Lecture One

Environmental Engineering Department- Third Stage

PROPERTIES AND CONTAMINANTS OF WATER

1.1 Introduction

Methods used for the treatment of a raw water will depend on the properties of the water and the presence and concentrations of any contaminants.
Groundwater usually have low levels of colour and turbidity and consistent microbiological quality, although water from shallow wells and some springs may be more variable. Particular problems may include high or low pH value and alkalinity and high concentrations of iron, manganese, nitrate, chlorinated solvents or pesticides.

Surface water may have high levels of colour and turbidity and exhibit poor microbiological quality. Quality may be variable and deteriorate following periods of heavy rainfall. Other problems may include low pH value and alkalinity and high concentrations of aluminum, iron, manganese, nitrate or pesticides.

1.2 Physical Parameters

Physical, chemical and microbiological characteristics relate to the quality of water for domestic and usually associated with the general appearance of the water.

Odor and Taste

It is the most common observation in water quality. The sources would be from organic compounds such as degradation of organic matters or petroleum, and inorganic compounds such as minerals, metals, salts which gives the taste. In addition, certain types of algae, especially the blue-green algae, can also impact foul tastes and odors. The significant effect of this would be upon our health and feeling aesthetic. Drinking water should be free from any objectionable taste or odour at point of use.

Colour

A water may appear coloured because of material in suspension and true colour can only be determined after filtration. The removal of colour from water is necessary not only for aesthetic reasons but also because chlorination of highly coloured waters can give rise to high concentrations of trihalomethanes which is formed as a result of reactions between chlorine and some organic substances present in raw waters. High colour also reduces the efficiency of disinfection by chlorination and ozonation. Colour will also cause fouling of reverse osmosis membranes. Drinking water limit is less than 5 colour units.

Turbidity

Turbidity is a measure of the amount of particulate matter that is suspended in water. It normally measured in Nephelometric Turbidity Units (NTU). The sources would be from organic compounds such as plant fiber, human waste, etc. and inorganic compounds such as clay or sand. Beside of feeling aesthetic and effect upon health, the chemical and biological processes are also effected.

Temperature

Water temperature affects the ability of water to hold oxygen, the rate of photosynthesis by aquatic plants and the metabolic rates of aquatic organisms. The sources would normally be the effect from changes of weather or heat and industrial activities such as cooling system. The temperature effects would be upon the disturbance of biological activities (aquatic life and micro-organism) and the chemical properties such as the degree of gas solubility, density and viscosity.

Total Suspended Solid

Total suspended solids (TSS) is a measure of the amount of sediment moving along in a stream. The sources would be from organic compounds such as plant fiber, human waste, etc. and inorganic compounds such as clay or sand. Beside of feeling aesthetic and effect upon health, the chemical and biological processes would also effected. (It measured in mg / L).

Total Dissolved Solid

The total dissolved solids (TDS) in water consist of inorganic salts and dissolved materials. In other words, solid left in water after it was filtered and dried. The sources would be from organic compounds such as product from degradation of organic matters or gas and inorganic compounds such as minerals, metals and gases. The effect would cause the taste, color, and odor problems as well as our health, plus water would becomes corrosive to attain equilibrium due to small amount of TDS matter.

Electrical conductivity

The EC in water is related to the TDS. It is a measure of ability of the water to conduct an electrical current. The EC increases when TDS increases and visa versa.

1.3 Chemical parameters

Dissolved oxygen (DO)

In nature, clean waters are saturated with DO or nearly. If organic wastes are discharged into the natural waters, microorganisms decompose these wastes and utilize DO. Then the level of DO in natural water is an indicator to the pollution.

Alkalinity

Alkalinity in natural water is due to the presence of bicarbonate and carbonate ions, and also it may be due to salts of silicate, phosphate, organic acids and hydroxides.

Hardness

Hard water is associated with formation of scales in boilers, heaters and hot water pipes. Hardness in natural water is due to calcium and magnesium ions. As a function of hardness, the water is classified as soft, moderately hard, hard, very hard and extremely hard, as the following table.

