
Temperature and
Kinetic Theory

W e can feel the blazing heat of the summer sun or the biting cold of a winter bliz-

zard. Our bodies are sensitive even to small changes in the temperature of our

surroundings. We respond to these changes with several adaptive mechanisms, like

sweating or shivering, to maintain a nearly constant internal body temperature. This sensi-

tivity to the thermal environment is the basis for our concepts of hot and cold, out of

which the scientific definition of temperature evolved. Temperature is a quantitative

measure of how hot or cold something is. In this chapter we shall see how various kinds

of thermometers are used to measure temperature and how temperature can be

interpreted as a measure of molecular kinetic energy.

Temperature Measurement
Thermometers
Temperature is measured with a thermometer. Galileo invented the first thermometer,
which made use of air’s property of expanding as it is heated. The air’s volume indi-
cated the temperature. Today there are various kinds of thermometers, each appropriate
for the range of temperatures and the system to be measured. For example, in addition
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Fig. 12–1 Thermometers.The length
of a column of mercury indicates temp -
er ature in a mercury thermometer (a).
Electrical properties of a probe are used
to measure temperature in a thermistor
thermometer (b) and a thermocouple
thermometer (c). In an optical pyrom-
eter (d), used to measure very high
temperatures, light emitted by the hot
body is compared with light produced
by an electrically heated filament inside
the pyrometer. (e) Gas pressure indi-
cates temperature in a constant-volume
gas thermometer.

(e)

(d)(c)

(b)(a)

to the common mercury thermometer, there are electrical resistance thermometers,
thermistor thermometers, and optical pyrometers (Fig. 12–1).
Each thermometer depends on the existence of some thermometric property of

matter. For example, the expansion or contraction of mercury in a fever thermometer
correlates with the body’s sensation of hot and cold. A person who has a high fever
both is hot to the touch and will register a higher than normal temperature on a
mercury thermometer. The length of the mercury column in the glass stem of the ther-
mometer gives us a quantitative measure of temperature.
The constant volume gas thermometer maintains a quantity of gas in a fixed volume

(Fig. 12–1e). As the gas is heated, its pressure increases, as indicated by a pressure
gauge. Pressure is the thermometric property in this thermometer. Pressure readings are
used to indicate temperature.
Suppose a mercury thermometer is used to measure the temperature of a hot liquid.

When the thermometer is first immersed in the liquid, the length of the mercury
column increases. A short time later it reaches an equilibrium level and remains
constant. This final equilibrium level indicates the common temperature of the liquid
and the thermometer. The interaction between the thermometer and the system, during
which the mercury expands, is called “thermal interaction.” The final state, in which
the length of the mercury column no longer changes, is called a state of thermal equi-
librium. The length of the mercury column then indicates the temperature of both the
thermometer and the liquid. When two bodies are in thermal equilibrium, they are at
the same temperature.

Temperature Scales
To assign a numerical value to the temperature of a body, we need a temperature scale.
The two most common scales in everyday use are the Fahrenheit scale and the Celsius
scale (formerly known as the centigrade scale). In establishing a temperature scale, one
could use any kind of thermometer and any thermometric property. For example, the
Celsius scale was based on the expansion of a column of liquid such as mercury in a
thin glass tube. One could just as well base a temperature scale on the volume of a
fixed quantity of air at atmospheric pressure, as in Galileo’s first thermometer. There
is no point in having many independently defined temperature scales. The absolute, or
Kelvin, scale is now the standard in terms of which all other scales, such as Celsius
and Fahrenheit, are defined.
The Kelvin scale is chosen as the standard for important reasons. First, various laws

of physics are most simply expressed in terms of this scale. We shall see an example of
this in the ideal gas law, described in the next section. Second, zero on the absolute scale
has fundamental significance. It is the lowest possible temperature a body can approach.
The definition of the Kelvin scale is based on a constant-volume gas thermometer

and uses the thermal properties of water to establish a reference temperature. Liquid
water can coexist with both water vapor and ice in thermal equilibrium at only one
temperature. This state, called the “triple point,” is achieved when a vacuum-sealed
container of liquid water is cooled until it is in equilibrium with both water vapor and
ice. The triple-point temperature Tt r is defined to be 273.16 kelvin (abbreviated K):

Tt r  273.16 K (12–1)

The triple point is very close to the normal freezing point of water at atmospheric pres-
sure (273.15 K). The reason for assigning the particular value 273.16 to the triple point
is so that the Kelvin scale will be related to the older Celsius scale in a simple way, as
we shall see.
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Temperature on the Kelvin scale is defined according to the following prescription.
A container of low-density gas with a fixed volume (a constant-volume gas ther-
mometer) is allowed to reach thermal equilibrium with water at the triple point. The
pressure of the gas at the triple point, Pt r, is measured. Then the gas thermometer is
placed in thermal contact with the body whose temperature is to be determined, and
when thermal equilibrium is reached, the gas pressure P is again measured. The ratio
P/Pt r defines the temperature of the body according to the equation

T  (273.16 K) (12–2)

For example, when the pressure of the gas in the thermometer is exactly double its
pressure at the triple point, the temperature of the body by definition is 273.16 K � 2
 546.32 K. The gas used in this thermometer can be virtually any gas, so long as the
density of the gas is low enough. All gases give the same value for the temperature of
a given system, in the limit as the gas density approaches zero.
Historically, when the Celsius scale was established, the normal freezing and

boiling points of water were assigned respective values of 0� C (zero degrees Celsius)
and 100� C. A mercury thermometer was brought to thermal equilibrium with water at
each of these temperatures, and the level of the mercury column was marked as 0� C
for ice water and 100� C for boiling water. The mercury column between these two
marks was then divided into 100 equal intervals, corresponding to temperature inter-
vals of 1 Celsius degree (1 C�). Today the Celsius temperature scale is defined in terms
of the Kelvin scale. Celsius temperature TC is now defined by the equation

TC  T � 273.15 (12–3)

On the Celsius scale, the triple point of water is 273.16 � 273.15, or 0.01� C. The
normal freezing point of water open to the air at one atmosphere of pressure is 273.15
K, or 0.00� C. The normal boiling point of water is 373.15 K, or 100.00� C. This defi-
nition of the Celsius scale conforms to the earlier definition based on the freezing and
boiling points of water. Temperature intervals on the Celsius and Kelvin scales are the
same. For example, the difference in temperature between the boiling point of water
and its freezing point is 100 Celsius degrees (C�), or 100 kelvins.

The Kelvin, Celsius, and Fahrenheit temperature scales

Kelvin 
scale

Celsius 
scale

Fahrenheit 
scale

Sun’s surface temperature
Gold melts
Water boils
Human body temperature
Typical room temperature
Water freezes
Mercury freezes
Ethyl alcohol freezes
Nitrogen liquifies
Helium liquifies
Absolute zero

6000 K
1336 K
373 K
310 K
293 K
273 K
234 K
143 K
77 K
4.2 K
0 K

||
100 K
||

6000° C
1063° C
100° C
37° C
20° C
0° C

–39° C
–130° C
–196° C
–269° C
–273° C

||
100 C°
||

10,000° F
1945° F
212° F
99° F
68° F
32° F
–38° F
–202° F
–321° F
–452° F
–460° F

||
180 F°
||

Table 12–1

P
*
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Fig. 12–2 If you squeeze one end of
a balloon, you force the air inside the
balloon into a smaller volume, and the
pressure of the air increases.
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Fahrenheit temperature TF, measured in degrees Fahrenheit (�F), is defined relative
to the Celsius temperature TC by the equation

TF  32 
 TC (12–4)

The normal freezing and boiling points of water on the Fahrenheit scale are 32� F and
212� F respectively. The interval between these points is 180� F. There are only 100 C�
between these same points. Thus Celsius degrees are bigger than Fahrenheit degrees:
1 C � is , or , times 1 F�.

