclist and the bicycle.

(b)What is the minimum work done by internal forces in the
cyclist’s body?

(c) How much power is supplied by the cyclist if he reaches
the top in 1 hour?

SOLUTION (a) Kinetic energy is approximately constant,
and so the increase in mechanical energy equals the increase in
the cyclist’s gravitational potential energy, which is quite large.

�E � �UG � mg(�y) � (825 N)(869 m)
� 7.17 �105 J

(b) There are several nonconservative forces acting on and
within the system. The external forces of air resistance and
road friction both do negative work on the system. In addition
there is some internal friction in the bicycle wheel bearings
and crank; these forces also do negative work. It is the positive
work done by tension forces in the cyclist’s muscles that is
responsible for the increase in mechanical energy. In the most
ideal case of negligible friction and air resistance, the work
Wint done by the cyclist’s muscles equals the net nonconserva-
tive work. According to Eq. 7–43, this equals the system’s
increase in mechanical energy:

Wint � � Wnc � �E � 7.17 �105 J

More realistically, the internal work of the muscles must be
somewhat greater, since part of it is used to balance the negative
work done by friction and air resistance.

Fig. 7–29 The cyclist is ascending Latigo Canyon in Malibu,
 California. Beginning at sea level the road rises 2850 ft over a
distance of 7 miles.

The source of energy here is stored “internal energy” in the
cyclist’s body. We shall study internal energy in Chapter 14 on
thermodynamics. Here we simply note that the human body is
at best only about 25% efficient; that is, the work performed by
the muscles equals about 25% of the internal energy used by the
body (the other 75% is converted to heat). Thus the loss in
internal energy equals 4(7.17 � 105 J) � 2.87 � 106 J, or 685
Calories (about the number of Calories provided by a half-pint
of Häagen-Dazs ice cream).

(c) The power is found when we divide the work by the time
interval.

P � � �199 W (or 0.27 hp)
7.17 �105 J
��

3600 s
Wint�
�t

1897–7 Energy of a System of Particles



1 Can the kinetic energy of a body ever be negative?
2 You drive your car along a curving road at constant
speed.
(a) Does your kinetic energy change?
(b) Is the work done by the force accelerating your car

positive, negative, or zero?
3 (a) Does the kinetic energy of a body depend on the

reference frame of the observer?
(b) Does the work done on a body depend on the refer-

ence frame of the observer?

4 A child on a skateboard grabs the rear bumper of a car
and is towed up a hill. The speed of the car is 20 mph at
the bottom and 10 mph at the top of the hill. Is the work
done on the child and skateboard by the following forces
positive, negative, or zero: (a) force of the bumper on
the child; (b) force of gravity on the child; (c) resultant
force on the child?

5 Fig. 7–15 shows a skier skiing down a hill. Could the
skier have chosen another path between the same two
points such that (a) the work done by gravity was
greater; (b) the work done by friction was greater?
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HAPTER SUMMARY7C The kinetic energy of a particle of mass mmoving at speed
v is given by

K  mv2

The work done on a particle is given by

W  � (Fs �s)

where the sum is over short intervals of length �s, and Fs is
the component of the force along the interval. If the path is
linear and the force constant,

W  Fx �x

Work and kinetic energy are related through the work-
energy theorem, which states that a particle’s increase in
kinetic energy equals the net work done by the force acting
on the particle.

�K  Wnet

A force is called conservative if the work done by it
can be expressed as a decrease in some kind of potential
energy. The gravitational force and the spring force are
both conservative. Their respective potential energies are:

UG  �

or

UG  mgy (if the distance from the center of
the earth is essentially constant)

and

US  kx2

Friction is a nonconservative force.

The total mechanical energy is defined to be the sum of
the kinetic energy and the various potential energies.

E  K 
 U  K 
 UG 
 US 
…

If only conservative forces do work on a particle, its total
mechanical energy is conserved.

Ef  Ei (conservative forces only)

More generally, a particle’s mechanical energy may increase
or decrease, if positive or negative work is done by noncon-
servative forces.

� Wnc  �E  Ef � Ei

This equation may also be applied to a system of particles
if the energy E is interpreted as the sum of single particle
energies.

E  E1 
 E2 
… 
 En

Power is the rate at which work is done.

Average power –P 

Instantaneous power P  limit
�t→0

The instantaneous power provided by a force F to a body
moving at speed v may be expressed

P  Fsv

The net power provided by nonconservative forces may be
expressed

�
–Pnc 

W
*
�t

�E
*
�t

1
*
2

W
*
�t

1
*
2

GmM
*
r
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6 Two objects are simultaneously released from the same
height. One falls straight down, and the other slides
without friction down a long inclined plane.
(a) Do both have the same acceleration?
(b) Do both have the same final speed?
(c) Do both take the same time to descend?

7 A satellite goes from a low circular earth orbit to a
higher circular earth orbit.
(a) Does the gravitational force on the satellite increase,

decrease, or remain the same?
(b) Does the satellite’s gravitational potential energy

increase, decrease, or remain the same?
8 Can the work done by a force always be expressed as a
decrease in potential energy?

9 A boy rides a bicycle along level ground at approxi-
mately constant velocity, without pedaling. Is mechan-
ical energy approximately conserved?

10 A boy rides a bicycle along level ground at constant
velocity, pedaling at a steady rate.
(a) Is mechanical energy conserved?
(b) Is there any work done by individual noncon serv -

ative forces?
(c) Is there any net work done by nonconservative

forces?
11 Suppose you run up a hill at constant speed.
(a) Is there net work done on your body?
(b) Is there a net nonconservative work done on your

body?
(c) Is your mechanical energy conserved?

12 (a) As you drive a car from the top of a mountain to its
base, is the car’s mechanical energy conserved?
Explain.

(b) Would you expect to get better gas mileage than on
a flat road?

13 A fountain of water shoots high in the air. The water
then falls back into a surrounding pool.
(a) Describe the transformation of energy the water

undergoes, beginning with the water shooting
upward at the base of the fountain.

(b) Is the mechanical energy of the water conserved as
the water completes its cycle?

(c) What provides the nonconservative force that does
positive work on the water?

14 A worker raises a load of bricks from the ground to a
platform. The worker can lift one brick at a time or all
the bricks together.
(a) In which case is the work greater, or is it the same in

either case? Neglect the work done in raising the
body each time he bends over.

(b) Take into account the work done in raising the body.
In which case is the work greater?

(c) In which case is the required power greater?
15 Given that an automobile can develop only a limited
amount of power, does this put a limit on the maximum
slope of a mountain road that a given automobile can
drive up at a given speed?

16 Weight lifters find that the greatest gains in strength
(and the greatest muscle soreness) occur as a result
of doing “negatives,” that is, doing negative work on
very large weights. Is negative work done by raising or
lowering a weight?

Answers to Odd-Numbered Questions
1 no; 3 (a) yes; (b) yes; 5 (a) no; (b) yes; 7 (a) decrease;
(b) increase; 9 yes; 11 (a) no; (b) yes; (c) no; 13 (a) kin -
etic energy to gravitational potential energy to kinetic energy
to heat; (b) yes; (c) the water pump; 15 yes

Problems

Work and Kinetic Energy

1 Find the kinetic energy of (a) a bullet of mass 5.00 g
traveling at a speed of 300 m/s; (b) a woman of mass
50.0 kg running at a speed of 9.00 m/s; (c) a car of
mass 1.00 � 103 kg moving at a speed of 20.0 m/s.

2 The moon has a mass of 7.36 � 1022 kg and moves
about the earth in a circular orbit of radius 3.80 � 108 m
with a period of 27.3 days.
(a) Find the moon’s kinetic energy as observed on earth.
(b) Would the moon’s kinetic energy be the same from

the sun’s reference frame?

7–1

Problems (listed by section)
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3 A man of mass 80.0 kg walks down the aisle of an
airplane at a speed of 1.00 m/s in the forward direction
while the plane moves at a speed of 300 m/s relative
to the earth. Find the man’s kinetic energy relative to
(a) the plane; (b) the earth.

4 Suppose you carry a bag of groceries weighing 125 N
from your car to your kitchen, a distance of 50 m,
without raising or lowering the bag.
(a) What is the work done by the force you exert on the

bag?
(b) Would the work be different if your kitchen were in

an upstairs apartment?
5 Tarzan, who weighs 875 N, swings from a vine through
the jungle. How much work is done by the tension in the
vine as he drops through a vertical distance of 4.00 m?