Ideal Gas Law
The pressure of a gas can be changed in several ways. One way to increase the pres-
sure of a gas confined to a fixed volume is to increase the number of gas molecules in
the volume. You do this, for example, when you pump air into a bicycle tire or an auto-
mobile tire. Another way to change the pressure of a gas is to change its temperature.
For example, when the air in an automobile tire heats up, its pressure increases signifi-
cantly. A third way to change gas pressure is to change the volume containing the gas;
decreasing volume causes an increase in pressure (Fig. 12–2).
For low-density gases, there is a simple, universal relationship between the gas pres-

sure P, volume V, Kelvin temperature T, and number of gas molecules N. The product
of P and V is proportional to the product of N and T:

PV + NT

or

PV  NkT (12–5)

This equation is called the ideal gas law. The constant k is known as “Boltzmann’s
constant” and is found from experiment to have the value

k  1.380 � 10–23 J/K (12–6)

The ideal gas law is most accurate in describing noble gases like neon or helium at
low densities. But the ideal gas law provides a good approximate description of the
behavior of other gases, so long as they are not close to the liquid state. In applying the
ideal gas law, temperature must be expressed in kelvins, not in �C or �F.

9
*
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180
*
100

9
*
5
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EXAMPLE 1 Measuring a Fever on the Celsius Scale

Normal internal body temperature is 98.6° F. A temperature of
106° F is considered a high fever. Find the corresponding temp -
eratures on the Celsius scale.

SOLUTION Solving Eq. 12–4 for TC, we obtain

TC � (TF � 32.0)

A temperature of 98.6° F corresponds to

TC � (98.6 � 32.0) � 37.0° C

and a temperature of 106° F corresponds to

TC � (106 � 32.0) � 41.1° C5
�
9

5
�
9

5
�
9
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Special cases of the gas law are found when one considers the variation of two of
the variables P, V, N, and T, while the other two variables are held constant. For
example, if N and T are fixed, the ideal gas law implies that the product PV is constant:

PV  constant (for constant N and T ) (12–7)

This result is known as Boyle’s law, in honor of Robert Boyle, who discovered it in
1660. Boyle’s law implies that if the volume of a gas is reduced to half its original
value the pressure of the gas is doubled.
If P and N are fixed, the ideal gas law implies that the volume of the gas is directly

proportional to its temperature:

V + T (for constant N and P) (12–8)

This result was discovered by Joseph Gay-Lussac in 1802.
If V and N are fixed, the ideal gas law implies that

P + T (for constant N and V ) (12–9)

The very definition of temperature on the Kelvin scale requires that this relationship be
satisfied, at least in the limit of a very low-density gas.

EXAMPLE 2 The Temperature of an Ideal Gas After Compression

An ideal gas initially has a volume of 1.0 liter (L), a pressure of
1.0 atmosphere (atm), and a temperature of 27° C. The pressure
is raised to 2.0 atm, compressing the volume of the gas to
0.60 L. Find the final temperature of the gas.

SOLUTION We are given the following initial and final
values of P, V, and T:

Pi �1.0 atm Pf � 2.0 atm

Vi �1.0 L Vf � 0.60 L

TCi � 27° C TCf � ?

The number of molecules, N, is constant. The problem is to find
the final temperature TCf. We can do this simply by first writing
the ideal gas law for the initial state of the gas and again for the
final state and then taking the ratio of the two expressions:

PiVi � NkTi

PfVf � NkTf

�

Since this equation involves ratios of pressures and volumes, we
may insert these quantities in the units in which they are given,
that is, atmospheres and liters, rather than converting to stan-
dard units of Pa and m3. The conversion to standard units would
simply introduce identical factors for both initial and final val -
ues, and these factors would cancel. We must be careful, how -
ever, to convert temperature from degrees Celsius to kelvins,
even when a ratio is used, as it is here, since this change in units
involves an additive term, rather than a multiplicative factor.
Thus we must use Ti � 27 � 273 � 300 K. Substituting values
into the preceding equation, we obtain

� � 1.2

or

Tf � (1.2)(300 K) � 360 K

This corresponds to a final Celsius temperature TCf of

TCf � Tf � 273 � 360 � 273

� 87° C

(2.0 atm)(0.60 L)
��
(1.0 atm)(1.0 L)

Tf�
300 K

PfVf�
PiVi

Tf�
Ti



Dalton’s Law of Partial Pressures
The ideal gas law may also be applied to a mixture of noninteracting ideal gases.
Suppose that N1 molecules of a single ideal gas contained in a volume V produce a
pressure P1 at temperature T when this is the only gas in the volume, and suppose that
N2 molecules of a second ideal gas contained in a volume V produce a pressure P2 at
temp erature T when the second gas is the only one contained in the volume. According
to Dalton’s law of partial pressures, a mixture of these two ideal gases produces a
pressure P that is the sum of P1 and P2 (if there is no chemical interaction between the
two gases):

P  P1 
 P2

Using the ideal gas law to express P1 and P2 in terms of T, V, and the respective
numbers of molecules, N1 and N2, we find

P  




Letting N denote the total number of molecules of both gases, that is, N N1 
 N2, we
obtain

P 

Dalton’s law may be generalized to apply to a mixture of any number of noninteracting
ideal gases. Thus the ideal gas law may be applied to air, with N representing the total
number of molecules of any type—nitrogen, oxygen, and so forth.

NkT
*
V

(N1 
 N2)kT
**

V

N1kT
*
V

N2kT
*
V
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EXAMPLE 3 The Number of Air Molecules in a Hot-air Balloon

The air inside a hot-air balloon (Fig. 12–3) is at a temperature of
100.0° C, while the temperature of the surrounding air in the
atmosphere is 20.0° C. Find the ratio of the number of air
molecules inside the balloon to the number of air molecules
contained in an equal volume of air outside the balloon. Assume
that the air pressure is the same inside and outside.

SOLUTION We first use the ideal gas law (Eq. 12–5) to obtain
an expression for the number of air molecules in a volume V.

N �

Using subscripts i and o to denote air inside and outside the
balloon, we obtain the ratio of the number of air molecules
inside to the number outside:

�

Since pressures Pi and Po are equal and volumes Vi and Vo are
equal, this reduces to

�

Fig. 12–3 Hot-air balloon.

Converting temperatures to kelvins, we find

� � � 0.786

According to Archimedes’ principle, the hot-air balloon will
experience a buoyant force equal to the weight of the displaced
air. Since there is less air inside the balloon than in the volume
of atmosphere displaced, the buoyant force is greater than the
weight of the hot air, and the balloon will rise if the weight carried
by the balloon is not too great. (Problem 50 asks you to calculate
the volume of a hot-air balloon required to support 5000 N.)

Ni�
No

Ni�
No

293 K
�
373 K

273 � 20
��
273 �100

To�
Ti

PiVi /kTi�
PoVo /kTo

Ni�
No

PV
�
kT



Atomic Mass
It is often convenient to express the ideal gas law in a slightly different form, known
as the “molar form.” To accomplish this, we first define atomic mass and the mole.
Atomic mass is the mass of an atom relative to other atoms, using a scale in which
the most common type of carbon atom is defined to have a mass of exactly 12.A
hydrogen atom has about the mass of a carbon atom and so has an atomic mass of
approximately 1. A helium atom has about the mass of a carbon atom and so has an
atomic mass of approximately 4. The periodic table of the elements shows the atomic
masses of all the elements. The atomic masses listed there are actually averages over
the different types of atoms naturally occurring for each element. For example, the
atomic mass of carbon is given as 12.01, rather than exactly 12, because roughly 1%
of all naturally occurring carbon atoms have a mass of 13.
The molecular mass of a molecule is the sum of the atomic masses of the atoms

making up the molecule. For example, the molecular mass of the H2O molecule
equals the atomic mass of oxygen plus twice the atomic mass of hydrogen, that is,
approximately 16 
 2(1)  18.
The unit of mass on the atomic mass scale is called the atomic mass unit, denoted

by u. We can relate this unit to the gram. Experiment shows that

1 u  1.6606 � 10–24 g

4
*
12

1
*
12
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EXAMPLE 4 A Deep Dive Must be Short

A Scuba diver breathes air stored in a tank carried on the back.
At the beginning of a dive air pressure in the tank is about 200
atm, or 3000 lb/in2. Air pressure inside the tank gradually
decreases as the diver uses the air. A pressure regulator adjusts
the pressure of the air coming out of the tank so that when the
diver breathes it the air is at the same pressure as the
surrounding water. A certain diver has sufficient air to stay 60
min at a depth of 10 m below the ocean’s surface, where the
pressure is 2.0 atm (Fig. 12–4). How long would this diver’s air
supply last at a depth of 30 m, where the pressure is 4.0 atm?
The diver breathes the same volume of air per unit time at any
depth. Assume a constant temperature.