6 One boat tows another boat by means of a tow line,
which is under a constant tension of 500 N. The boats
move at a constant speed of 5.00 m/s. How much work
is done by the tension in 1.00 min?

7 You lift a box weighing 200 N from the floor to a shelf
1.50 m above.
(a) What is the minimum work done by the force you

exert on the box?
(b) When would the work be greater than this minimum?

8 A weight lifter raises a 900 N weight a vertical distance
of 2.00 m. Compute the work done by the force exerted
on the weight by the weight lifter.

9 You are loading a refrigerator weighing 2250 N onto a
truck, using a wheeled cart. The refrigerator is raised
1.00 m to the truck bed when it is rolled up a ramp.
Calculate the minimum work that must be done by the
force you apply and the magnitude of the force if the
ramp is at an angle with the horizontal of (a) 45.0�;
(b) 10.0�.

10 A man drags a table 4.00 m across the floor, exerting
a constant force of 50.0 N, directed 30.0� above the
horizontal.
(a) Find the work done by the applied force.
(b) How much work is done by friction? Assume the

table’s velocity is constant.
11 The driver of a 1500 kg car, initially traveling at 10.0
m/s, applies the brakes, bringing the car to rest in a
distance of 20.0 m.
(a) Find the net work done on the car.
(b) Find the magnitude and direction of the force that

does this work. (Assume this force is constant.)

12 A child on a sled is initially at rest on an icy horizontal
surface. The sled is pushed until it reaches a final velo -
city of 6.00 m/s in a distance of 15.0 m. The coeffi-
cient of friction between the ice and runners of the sled
is 0.200, and the weight of the child and the sled is 350
N. Find the work done by the force pushing the sled.

*13 Air bags are used in cars to decelerate the occupants
slowly when a car is suddenly decelerated in a crash.
(a) Compute the work done by the decelerating force

acting on a 55.0 kg driver if the car is brought to rest
from an initial speed of 20.0 m/s.

(b) Find the minimum thickness of the air bag if the
average decelerating force is not to exceed 8900 N
(2000 lb), and the center of the car moves forward
0.800 m during impact.

*14 A particle moves along the x-axis from x 0 to x 4 m
while acted upon by a force whose x component is given
in Fig. 7–30. Estimate the work done by the force.

Fig. 7–30

Gravitational Potential Energy;
Constant Gravitational Force

15 Suppose you are driving in the High Sierras from Mam -
moth Mountain to the Owens Valley 1500 m below. If
the mechanical energy of your car were conserved, what
would be your approximate final speed?

16 A small weight is suspended from a string of negligible
weight and given an initial horizontal velocity of 2.00
m/s, with the string initially vertical. Find the maximum
angle ' that the string makes with the vertical if the
string is 1.00 m long.

7–2
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17 You ski straight down a 45.0� slope, starting from rest
and traveling a distance of 10.0 m along the slope. Find
your final velocity, assuming negligible air resistance
and friction.

18 A skier of mass 70.0 kg rides a ski lift to the top, which
is 500 m higher than the base of the lift.
(a) Find the increase in the skier’s gravitational potential

energy.
(b) Find the minimum work done by the force exerted

on the skier by the lift.
(c) When the skier skis down the run, what would her

final velocity be if no force other than gravity did
work? What other forces do work?

19 A cyclist coasts up a 10.0� slope, traveling 20.0 m along
the road to the top of the hill. If the cyclist’s initial
speed is 9.00 m/s, what is the final speed? Ignore friction
and air resistance.

*20 On a ski jump a skier accelerates down a ramp that
curves upward at the end, so that the skier is launched
through the air like a projectile. The objective is to attain
the maximum distance down the hill. Prove that the
vertical drop h must equal at least half the horizontal
range R (Fig. 7–31).

Fig. 7–31

21 Find the minimum work required to carry a truckload of
furniture weighing 2.00 � 104 N to a third-story apart-
ment, 20.0 m above the truck.

22 A ladder 2.50 m long, weighing 225 N, initially lies flat
on the ground. The ladder is raised to a vertical position.
Compute the work done by the force lifting the ladder.
The ladder’s center of gravity is at its geometric center.