SOLUTION From the ideal gas law, we know that the number
of air molecules in a volume V at pressure P and temperature T
is given by

N �

This equation shows that the number of air molecules in a
given volume of air breathed by the diver is directly propor-
tional to the air’s pressure. Thus, as the diver descends to
greater depths where the air pressure must be greater, a given
volume of inhaled air contains more air molecules, and the air
supply is therefore consumed more quickly. Since the volume
of air consumed per unit time is constant, the volume consumed
in time t is proportional to t.

V ∝ t

Fig. 12–4 Scuba diver.

Since N is proportional to PV, it follows that

N ∝ Pt

A fixed number of air molecules are available to the diver. Thus
the product of the air pressure and the time to consume the air
has the same value at any depth.

P�t� � Pt

Inserting P � 2.0 atm and t � 60 min for a depth of 10 m and
P� � 4.0 atm for a depth of 30 m, we find that the air supply at
this depth lasts a time t�, where

(4.0 atm) t� � (2.0 atm)(60 min)
t� � 30 min

Because the pressure is doubled, the air lasts only half as long.

PV
�
kT



Fig. 12–5 One mole of several substan -
ces: gold, copper, mercury, aluminum,
iron, salt, and water. Each sample contains
6.022 � 1023 molecules. The masses of
the samples vary in proportion to the
molecular masses: from 18g of water up
to 201g of mercury.
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Mole
Even very small quantities of matter consist of an enormously large number of mole-
cules, and so it is convenient to express the quantity of matter in terms of a large unit,
called the “mole.” A mole is defined as a certain number of atoms or molecules,
called Avogadro’s number, denoted by NA. The value of Avogadro’s number is such
that one mole of a substance, consisting of any kind of atom or molecule, has a
mass numerically equal to the atomic or molecular mass of that substance
expressed in grams. For example, one mole of carbon-12 atoms has a mass of 12 g,
and one mole of H2O molecules has a mass of 18 g (Fig. 12–5).
One can compute Avogadro’s number by dividing the mass of 1 mole of carbon 12

(12 g) by the mass of a single carbon-12 atom, equal to 12 atomic mass units, where
the atomic mass unit is related to the gram by the preceding equation.

NA  

NA  6.022 � 1023 (12–10)

We may express the number of molecules, N, of a substance as the product of
Avogadro’s number, NA, and the number of moles, denoted by n:

N  nNA (12–11)

Molar Form of the Ideal Gas Law
To obtain the molar form of the ideal gas law, we substitute N nNA (Eq. 12–11) into
our original form of the gas law (Eq. 12–5):

PV  NkT  nNAkT

The product NAk is called the ideal gas constant, denoted by R.

R  NAk

 (6.022 � 1023)(1.380 � 10–23 J/K)

R  8.31 J/K (12–12)

Substituting R for NAk in the ideal gas law, we obtain the molar form of the gas law.

PV  nRT (12–13)

12 g
*
12 u

12 g
***
12(1.6606 � 10�24 g)

EXAMPLE 5 Number of Atoms in a Nail

Find the number of atoms in an iron nail of mass 5.00 g.

SOLUTION First we inspect the periodic table (shown on
the inside back cover) and find that the atomic mass of iron (Fe)
is 55.847. This means that 1 mole of naturally occurring iron
has a mass of 55.847 g. We can now calculate the number of
moles of iron in the nail, which we denote by n:

n � (5.00 g)� � � 8.95 � 10�2 mole

Since 1 mole contains Avogadro’s number of atoms, the nail
con tains a number of atoms equal to the number of moles
times NA:

N � nNA � (8.95 � 10�2 mole)� �
� 5.39 � 1022 atoms

6.022 � 1023 atoms
���

1 mole

1 mole
�
55.847 g



Fig. 12–6 A container of gas consists
of a large number of molecules moving
randomly and colliding with the walls of
the container.

Fig. 12–7 (a) A single molecule collides
with a wall of the container ; during the
collision the molecule exerts a small
force perpendicular to the surface.
(b) At any instant a large number of
molecules collide with the surface. The
effect of all these collisions is a resultant
force F and pressure P, which are effect -
ively constant.
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Kinetic Theory; Model of an Ideal Gas
Kinetic Theory
Kinetic theory is an area of physics that was developed in the late nineteenth century
by Rudolph Clausius, James Clerk Maxwell, Ludwig Boltzmann, and others. Kinetic
theory provides an explanation for the behavior of a macroscopic system in terms of
its microscopic components—atoms or molecules, which obey dynamical laws. In this
section we shall use kinetic theory to provide an explanation for the pressure of an
ideal gas in terms of a molecular model.
A gas contained in a volume of macroscopic dimensions consists of an enor-

mously large number of molecules. These molecules move in a random, chaotic way
throughout the volume of the container (Fig. 12–6). When a molecule strikes a surface,
it bounces off, exerting a small force on the surface (Fig. 12–7a). At any instant there
will be many molecules colliding with the surface. The effect of these collisions is to
produce a resultant force, which may be quite large (Fig. 12–7b).

(a) (b)

12–3

EXAMPLE 6 Finding the Mass of a Volume of Air

Find the mass of air in a room with dimensions 5.00 m � 4.00
m � 3.00 m, if the air pressure is 1.00 atm and the temperature
is 27.0° C.

SOLUTION First we apply the ideal gas law (Eq. 12–13)
to find the number of moles, using the Kelvin temperature
(T � 273 � 27.0 � 300 K) and expressing pressure in Pa
(Eq. 11–5: 1.00 atm �1.01 �105 Pa).

n �

�

� 2.43 �103 moles

Since 1 mole has a mass equal to the molecular mass in grams,
the mass of air equals the product of the number of moles
times the molecular mass in grams. A nitrogen molecule N2 has
a molecular mass of 2(14) � 28, and an oxygen molecule O2

has a molecular mass of 2(16) � 32. Air consists of approxi-
mately 80% nitrogen and 20% oxygen, and so the average
molecular mass is 0.8 � 28 � 0.2 � 32 � 28.8 Thus

m � (2.43 �103 moles)(28.8 g/mole) � 7.00 �104 g

� 70.0 kg

(1.00 atm)(1.01�105 Pa/atm)(5.00m�4.00m�3.00m)
������

(8.31 J/K)(300K)

PV
�
RT
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The resultant force is not steady but fluctuates rapidly, depending on the number of
molecules striking the surface at any instant. But, for a surface of macroscopic size, the
number of molecules involved is so large that fluctuations in the net force are negli-
gibly small. Thus the molecules exert a pressure on the container walls that is effec-
tively constant.
By way of analogy, consider the pressure that a strong, fine spray of water from a

shower head produces on your back. There are many individual collisions with the
back, resulting in a fairly steady pressure. In the case of gas pressure, each molecule
exerts an extremely small force on the surface with which it collides. And yet there is
such an enormously large number of collisions that the net effect is a pressure that is
much greater and much more steady than that produced by a stream of water from a
shower. Indeed atmospheric pressure is 1.01 � 105 Pa, or 14.7 lb/in2, an indication that
one’s back is constantly subject to a total force amounting to several hundred pounds
because of air pressure. Of course in normal circumstances atmospheric pressure is the
same on all surfaces of the body, and so it gives rise to no resultant force.

Kinetic Interpretation of Temperature
Rudolf Clausius first derived the ideal gas law from kinetic theory in 1857. He used a
very oversimplified model of a gas, in which the molecules were assumed to move in
three orderly lines, perpendicular to the sides of the box. In the next section we shall
derive the ideal gas law, using the more realistic model of molecules moving randomly
in all directions. This derivation, first presented by James Clerk Maxwell in 1859,
shows that the average kinetic energy of an ideal gas molecule equals kT.A mole-
cule of mass m traveling at speed v has kinetic energy K  mv2. Denoting the
average values of K and v2 by –K and v�2�, we may express Maxwell’s result as:

–
K  mv�2�  kT (12–14)

This equation shows that the temperature of an ideal gas is a measure of the
average kinetic energy of its molecules. In light of this result, the phenomenon of
thermal equilibrium is easy to understand. Two systems of gas that are initially at
different temperatures have different values of average kinetic energy per molecule.
When the systems are placed in thermal contact, the system with the higher tempera-
ture will lose energy as the system with the lower temperature gains energy. This
process continues until the average molecular kinetic energies and hence also the
temperatures of the two systems are the same. Thus thermal equilibrium is simply a con -
sequence of the equal sharing of kinetic energy among the molecules of both systems.
Although Eq. 12–14 is easily derived only for an ideal gas, it applies to any system,

including liquids and solids. The average translational kinetic energy of the molecules
in a body at absolute temperature T equals kT.

Maxwell Distribution
Maxwell carried his analysis a step farther and derived an expression for the distri -
bution of molecular speeds. Maxwell’s theoretical prediction is shown graphically in
Fig. 12–8 for oxygen at a temperature of 300 K.
Fig. 12–9 indicates how the distribution changes with temperature. As T increases,

the distribution becomes broader and shifts to the right, toward higher values of v. The
Maxwell distribution has been amply verified by experiments.

3
*
2

1
*
2

3
*
2

1
*
2

1
*
2



Root Mean Square Speed
It is convenient to be able to characterize the Maxwell distribution by a single number,
typical of molecular speeds at a given temperature. For this purpose one may use either
the average speed or the root mean square (rms) speed, defined as the square root of the
average squared speed and denoted by vrms.

vrms  �v�2� (12–15)

For the Maxwell distribution vrms is approximately equal to the average speed.
Since we have already derived an expression for the average molecular kinetic

energy (Eq. 12–14), it is easy to obtain an expression for vrms.

mv�2�  kT

Thus

v�2�

and

vrms �� (12–16)
3kT
*
m

3kT
*
m

1
*
2

3
*
2
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Fig. 12–9 Distribution of molecular speeds for oxygen at 300 K and
at 400 K.

Fig. 12–8 Distribution of molecular speeds for oxygen at 300 K .
The area under the curve between any two values of v gives the
fraction of the molecules having speed somewhere in the interval
between the two values of v. For example, the cross-hatched area is
0.053, meaning that 5.3% of the molecules have values of v between
375 m/s and 400 m/s.



Fig. 12–10 The path of a single gas
molecule in a box.
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Derivation of the Ideal Gas Law
We shall now derive the ideal gas law, using the kinetic theory model of an ideal gas
described in the last section. We shall do this by first obtaining an expression for the
pressure exerted by the molecules on a surface. This expression turns out to be a func-
tion of the number of molecules per unit volume and the molecules’ average kinetic
energy. By relating temperature to molecular kinetic energy, we shall obtain the ideal
gas law. This derivation serves two purposes: (1) to understand how the empirical ideal
gas law is the result of molecular dynamics and (2) to give a mechanical interpretation
of temperature as a measure of molecular kinetic energy.
To derive the ideal gas law, we shall find it necessary to make certain assumptions:
1. It is valid to apply Newton’s laws to gas molecules, just as we would to

billiard balls or other macroscopic bodies.*
2. Collisions of molecules with the walls of the container are elastic, and the

walls are smooth. It follows that when a molecule strikes a wall, the molecule
rebounds, with its component of velocity perpendicular to the wall reversed, as shown
in Problem 32, Chapter 8.
3. The number of molecules is large, and their motion is random.
4.The time during which molecules are in contact either with the walls or with

each other is negligible compared to the time during which they are moving freely.
This requires of course that the molecules not be too tightly packed, that is, that the
density of the gas be sufficiently low.
Let the container for the gas be a rectangular box with sides of length �x, �y, and �z,

aligned with the x, y, z coordinate axes (Fig. 12–10). First we shall derive an expres-
sion for the pressure on the right side of the container, based on the assumption of no
collisions between molecules. After deriving this result, we shall consider the effect of
intermolecular collisions.

*Many features of atoms and molecules can be described only by use of the more general (and difficult)
methods of quantum theory, rather than Newton’s laws, as we shall see in Chapter 29. It is correct to use
classical mechanics whenever the results obtained by classical mechanics are a good approximation to
quantum predictions, as is the case here.

*12–4

EXAMPLE 7 RMS Speed of Oxygen Molecules at Room Temperature

Calculate vrms for oxygen molecules at a temperature of 300 K.

SOLUTION The molecular mass of oxygen is 32, which
means that an oxygen molecule has a mass of 32 atomic mass
units (32 u), where u � 1.66 � 10�27 kg. Applying Eq. 12–16,
we find

vrms � �� � ��
� ���
� 484 m/s

This speed, faster than a speeding bullet, is near the center of
the molecular speed distribution shown in Fig. 12–8.

3(1.38 �10–23 J/K)(300 K)
���

32(1.66 �10–27 kg)

3kT
�
32 u

3kT
�

m
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Consider the path of a single molecule, beginning at the instant just before it
strikes the right side of the box. The effect of the collision with the right side is to
reverse the x component of the molecule’s velocity: vx changes to �vx. If this molecule
does not collide with any other molecule, it will strike the left side of the box a time
�x/vx later, bounce off the left wall with its x component of the velocity reversed again
(�vx changes to 
vx), and return to the right side a time �x/vx after this collision. Thus
the complete time �t for the molecule to traverse the length of the box and return to the
right side is given by

�t 

Of course, the molecule may strike other sides of the box between collisions with the
right and left ends, as shown in Fig. 12–10. These collisions do not change vx, and so
they do not affect the time interval between successive collisions with the right side of
the box.
Each time the molecule collides with the right surface, the molecule exerts a force

Fx to the right. This is just the reaction to the force F�x the surface exerts on the mole-
cule, and by Newton’s third law Fx  �F�x. According to Newton’s second law, the
average value of the force on the molecule, –F�x, is the product of the molecule’s mass
and its average x component of acceleration, –ax. Thus

–
Fx  �

–
F�x  �m–ax

 �m

For each collision with the wall, the molecule undergoes a change in vx given by
�vx  (�vx) � vx  �2vx. And since the time interval �t between collisions is 2�x /vx, the
average force may be expressed

–
Fx  

Within the box there are N molecules, each having its own value of vx
2. The

resultant force � –Fx is just the sum of the forces exerted by the N molecules.

�
–
Fx  �  � vx

2

We may express � vx
2 in terms of the average value of vx

2, denoted by v�x�2�, and defined
as v�x�2�  � vx

2.

�
–
Fx 

Dividing � –Fx by the area of the surface �y�z, we obtain the pressure P.

P  

Since the volume V �x�y�z, we have

P 

or

PV  Nmv�x�2� (12–17)

�
–
Fx
*
�y�z

Nmv�x�2�
*
�x�y�z

mNv�x�2�
*

�x

1
*
N

mvx
2

*
�x

m
*
�x

�m(�2vx)
*
2�x/vx

mvx
2

*
�x

�vx
*
�t

2�x
*
vx

Nmv�x�2�
*
V



Fig. 12–11 A molecule changes its velo -
city from v to v� because of a collision.
A second molecule, at approximately
the same location, undergoes a collision
that changes its velocity from v� to v.
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The model we have given so far is a reasonable model for a very low-density gas.
However, it is a terribly unrealistic picture of a gas such as air at normal density, since
we have neglected collisions between molecules. An air molecule may undergo some-
thing on the order of 105 collisions for every cm it travels. These collisions will
certainly destroy the regular path we have assumed for a single molecule moving
across the length of the box. We shall see, however, that the very large number of mole-
cules and the randomness of their motion cause the result to be the same as though
there were no collisions. At this point assumption 3 must be used in a very specific
way: for every molecule that has its velocity changed from v to v� by a collision, we
assume that there is another molecule at approximately the same location that under-
goes a collision that changes its velocity from v� to v. See Fig. 12–11. Whenever a
molecule undergoes a collision, it is replaced by another molecule at essentially the
same position and moving with the same velocity, and so the preceding calculation of
pressure is unaffected.
To show that this assumption is plausible, we note that at typical gas densities of