23 What is the average force exerted on the diver in Fig.
7–7a by the diving board, if she weighs 700 N and
accelerates from rest to a speed of 4.00 m/s while
moving 0.300 m upward.

Gravitational Potential Energy;
Variable Gravitational Force

24 Compute the escape velocity on Jupiter, which has a
radius of 7.14 � 107 m and mass 318 times the earth’s
mass.

25 Find the minimum initial speed of a projectile in order
for it to reach a height of 2000 km above the surface of
the earth.

26 Suppose a rocket is at an elevation of 100 km and has
an initial velocity of 1.00 � 104 m/s, directed vertically
upward. If the rocket engines do not burn and no force
other than the earth’s gravity acts on the rocket, how far
does it go?

27 If a space probe has a speed of 2.00 � 104 m/s as it
leaves the earth’s atmosphere, what is its speed when it
is far from the earth?

*28 The Little Prince is a fictional character who lives on a
very small planet (Fig. 7–32). Suppose that the planet has
a mass of 2.00 � 1013 kg and a radius of 1.00 � 103 m.
(a) How long would it take for an object to fall from rest

a vertical distance of 1.00 m?
(b) Suppose the Little Prince throws a ball vertically

upward, giving it an initial velocity of 1.00 m/s.
What would be the maximum height reached by the
ball? (HINT: Don’t assume g to be constant.)

(c) At what speed could a ball be thrown horizontally so
that it would travel in a circular orbit just above the
surface of the planet?

Fig. 7–32 The Little Prince.

7–3
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*29 A satellite of mass m is in a circular earth orbit of
radius r.
(a) Find an expression for the satellite’s mechanical

energy.
(b) Calculate the satellite’s energy and speed if m 

1.00 � 104 kg and r  1.00 � 107 m.
*30 Halley’s comet is in an elongated elliptical orbit around

the sun and has a period of about 76 years. Last seen in
1986, it will again be close to the sun and the earth in
2061. The comet’s maximum distance from the sun
is 5.3 � 1012 m, at which point (called “aphelion”) its
speed is 910 m/s.
(a) Find its speed when it is at its point of closest

approach (perihelion), 8.8 � 1010 m from the sun,
which has a mass of 2.0 � 1030 kg.

(b) The radius of the earth’s orbit is 1.5 � 1011 m, a
distance defined as an astronomical unit. Estimate
the time required for Halley’s comet to travel a
distance equal to one astronomical unit, when it
is near perihelion.

Spring Potential Energy;
Conservation of Energy

31 A spring with a force constant of 1500 N/m is com -
pressed 10.0 cm. Find the work done by the force com -
pressing the spring.

32 When an archer pulls an arrow back in his bow, he is
storing potential energy in the stretched bow.
(a) Compute the potential energy stored in the bow, if

the arrow of mass 5.00 � 10�2 kg leaves the bow
with a speed of 40.0 m/s. Assume that mechanical
energy is conserved.

(b) What average force must the archer exert in stretch -
ing the bow if he pulls the string back a distance of
30.0 cm?

33 A toy consists of a plastic head attached to a spring of
negligible mass. The spring is compressed a distance of
2.00 cm against the floor, and then the toy is released.
The toy has a mass of 100 g and rises to a height of 60.0
cm above the floor. What is the spring constant?

34 An elevator car of mass 800 kg falls from rest 3.00 m,
hits a buffer spring, and then travels an additional 0.400
m, as it compresses the spring by a maximum of 0.400
m. What is the force constant of the spring?

35 A 4.00 kg block starts from rest and slides down a fric-
tionless incline, dropping a vertical distance of 3.00 m,
before compressing a spring of force constant 2.40 �
104 N/m. Find the maximum compression of the spring.

36 A mass of 0.250 kg is attached to the end of a massless
spring of unknown spring constant. The mass is dropped
from rest at point A, with the spring initially unstretched.
As the mass falls, the spring stretches. At point B the
mass is as shown in Fig. 7–33.
(a) Find the force constant of the spring.
(b) Find the magnitude of the acceleration of the mass at

point B.