1025 molecules per cubic meter a tiny cube of edge length 10 �2 mm, or 10 �5 m, and
volume 10�15 m3 contains on the order of 1010 molecules. Although only a small fraction
of these molecules undergo collisions at any one instant (perhaps one out of 103 or 104),
still the total number in the cube undergoing simultaneous collisions is large (about 106

or 107), and the collisions are completely random. So it is very reasonable to assume
that with this large number of random collisions the distribution of molecular veloci-
ties remains unchanged.
Finally, if the preceding calculation of pressure is to remain unchanged by the

effects of intermolecular collisions, we must assume that the time of intermolecular
contact is small compared to the time between collisions (assumption 4), and so our
calculation of �t is unaffected.
It is convenient to express Eq. 12–17 in terms of the average value of v 2, rather than

the average value of the component vx
2. Since v 2  vx

2 
 vy
2 
 vz

2, the average value of
v 2 is the sum of the averages of vx

2, vy
2, and vz

2.

v�2�  v�x�2� 
 v�y�2� 
 v�z�2�

But there is no reason for the average squared components of velocity along the x, y,
and z axes to differ, and so v�x�2�  v�y�2�  v�z�2�, and we can express the equation above as

v�2�  3v�x�2�

or
v�x�2�  v�2�

Substituting this result into Eq. 12–17, we obtain

PV  Nm( v�2�) N( v�2�)

We can complete our derivation of the ideal gas law (PV  NkT) if we identify
mv�2� in the expression above as kT. Thus in the process of deriving the gas law, we

arrive at a mechanical interpretation of the temperature of an ideal gas.

mv�2�  kT

or
mv�2�  kT (12–18)

We have used an atomic model of a gas to derive the ideal gas law. Although
today this seems a very natural way to explain gas pressure, it was not always so. In the
early 1900s the very existence of atoms was not universally accepted, since there was
no direct evidence of them. Ludwig Boltzmann was one of the primary advocates of
the atomic theory and used the atomic hypothesis in his analysis of macroscopic

1
*
2

3
*
2

1
*
3

1
*
3

1
*
3

1
*
3

1
*
3



(a)

(b)

(c)

(d)

Fig. 12–12 (a) A liquid in a closed
container with a movable piston.
(b) Molecules begin to leave the liquid
and form a vapor when the piston is
raised. (c) Saturated vapor in equilib-
rium with the liquid. Equal numbers of
molecules enter and leave the liquid.
(d) Saturated vapor at a higher temper-
ature has greater density and pressure.
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systems. But Boltzmann’s work was severely criticized by other famous physicists,
including Ernst Mach, on the grounds that physical theory should not be based on
hypothetical entities such as atoms. Boltzmann committed suicide in 1906, just 2 years
before direct confirmation of the atomic theory and universal acceptance of his methods.

Vapor Pressure and Humidity
If you fill a glass with water and leave it, within a day or two the water level in the
glass will drop noticeably, unless the surrounding air is very damp. The water “evap-
orates.” This means that water molecules leave the liquid and form a vapor or gas that
mixes with the air.
We can understand evaporation on a molecular level, using concepts of kinetic

theory. The molecules in a liquid have a distribution of velocities, similar to the
Maxwell-Boltzmann distribution of molecular velocities in a gas. Although intermol-
ecular forces bind most of the molecules close together in the liquid, some of the mole-
cules move fast enough to leave the surface of the liquid, like a rocket with a velocity
greater than escape velocity leaving the earth. Since the molecules that evaporate are
those with the greatest velocity and kinetic energy, the average kinetic energy of the
molecules remaining in the liquid decreases, and so the temperature of the liquid
decreases. You can feel the cooling effect of evaporation when you step out of a
shower and water evaporates from your skin. The effect is more dramatic when the air
is very dry. If you step out of a swimming pool in the desert, even though the air may
be quite hot, you can be chilled by water evaporating from your skin.
To better understand the process of evaporation, consider a liquid in a closed

container with a piston (Fig. 12–12a). If the piston is raised, evaporation begins.
Vapor fills the space above the liquid (Fig. 12–12b) and creates a pressure, called
vapor pressure.As more and more molecules enter the vapor, some molecules begin
to go from the vapor back into the liquid. Initially more molecules leave the liquid than
enter it, and both the density and pressure of the vapor increases. There is soon
reached an equilibrium state, in which as many molecules enter the liquid as leave it.
We say the vapor is then “saturated,” since there can be no further increase in the
number of molecules in the vapor (Fig. 12–12c). In this equilibrium state, vapor pres-
sure reaches its maximum value, called saturated vapor pressure. If the piston is
raised higher, more molecules enter the vapor phase until the vapor pressure again
reaches the same saturated vapor pressure.
As the temperature of a liquid increases, more of its molecules have sufficient

kinetic energy to escape the liquid. Thus, as temperature increases, the rate at which
molecules leave the surface of the liquid increases; that is, the rate of evaporation
increases. An equilibrium state is not reached until the density of the vapor phase
increases enough that the rate at which molecules reenter the liquid matches the new
higher rate at which molecules leave the liquid (Fig. 12–12d). The higher-density equi-
librium state is one of higher pressure. Thus, as temperature increases, saturated
vapor pressure increases.

*12–5



Fig. 12–13 Saturated vapor pressure of
water as a function of temperature.
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Fig. 12–13 shows a graph of saturated vapor pressure versus temperature for water.
At 20� C water’s saturated vapor pressure is only 0.02 atm, at 30� C it doubles to 0.04
atm, and at 100� C it increases to 1.0 atm—50 times greater than at 20� C.
When water is exposed to the open air, evaporation proceeds in the same way as

when no air is present. According to Dalton’s law of partial pressures, a mixture of
gases produces a pressure that is the sum of the pressures produced by each of the
separate gases. Thus nitrogen, oxygen, and water vapor each contribute their own
partial pressures to the total pressure of our atmosphere. At a temperature of 20� C and
a pressure of 1 atm, the partial pressure of water vapor in the air can be no greater than
2% of the total pressure, or 0.02 atm, since the saturated vapor pressure of water is 0.02
atm at 20� C.
We refer to the water content of air as its humidity. Humidity is at a maximum at

a given temperature when the partial pressure of water in the air equals the saturated
vapor pressure of water at that temperature. Since saturated vapor pressure increases
rapidly with increasing temperature, the maximum humidity of warm air is much
greater than the maximum humidity of cooler air. Typically air contains water vapor at
a partial pressure below its saturated value. The relative humidity of air is defined as
the ratio of the partial pressure of the water vapor in the air to the saturated vapor pres-
sure of water at that temperature.

Relative humidity  � 100 (12–19)

For example, if the partial pressure of water vapor in air at 20� C is 0.01 atm, since the
saturated vapor pressure of water is 0.02 atm at 20� C, the relative humidity of the air is

� 100  50%.

Dew, Fog, and Rain
When air containing water vapor is cooled sufficiently, some of the vapor condenses
to the liquid state. This condensation begins when the air drops below the temperature
at which the water vapor’s partial pressure equals the saturated vapor pressure, in other
words, when it drops below the temperature at which relative humidity is 100%. This
temperature is called the dew point. Such condensation often occurs at night when
dew forms on the ground, as the temperature of the ground falls and cools the
surrounding air. For example, suppose air temperature during the day is 30� C with a
relative humidity of 75%, meaning that the partial pressure of water vapor in the air is
75% of the saturated vapor pressure of 0.04 atm at 30� C, or 0.03 atm. Then, if the
temperature of the air near the ground falls to 20� C at night, since the saturated
vapor pressure of water at that temperature is only 0.02 atm, the partial pressure of
water vapor in the air must drop by one third from 0.03 atm to 0.02 atm, meaning that
one third of the water vapor must condense.
Fog results when a humid warm air mass mixes with cooler air and tiny droplets of

water form as the temperature of the warm air drops below the dew point. Clouds form
when air rises and is cooled below the dew point. When a cloud cools suddenly,
condensation is more rapid, water droplets increase in size, and then come together to
form larger drops, which fall as rain.

0.01 atm
*
0.02 atm

Partial pressure of water vapor
****
Saturated vapor pressure of water



Fig. 12–14 As a washer is heated from
temperature T to temperature T 
 �T,
all its linear dimensions get bigger. Even
the hole gets bigger. The actual expansion,
however, is much smaller than indicated
here. The expansion shown here is 20%,
which is approximately 100 times greater
than the expansion of aluminum heated
100 C�.
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Boiling
If the temperature of a liquid is raised enough so that the liquid’s vapor pressure equals
the pressure of the surrounding air, the liquid begins to boil. That is, bubbles of vapor
form within the bulk liquid. These vapor bubbles push outward against the liquid,
which is at approximately the same pressure as the air. Water boils at a temperature of
100� C when the surrounding air is at a pressure of 1.00 atm because the saturated
vapor pressure of air at 100� C is 1.00 atm. If the surrounding air is at a lower pressure,
water will boil at a lower temperature. For example, on a mountain at an elevation of
3000 m, where atmospheric pressure is only 0.7 atm, water boils at a temperature of
90� C, since its saturated vapor pressure at that temperature equals 0.7 atm.

Thermal Expansion
Nearly all solids and liquids expand as they are heated. The fractional increase in
volume, �V/V, is often found to be directly proportional to the increase in temperature,
�T. The constant of proportionality is called the “volume coefficient of expansion,”
denoted by �. Thus

 � �T

or

�V  �V �T (12–20)

The change in volume �V is proportional to the original volume V, as well as to the
temperature change �T. Thus, for example, if 1 liter (1000 cm3) of water is heated from
20� C to 25� C, its volume increases by only about 1 cm3. But if the water in a swim-
ming pool of volume 1000 m3 is heated over the same temperature interval, the water
increases in volume by 1 m3, or 106 cm3. In both cases the ratio �V/V is 10�3.
In the case of solids, the volume expansion is accomplished by an increase in all

linear dimensions. As a solid is heated, the distance between any two points in the solid
increases. The fractional increase in length is normally the same in all directions. Thus,
if a block of marble expands thermally by 0.1% in length, the block’s height and width
will each also increase by 0.1%. The increase in size is like a photographic enlarge-
ment (Fig. 12–14).
Instead of using a volume coefficient of expansion for solids, we normally use a

linear expansion coefficient �, which is a measure of the fractional change in the linear
dimensions of the solid. For a temperature change �T, a length � changes by ��, where

 � �T

or

��  �� �T (12–21)

It is possible to show that the volume coefficient of expansion for a solid equals 3
times its linear coefficient:

�  3� (for solids) (12–22)

�V
*
V

12–6

��
*
�
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A proof of this result is outlined in Problem 42. Coefficients of expansion for various
materials are given in Table 12–2. For liquids there is no measure of linear expansion,
since liquids must conform to the shapes of their containers.

Coefficients of thermal expansion

Solids �, (C°)�1 Liquids and gases �, (C°)�1

Aluminum
Brass
Brick
Concrete
Copper
Diamond
Glass
Gold
Graphite
Ice
Paraffin
Steel
Wood, parallel to fiber
Wood, across fiber

2.4 � 10–5

1.9 � 10–5

1 � 10–5

1.2 � 10–5

1.7 � 10–5

1.2 � 10–6

4 � 10–6 to 1 �10–5

1.4 � 10–5

2 � 10–6

5.1 � 10–5

1 � 10–4

1.2 � 10–5

5 � 10–6 to 1 �10–5

3 � 10–5 to 6 �10–5

Ethyl alcohol
Mercury
Olive oil
Water
Air
Hydrogen
Nitrogen

1.1 � 10–3

1.8 � 10–4

7.2 � 10–4

2.1 � 10–4

3.67 � 10–3

3.66 � 10–3

3.67 � 10–3

Table 12–2

EXAMPLE 8 Expansion of the Golden Gate Bridge

Find the change in the total length of the 2700 m long Golden
Gate Bridge, as the temperature of the bridge increases from 5°
C to 25° C. The bridge is constructed of steel and concrete.

SOLUTION From Table 12–1 we find that steel and concrete
have the same coefficient of thermal expansion: 1.2 �10�5 (C°)�1.
Thus both materials expand equally. We apply Eq. 12–21 to
find the change in the bridge’s length for the 20.0 C° increase
in temperature.

�� � �� �T � [1.2 �10�5 (C°)�1](2700 m)(20.0 C°)

� 0.65 m � 65 cm

Bridges must be constructed with expansion joints to allow for
such thermal expansion (Fig. 12–15); otherwise they might
buckle. Sidewalks can also buckle. If a concrete sidewalk is
poured at a cool temperature with no allowance for thermal
expansion, the sidewalk can buckle when it gets hot (Fig. 12–16).

Fig. 12–15 An expansion joint on a bridge.

Fig. 12–16 This sidewalk buckled because of thermal expansion.
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EXAMPLE 9 Overflow of an Expanding Liquid

A glass container that has a volume of 1.0 liter and is filled with
alcohol is initially refrigerated at a temperature of 7° C. How
much of the alcohol will overflow if the container is placed in a
warm room where the temperature is 27° C? The linear coeffi-
cient of expansion for the glass is 1.0 �10�5 (C°)�1.

SOLUTION The volume coefficient of expansion for the
glass is 3 times its linear coefficient, or 3.0 �10�5 (C°)�1. Thus

�Vglass � 	glassV �T

� [3.0 �10�5 (C°)�1](1.0 �103 cm3)(20 C°)

� 0.60 cm3

From Table 12–1 we find that the volume coefficient of expan-
sion for alcohol is 1.1 � 10�3—much larger than the coeffi-
cient for glass. Therefore the alcohol will expand more than
the glass.

�Valc � 	alcV �T

� [1.1 �10�3 (C°)�1](1.0 �103 cm3)(20 C°)

� 22 cm3

Since the volume of the glass container increases by only about
1 cm3, about 21 cm3 of the alcohol will overflow.

EXAMPLE 10 Thermal Stress

A 2.0 m long aluminum window frame is mounted snugly in a
brick wall at a temperature of 10° C. Find the stress in the
frame when the temperature rises to 30° C. Young’s modulus
for aluminum is 6.9 �1010 N/m2.

SOLUTION From Table 12–1 we find that the coefficients of
thermal expansion for aluminum and brick are 2.4 �10�5 (C°)�1

and 1 �10�5 (C°)�1 respectively. Thus, if both were free to expand
as the temperature increases, the aluminum would expand
more. However, the expansion of the aluminum is limited by
the surrounding brick. The window can expand no more than
the opening, which expands in the same way as the brick itself.
The brick walls exert stress on the aluminum, in effect com -
pressing it from the dimensions it would have if it were free to
expand to the dimensions of the expanded opening.

First we apply Eq. 12–21 to compute the increase in the
length of the opening, ��opening, for a 20 C° temperature increase,
using the thermal expansion coefficient for brick.

��opening � �� �T � [1 �10�5 (C°)�1](2.0 m)(20 C°)

� 4 �10�4 m � 0.4 mm

Next we compute the increase in length the aluminum would
have if it were free to expand thermally.

��Al � �� �T � [2.4 �10�5 (C°)�1] (2.0 m)(20 C°)

� 9.6 �10�4 m � 0.96 mm

The brick’s effect on the window frame is to reduce its expan-
sion from 0.96 mm to 0.4 mm. That is, the brick in effect com -
presses the aluminum frame by 0.96 mm � 0.4 mm � 0.6 mm.
This means that the brick exerts a stress �, which we can
compute using Eqs. 10–6 (
 � ��/�) and 10–8 (Y � �/
)

� � Y
 � Y �
�

�

�

� (6.9 �1010 N/m2)

� 2 �107 N/m2

This means that every 1 cm2 section of the window frame adja-
cent to the brick is subjected to a force

F � �A � (2 �107 N/m2)(10�2 m)2 � 2000 N

Such a large force is likely to bend the frame and break the
window glass.

0.6 �10–3 m
��

2.0 m



Bimetallic Strip
Thermal expansion is applied in a bimetallic strip, which can be used to make a ther-
mometer or a thermostat. The bimetallic strip is formed by welding or riveting together
two thin strips of metal with different �’s (Fig. 12–17). For example, a bimetallic strip
may consist of brass and steel, with thermal expansion coefficients of 1.9� 10 �5 (C�)�1

and 1.2� 10 �5 (C�)�1 respectively. When heated, the brass tends to expand more than
the steel, since � is greater for brass than for steel. But along the surface where the two
metals are bonded together, their expansion must be the same. The result is that the two
strips bend toward the steel, and so the average separation between molecules in the
brass is greater than the average separation between molecules in the steel. Fig. 12–18
shows how a bimetallic strip can be used in a thermostat, which controls a heating
system. The thermostat switch is on when the temperature is low, and the switch
turns off when the temperature increases.