Fig. 7–33

37 A pole-vaulter begins a jump with a running start. He
then plants one end of the pole and rotates his body
about the other end, thereby rising upward (Fig. 7–34).
At the beginning of the vault the pole bends, storing
potential energy somewhat in the manner of a com -
pressed spring. Near the top of the arc, the pole unbends,
releasing its potential energy and pushing the pole-
vaulter higher. With what speed must the pole-vaulter
approach the bar if he is to raise his center of mass 5.00
m? Assume that mechanical energy is conserved. The
world record in the pole vault is 6.0 m, and the fastest
speed achieved by a runner is about 10 m/s.

Fig. 7–34

7–4
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Conservative and Nonconservative
Forces

38 A 1.00 kg block starts from rest at the top of a 20.0 m
long 30.0� incline. Its kinetic energy at the bottom of the
incline is 98.0 J. How much work is done by friction?

39 A 1.00 kg block slides down a 20.0 m long 30.0� incline
at constant velocity. How much work is done by friction?

40 A ball of mass 0.300 kg is thrown upward, rising 10.0 m
above the point at which it was released. Compute the
average force exerted on the ball by the hand, if the
hand moves through a distance of 20.0 cm as the ball is
accelerated.

41 A person jumps from a burning building onto a fire -
man’s net 15.0 m below. If the average force exerted by
the net on the person is not to exceed 20 times the body
weight, by how much must the center of the net drop as
the person comes to rest?

*42 A skier skis down a steep slope, maintaining a constant
speed by making turns back and forth across the slope as
indicated in Fig. 7–35. The side edge of the skis cuts into
the snow so that there is no chance of sliding directly
down the slope; that is, there is a large static frictional
force perpendicular to the length of the skis. There is a
much smaller kinetic friction along the length of the
skis. If the coefficient of kinetic friction is 0.10, what
must be the total length of the skier’s tracks as he drops
a vertical distance of 100 m down a 40� slope at constant
speed?

Fig. 7–35

43 A cyclist competing in the Tour de France coasts down
a hill, dropping through a vertical distance of 30.0 m.
The cyclist has an initial speed of 8.00 m/s and a final
speed of 20.0 m/s. What fraction of the cyclist’s initial
mechanical energy is lost? What nonconservative forces
cause this?

Power

44 How much work could be performed by a 746 W (1 hp)
motor in 1 hour?

45 How much mechanical power must be supplied by a
car to pull a boat on a trailer at a speed of 20.0 m/s if the
force exerted by the car on the trailer is 2000 N?

46 A weight lifter raises a 1000 N weight a vertical distance
of 2.00 m in a time interval of 2.00 s. Compute the
power provided by the weight lifter’s force.

47 Find the weight that could be lifted vertically at the
constant rate of 10.0 ft/s, using the mechanical power
provided by a 3.00 hp motor.

48 Ten boxes, each 20.0 cm high and weighing 200 N,
initially are all side by side on the floor. The boxes are
lifted and placed in a vertical stack 2.00 m high in a time
interval of 5.00 s. Compute the power necessary to stack
the boxes.

*49 Compute the minimum power necessary to operate a
ski lift that carries skiers along a 45.0� slope. The lift
carries 100 skiers of average weight 700 N at any one
time, at a constant speed of 5.00 m/s.

50 (a) Compute the electrical energy used by a household
whose monthly electrical bill is $30, computed at the
rate of $0.06 per kWh.

(b) How long could this energy be used to burn ten 100
W light bulbs?

(c) If this energy were used to raise a car of mass 2000
kg, to what height would the car be raised?

51 The total annual use of energy in the United States is
approximately 1019 J. Solar energy provides 1400 W
per square meter of area in direct sunlight if this area is
perpendicular to the sun’s rays. Suppose that solar
energy could be used with 100% efficiency. Find the
total area of solar energy collectors needed to provide
the nation’s energy needs if on an average day these
collectors could be used for 8.0 hours.

7–5
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Energy of a System of Particles

52 A hiker weighing 575 N carries a 175 N pack up Mt.
Whitney (elevation, 4420 m), increasing her elevation by
3000 m.
(a) Find the minimum internal work done by the hiker’s

muscles.
(b) If she is capable of producing up to 746 W (1.0 hp)

for an extended time, what is the minimum time for
her to ascend?