Thermal Expansion of Water
In many cases the simple linear dependence of �V on �T expressed by Eq. 12–20 is
valid over all temperature ranges commonly encountered, with a constant value for �.
However, for some substances the variation of volume with temperature is more
complicated. Water is such a substance. Fig. 12–19 shows the density of water as a
function of temperature. Notice that at most temperatures the density of water
decreases as its temperature increases; that is, water expands as it is heated. But in the
temperature range from 0� C to 4� C water contracts as it is heated. Water is one of the
few materials that have this property. This has an important effect on the rate at which
lakes freeze. As air temperatures drop, the temperature of the water in a lake drops
also, with the cooling occurring first at the surface of the lake. For temperatures
above 4� C this cooling proceeds very efficiently. As water cools, it becomes more
dense and sinks to a lower level in the lake, as warmer, less dense water rises to take
its place. Thus there is a natural mixing of warmer and colder water, causing rapid
cooling of water beneath the surface. However, when the water reaches a uniform
temperature of 4� C, the process changes. Cooling of the surface water below 4� C
decreases its density. Thus it stays at the surface, and further cooling of the water
beneath proceeds more slowly. The surface of the lake may freeze. But in even the
coldest weather, large lakes do not freeze solid. The water at the bottom of the lake
remains at 4� C, enabling the marine life there to survive.

Fig. 12–19 The density of water as a function of temperature.
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(a) (b)

Fig. 12–17 (a) A bimetallic strip. Both
metals initially have the same length.
(b)When heated, the brass expands
more than the steel.

Fig. 12–18 The thermostat switch
opens when the temperature increases
enough to bend the bimetallic strip to
the right.
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HAPTER SUMMARY12CThe Kelvin temperature scale is based on measurements of
pressure for a low-density gas at constant volume. The
temperature 273.16 K is assigned to the triple point of
water (the point at which water can coexist in the solid,
liquid, and vapor states). The ratio of the gas pressure P to
its value at the triple point, Pt r, defines the temperature.

T  (273.16 K)

Celsius and Fahrenheit temperature scales are defined rela-
tive to the Kelvin scale.

TC  T � 273.15

TF  32 
 TC

The ideal gas law relates the pressure P, volume V, num -
ber of molecules N, and temperature T for an ideal gas:

PV  NkT

where k is Boltzmann’s constant.

k  1.380 � 10 �23 J/K

One mole of a substance contains Avogadro’s number of
molecules, NA, and has a mass in grams numerically equal
to the molecular mass of the substance.

NA  6.022 � 1023

The ideal gas law may also be expressed in terms of the
number of moles, n.

PV  nRT

where

R  NAk  8.31 J/K

Dalton’s law of partial pressures states that a mixture of
noninteracting ideal gases produces a pressure that is the
sum of the pressures that would be produced by each of the
gases alone.
Kinetic theory uses a molecular model to derive results

such as the ideal gas law.
At a given temperature, the distribution of molecular

speeds is given by the Maxwell distribution. A typical mole -
cular speed at any given temperature T is the rms speed:

vrms  �v��2�� ��
where m is the molecular mass.
For many materials, heating produces an increase in vol -

ume that is proportional to the increase in temperature, �T.

�V  �V �T

where V is the original volume and � is the coefficient of
expansion.
For solids there is a linear coefficient of expansion, �,

that determines the change in length ��, corresponding to
a temperature change �T.

��  �� �T

For a solid the volume coefficient is 3 times the linear
coefficient:

�  3�

3kT
*
m

9
*
5

P
*
Pt r

1 Two bodies, A and B, are initially at the same tempera-
ture. If the temperature of A increases by 1 C� and the
temperature of B increases by 1 F�, which has the higher
final temperature?

2 Will a thermometer in direct sunlight accurately mea -
sure the temperature of the surrounding air?

3 Air bubbles are expelled by a scuba diver on the ocean
floor (Fig. 12–20). Does the size of a bubble change as
it rises to the surface?

Fig. 12–20

Questions



Temperature Measurement

1 Find the temperature in �F corresponding to the follow -
ing temperatures on the Celsius scale: 0.00� C, 10.0� C,
20.0� C, 30.0� C, 40.0� C.

2 Find the temperature in �C corresponding to the fol -
low ing temperatures on the Fahrenheit scale: 0.00� F,
10.0� F, 20.0� F, 40.0� F, 60.0� F, 80.0� F.

3 Find the pressure of a constant-volume gas thermometer
at a temperature of 300 K if its pressure at the triple point
is 0.100 atm.

4 Find the triple point pressure of a constant-volume gas
thermometer if its pressure is 0.400 atm at a temperature
of 100� C.

5 At what temperature are the Celsius and Fahrenheit
temperatures the same?

Ideal Gas Law

6 Find the mass in grams of a carbon dioxide molecule.
7 Find the number of atoms in a gold ring of mass 4.00 g.
8 Find the number of H2O molecules in 1.00 liter (1000
cm3) of water.

9 Find the number of molecules in 1.00 cm3 of air at a
pressure of 1.00 atm and a temperature of 300 K.

10 Find the volume occupied by 1.00 mole of ideal gas
at standard conditions of pressure and temperature
(P  1.00 atm, T 273 K).

11 A gas consists of 5.00 grams of oxygen and 5.00 grams
of nitrogen and occupies a volume of 1.00 liter at a temp -
erature of 350 K.
(a) Find the number of gas molecules.
(b) Find the partial pressure of the oxygen.
(c) Find the partial pressure of the nitrogen.
(d) Find the total pressure of the gas.

12 In deflating an air mattress you press the valve release so
that air begins to escape. After some of the air has
escaped, the pressure inside the air mattress decreases to
atmospheric pressure, and no more air flows out. By
squeezing all the air out from the end of the air mattress
opposite the valve, you reduce the volume and increase
the pressure in the remaining air, so that it will flow
out. The air initially occupies a volume of 0.120 m3.
By how much do you need to reduce its volume in order
to increase the pressure to 1.20 atm?

13 By how much does the air pressure in a house increase
if the house is sealed and the air temperature increases
from 10.0� C to 20.0� C? The initial air pressure is 1.00
atmosphere.

12–1
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4 What is the average velocity of gas molecules?
5 A container is filled with a mixture of hydrogen and
helium gases. Compared to helium molecules, do the
hydrogen molecules on the average have greater, lesser,
or the same: (a) speed; (b) kinetic energy?

6 If you increase the temperature of a gas, while holding
its volume fixed, will the time interval between a mole-
cule’s collisions with one wall of the container increase,
decrease, or remain constant?

7 Is a molecule of oxygen gas at 300 K more likely to
have a speed of 100 m/s or 600 m/s?

8 Two drinking glasses are stuck together, one inside the
other. It is possible to separate the glasses by immersing
the outer glass in water and filling the inner glass with
water of a different temperature. Hot tap water and ice
water work well. Where should the ice water be?

9 Water fills a large industrial cooking pot of height 1
meter. The pot is heated from beneath, and when the
water at the bottom of the pot reaches a certain temper-
ature, it begins to boil. Will this temperature be the
normal boiling point of 100� C, or will it be at a slightly
higher temperature or at a slightly lower temperature?

Answers to Odd-Numbered Questions
1 A; 3 Yes, volume increases because of a decrease in
pressure; 5 (a) greater; (b) same; 7 600 m/s; 9 Slightly
higher temperature

CHAPTER 12 Temperature and Kinetic Theory
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14 Air is pumped into a bicycle tire. The air initially in the
tire has a volume of 2500 cm3, a temperature of 20.0� C,
and a gauge pressure of 2.00 atm. How many mole-
cules of air must be pumped into the tire in order to raise
the gauge pressure to 5.00 atm? Assume that the volume
and temperature of the air inside the tire are approxi-
mately constant.

15 A driver measures her “cold” tire gauge pressure to be
1.93 � 105 Pa. The measurement is made before
driving, when the tires are at the temperature of the
surroundings, 20.0� C. After driving several miles, she
checks the gauge pressure again and finds that it has
increased to 2.20 � 105 Pa. Find the final temperature of
the air in the tires, assuming negligible change in
volume.

16 A balloon is filled with 5.00 liters of helium at a pres-
sure of 1.20 atm and a temperature of 27.0� C.
(a) Find the mass of the helium.
(b) Find the buoyant force on the balloon if it is placed

in the atmosphere with air pressure at 1.00 atm and
temperature at 23.0� C.