53 Find the minimum internal work that must be done by
the muscles of a shot-putter to impart an initial velocity
to a 16.0 lb shot sufficient to give it a horizontal range of
60.0 ft.

54 A pole-vaulter of mass 80.0 kg is initially at rest before
beginning his approach to the bar. He is instantaneously
at rest at the high point of his jump, having raised his
center of mass 5.00 m. Find the minimum internal work
done by the vaulter’s muscles.

55 Two blocks of mass 100 g each are initially at rest on a
frictionless horizontal surface. The blocks are in contact
with opposite ends of a spring of force constant 500
N/m, which is compressed 20.0 cm. Find the final speed
of each block, after the spring is allowed to expand.

*56 A car’s engine develops mechanical power at the rate of
30.0 hp while moving along a level road at a speed of
60.0 mi/h. Half the mechanical energy developed by
the engine is delivered to the wheels, with the remainder
being wasted because of internal friction. Find the
mechanical power developed by the engine in order for
the 2500 lb car to travel at the same speed up a 6.00%
grade (sin '  6.00 � 10�2).

Fig. 7–36 This house in the Bavarian forest near Munich
derives its electric power from a small generator, powered
by water from a canal.

*57 A small canal diverts water from the Perlbach, a river in
Bavaria. Water flowing through the canal drops through
a small distance and turns a waterwheel, which powers
an electric generator, providing electricity for the house
shown in Fig. 7–36. Calculate the maximum electric
power that can be generated if water moves through the
canal at the rate of 1.00 � 103 kg/s and drops through a
vertical distance of 2.00 m. (Only about 1 kW is used by
the household, the remainder being sold to the local
power company.)

Additional Problems
*58 A pendulum swings through an arc of 90.0� (45.0� on

either side of the vertical). The mass of the bob is 3.00
kg and the length of the suspending cord is 2.00 m.
Find (a) the tension in the cord at the end points of the
swing; (b) the velocity of the bob as it passes its lowest
point and the tension in the cord at this point.

*59 Tarzan grabs a vine, which is initially horizontal, and
attempts to swing to the ground (Fig. 7–37). Tarzan
weighs 890 N, and the breaking strength of the vine he
knows to be 1780 N. As Tarzan is swinging, he is
surprised to find that the vine breaks at a certain angle '.
Find '.

Fig. 7–37

*7–7
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*60 Find the minimum initial height h of the roller coaster in
Fig. 7–38 if the roller coaster is to complete the 20.0 m
diameter loop. Neglect friction.

Fig. 7–38

61 The roller coaster in Fig. 7–39 has an initial speed of
7.00 m/s at point A. Find the apparent weight of a 450 N
(100 lb) passenger at points B and C. Neglect friction.

Fig. 7–39

*62 In his novel From the Earth to the Moon, published in
1865, Jules Verne first suggested that it might be pos -
sible to travel to the moon by firing a very high velo city
projectile at the moon. Find the minimum initial velocity
of such a projectile as it leaves the earth’s atmosphere.
Take into account the moon’s gravitational force.

*63 In the novel The Moon Is a Harsh Mistress, a colony on
the moon threatens the earth with bombardment by
heavy stones. These stones are relatively easy to propel
from the moon, with its low gravity, and yet reach a
very high velocity as they strike the earth.
(a) Compute the minimum initial velocity necessary for

a projectile at the surface of the moon in order for it
to reach the earth.

(b) Find the velocity of the projectile as it enters the
earth’s atmosphere.

(c) Calculate the ratio of the projectile’s final kinetic
energy to its initial kinetic energy.

*64 It is estimated that artificial earth satellites have pro -
duced approximately 40,000 pieces of debris larger than
a pea. Suppose that one of the larger pieces of debris of
mass 100 kg is in a circular orbit at two earth radii from
the center of the earth and that the mass strikes a satel-
lite in the same orbit, traveling in the opposite direction.
Calculate the kinetic energy of the mass relative to the
satellite. For comparison, the energy released by 1
million tons of TNT (or a 1 megaton nuclear bomb)
equals 4.18 � 109 J.