(c) Find the acceleration of the balloon if the rubber
has a mass of 4.00 g.

17 A 1.00 liter flask contains a certain quantity of ideal gas
at 300 K. Then an equal quantity of the same gas is added
to the flask, after which the absolute pressure is 1.50
times its original value. What is the final temperature?

18 A 1.00 liter cylinder contains helium and oxygen, with
partial pressures of 0.100 atm and 0.200 atm respec-
tively, at a temperature of 300 K. Find the mass density
of each gas.

Kinetic Theory; Model of an Ideal Gas

19 Suppose that a 1.00 cm3 box in the shape of a cube is
perfectly evacuated, except for a single particle of mass
1.00 � 10�3 g. The particle is initially moving perpendic -
ular to one of the walls of the box at a speed of 400 m/s.
Assume that the collisions of the particle with the walls
are elastic.
(a) Find the mass density inside the box.
(b) Find the average pressure on the walls perpendi-

cular to the particle’s path.
(c) Find the average pressure on the other walls.
(d) Find the temperature inside the box. Discuss the as -

sump tion of elastic collisions, in light of this result.
20 Find the rms speed of H2O molecules in atmospheric
water vapor at a temperature of 20.0� C.

21 A volume of nitrogen gas has a density of 1.00 kg/m3

and a pressure of 1.00 atm. Find the temperature of the
gas and the rms speed of its molecules.

22 Find the rms speed of (a) a helium molecule at 300 K;
(b) an iron atom of mass 55.9 u at 300 K; (c) a pollen
particle of mass 5.00 � 10 �13 g suspended in water at a
temperature of 300 K.

23 (a) Find the ratio of the average energy of a neon gas
mol e cule to the average energy of a helium gas
molecule if both gases are at the same temperature.

(b) Is either kind of molecule more likely than the other
to lose energy during molecular collisions?

24 Estimate the fraction of oxygen molecules with speeds
between 200 m/s and 600 m/s at 300 K. Use Fig. 12–8.

Vapor Pressure and Humidity

25 What air pressure is required for water to boil at a temp -
erature of 60� C?

26 What is the maximum partial pressure of water vapor in
air at a temperature of 80� C?

27 The water vapor in air at 20� C has a partial pressure of
0.0050 atm. What is the relative humidity?

28 When the relative humidity is 60% and the tempera-
ture is 30� C, what is the partial pressure of water vapor
in the air?

29 What is the dew point for air that has a relative humidity
of 50% and a temperature of 30� C?

Thermal Expansion

30 A brick is initially 10.00 cm high and an aluminum can
is initially 10.01 cm high. By how much must their temp -
eratures be raised in order for the brick and the can to
have exactly the same height?

31 Thin copper wire of length 100 m is wound on a cylin-
drical copper spool of length 10 cm. What is the change
in length of the wire when the temperature is raised
from 10� C to 40� C?

32 A solid wood door 0.90 m wide is hung in a metal door -
way at 0.0� C with a clearance of 2.0 mm on the side.
If the linear coefficient of expansion of the wood is
6.0 � 10 �5 (C�)�1, at what temperature would the door
begin to touch the side of the doorway? Assume that the
metal doorway does not expand significantly.

*33 An aluminum canteen is initially filled with 600 cm3 of
water at 0.0� C. If the canteen is not tightly closed, how
much of the water will overflow when its temperature
rises to 30� C?

12–3
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34 The exterior brick surface of a house has a surface area
of 200 m2 in the winter when the temperature is 0.0� C.
How much does the surface area increase in the summer
when the temperature rises to 30� C?

*35 Two drinking glasses of diameter 8.0 cm are stuck
together, one inside the other. The glasses can be sepa-
rated without force if the outer glass is thermally ex -
panded while the inner glass is thermally contracted.
Initially both glasses are at 20� C. How much clearance
can one produce by cooling the inner glass to 10� C by
filling it with cold water while heating the outer glass to
30� C by running hot water over it? The linear expansion
coefficient for the glass is 1.0 � 10�5 (C �)�1.

**36 Steel wire of radius 1 mm is cooled from 20� C to 0� C.
How much tension would you have to apply to the wire
to stretch it back to its original length? Young’s modulus
for steel is 2.0 � 1011 N/m2.

37 By how much will the volume of coolant in an automo-
bile radiator increase when its temperature increases by
100 C� if the initial volume of coolant is 12 liters and its
thermal coefficient of expansion is 5.0 � 10�4 (C �)�1?

Additional Problems
*38 An air bubble is expelled by an underwater diver at a

depth of 10.0 m. As the bubble rises to the surface, the
pressure decreases and the volume of the bubble there-
fore increases. The temperature of the water is constant.
Find the final volume of the bubble if its initial volume
is 10.0 cm3.

*39 A cylindrical chamber, open at the bottom, is to be
submerged in the ocean and used as a diving chamber
(Fig. 12–21). Initially air at a pressure of 1.00 atm and a
temperature of 300 K fills the cylinder of height 3.00 m.
What will be the height h of the air in the cylinder if it is
at a depth of 10.0 m where the temperature is 290 K?

Fig. 12–21

**40 An ideal gas is heated from T to T
 �T. Show that the
volume coefficient of expansion is 1/T.

*41 Almost the entire volume of mercury in a thermometer
is contained in the bulb. The remainder extends up into
a capillary tube. Suppose that the bulb has a volume of
1.00 cm3. Find the inner radius of the capillary tube if
the level of the mercury rises 2.00 cm per Celsius degree
increase in temperature. Thermometer glass has a vol ume
coefficient of expansion much less than that of mercury.
Therefore you can ignore the expansion of the glass.

**42 A cube of edge length � has a volume V  �3. When
the cube’s temperature is increased by �T, the edge
length increases to � 
 �� and the volume increases
to V
 �V (� 
 ��)3. Obtain an expression for �V/V
and show that the volume coefficient of expansion � is
related to the linear expansion coefficient � by the equa-
tion �  3�, assuming � �T is small.

43 Two boxes, each having a volume of 1.00 liter, contain
helium gas. The gas in one box has a mass of 4.00 g and
is initially at a temperature of 350 K, and the gas in the
other box has a mass of 8.00 g and is initially at a temp -
erature of 300 K. The two gases are brought into thermal
contact and reach a common final temperature T.
(a) Find the initial pressure and rms speed for each gas.
(b) Find the final rms speed.
(c) Find the final temperature T.
(d) Find the final pressure for each gas.

**44 A sealed glass jar contains air initially at a pressure of
1.00 atm and a temperature of 0� C. Find the air pressure
when the jar is heated to 400� C. The linear expansion
coefficient of the glass is 1.00 � 10�5 (C�)�1.

45 At a temperature of 0.0� C the steel rectangle shown in
Fig. 12–22 has a gap of 1.0 mm. What is the change in
the gap if the steel is heated to 1000� C?

Fig. 12–22
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*46 Suppose that a steel band encircled the earth. By how
much would you have to raise the temperature of the
metal to expand it enough so that it would be lifted
100 m away from the surface?

*47 Global warming causes the sea level to rise due to both
the melting of glaciers and the thermal expansion of the
sea. Estimate the rise in sea level from thermal expan -
sion as the earth’s mean temperature increased by 0.5 C�
from 1860 to the present.

**48 Estimate the thickness of the layer of water that would
cover the earth if all the water vapor in the earth’s atmos -
phere were to condense. Treat the air as a uniform layer
10 km thick, with a temperature of 20� C and a relative
humidity of 50%.

**49 Wood paneling with an unusually high thermal coeffi-
cient of expansion of 1.0 � 10�4 (C�)�1 is installed at a
temperature of 5� C, with no space between boards to
allow for thermal expansion. The temperature later
increases to 30� C, and the paneling buckles because it
expands considerably while the surface to which it is
nailed does not. Find the average angle at which each
piece of paneling protrudes from the wall.

50 Find the volume of air inside a hot-air balloon required
to support a weight of 5000 N if the temperature of the
air inside the balloon is 100� C and the temperature of
the surrounding air is 20� C. Use the result of Ex. 3,
where we found that the density of the hot air is 78.6%
of the cooler air’s density (1.2 kg/m3).

Problems