65 A person weighing 170 lb produces mechanical power
of 0.10 hp in walking on a horizontal surface. Suppose
that the person can provide a maximum mechanical
power of 0.20 hp for 5 hours. What is the maximum
height the person could climb up a mountain in this
length of time? Assume that the extra 0.10 hp is used to
provide gravitational potential energy.

**66 Two blocks are attached to opposite ends of a string that
passes over a massless, frictionless pulley (Fig. 7–40).
Block A of mass 10.0 kg lies on a 60.0� incline with a
coefficient of friction of 0.500, and block B of mass
1.00 kg is attached to a vertical spring of force constant
200 N/m. The blocks are initially at rest with the spring
at equilibrium. Find the maximum height that block B
rises.

Fig. 7–40

**67 A football of mass 0.500 kg is thrown by a quarter-
back, who accelerates the ball over a path of length 40.0
cm, releasing the ball with an initial velocity at an angle
of 45.0� above the horizontal. The horizontal range of
the football is 55.0 m. Find the average force exerted on
the ball by the quarterback’s hand. Ignore air resistance.

Problems
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*68 An athlete who weighs 800 N is able to raise his center
of mass 0.500 m in a vertical jump.
(a) Compute the internal work done by the athlete’s leg

muscles as he pushes off from the ground.
(b) Find the athlete’s speed as the feet leave the ground.
(c) Find the time during which the feet are in contact

with the ground and the body accelerates upward,
assuming that the center of mass moves through a
distance of 0.400 m at constant acceleration.

(d) Calculate the average mechanical power produced.
*69 Only a few hundred comets have been observed. (Halley’s

comet is the most spectacular of these.) However, it is
now believed that there are perhaps 1012 comets, com -
posing what is called the Oort cloud, with orbits much
larger than the planetary orbits (Fig. 7–41). It may be
perturbation of these comets’ orbits by other bodies (a
nearby star, for example) that occasionally sends one of
them into a new orbit much closer to the sun, so that
then, like Halley’s comet, it becomes visible on earth.
Some of these comets would very likely strike the earth,
with devastating effects.* Suppose that a comet from the
Oort cloud is slowed by a passing star, so that it falls
toward the sun (m  1.99 � 1030 kg) and strikes the
earth. Find the comet’s speed when it reaches earth, 1
astronomical unit (Au), or 1.49 � 1011 m, from the sun,
if initially the comet is 50,000 Au from the sun and is
moving at a speed of only a few m/s. Ignore the earth’s
gravitational effect, which is relatively small.

Collision of a comet with Jupiter, July 16–23, 1994, as seen in
ultraviolet light.

*It has been proposed that a shower of new comets might rain down on
the planets every 30 million years or so, as the solar system passes
through a heavily populated part of our galaxy. This would account for
increased geological activity on earth about every 30 million years. It
might even account for the sudden mass extinction of dinosaurs and
many other species, which occurred about 65 million years ago, about
the same time that there was deposited on the earth’s crust a thin sedi-
mentary layer rich in iridium, which is otherwise rare on earth.

**70 (a) When the comet in the last problem collides with
the earth, an enormous cloud of dust is thrown into
the atmosphere. Estimate the mass of the dust,
assuming that the comet’s mass is 1.0 � 1014 kg
(the approximate mass of Halley’s comet), that half
the comet’s energy is converted to gravitational
potential energy of the dust cloud, and that the dust
is uni formly spread in a layer 20 km thick (where
most of the earth’s atmosphere is concentrated).

(b) Calculate the density of the dust and compare
with the density of air at the surface of the earth
(1.2 kg/m3). The dust would likely remain for
months or years, would cut off solar radiation,
shrouding the earth in darkness, and could well
result in extinction of many species, including the
human species. A similar outcome has been pre -
dicted for a nuclear war; the scenario in this case is
referred to as “nuclear winter.”

**71 Repeat Problem 69, this time taking into account the
earth’s gravity.

72 Use Eq. 7–20 to express the gravitational potential
energy UG� of a body of mass m at a distance r from the
center of the earth, where r is the sum of the earth’s
radius R and the distance y of the mass above the earth’s
surface. Show that when y �� R, this expression
reduces to UG� 	 mgy. (The symbol �� means ‘much
less than’.)

Fig. 7–41 (Diagram by Steven Simpson: Sky and Telescope
73:239, March 1987.)
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