Hardness description	Hardness as CaCO3 mg/l
Soft	$0-50$
Moderately soft	$50-100$
Slightly hard	$100-150$
Moderately hard	$150-200$
Hard	>200
Very hard	>300

Aluminium

Aluminium is a natural constituent of many raw waters, particularly acidic surface waters derived from upland catchments particularly in conifer afforested catchments and its presence is highly episodic related to precipitation. Aluminium compounds may also be introduced into treated water as the result of its use as a coagulant to remove colour and turbidity. The UK drinking water quality regulations include a national standard for aluminium of $200 \mu \mathrm{~g} / \mathrm{L}$. Aluminium can deposit within the distribution system and give rise to aesthetic problems. Aluminium in raw water can be removed by coagulation and filtration. The use of aluminium sulphate as a coagulant in water treatment should normally result in a residual concentration of no more than 50 to $100 \mu \mathrm{~g} / \mathrm{L} \mathrm{Al}$. Aluminium in small water supplies can be removed by use of filtration or membrane techniques.

Iron and manganese

Iron and manganese derived from minerals and sediments can be present in particulate or dissolved form in groundwaters and surface waters. Iron and manganese concentrations in surface waters are usually less than 1 mg / l but much higher concentrations (up to $50 \mathrm{mg} / \mathrm{L} \mathrm{Fe}$ and $30 \mathrm{mg} / \mathrm{L}$ Mn) can be encountered in groundwaters. Iron and manganese suspensions cause aesthetic problems including metallic taste and discoloration of water fittings and laundry. High dissolved iron and manganese concentrations can also increase chlorine demand and thus reduce the efficiency of chlorine disinfection. The UK drinking water quality regulations include national standards for iron and manganese of $200 \mu \mathrm{~g} / \mathrm{L}$ and $50 \mu \mathrm{~g} / \mathrm{L}$, respectively. Iron and manganese can be removed by filtration although oxidation, coagulation and sedimentation may be required for high concentrations particularly if the metals are in dissolved form.

Lead

The concentration of lead in raw waters rarely exceeds $20 \mu \mathrm{~g} / \mathrm{L}$ but higher concentrations do occur in water drawn from strata containing galena or other lead ores. High levels of lead in drinking waters are usually caused by the dissolution of lead (plumb solvency) from lead pipework, tank linings or use of leaded alloys in water fittings. Traces of lead may also be derived from lead solder and from PVC pipes containing lead-based stabilizers. The UK drinking water quality regulations specify a standard for lead of $10 \mu \mathrm{~g} / \mathrm{l}$.

Nitrate

Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$occurs naturally in water as a result of the oxidation of ammonia, which is released during mineralization of organic nitrogen. In some areas agriculture is the major source of nitrate in surface waters and groundwaters. The discharge of nitrate-containing effluents from sewage treatment works contributes to the concentration of nitrate in some surface waters. Ion-exchange, biological de-nitrification and certain membrane processes can reduce nitrate concentrations. Of these, only ion-exchange and membrane processes are likely to be practicable for small water supplies. It may be appropriate to consider controls over agricultural activities within catchment areas as a long term means of reducing the leaching of nitrate into water supplies, if these are the source.

Ammonia

Most natural waters contain traces of ammonia or ammonium compounds. The ammonia found in water may occur naturally or it may indicate that recent pollution has taken place. Ammonia may also be derived from the decay of organic material in the soil resulting in small concentrations in water; unpolluted river waters rarely contain more than $0.05 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}$. On the other hand, the presence of ammonia could indicate contamination from human or animal sources. Elevated concentrations in water should be investigated to ascertain the cause. The UK drinking water quality regulations set an indicator parameter value for ammonia of $0.5 \mathrm{mg} / \mathrm{L} \mathrm{NH}_{4}$.

Pesticides

The use of pesticides for agricultural and non-agricultural purposes is widespread and there are approximately 450 different active ingredients in pesticides licensed. The UK drinking water quality regulations specify standards of $0.1 \mu \mathrm{~g} / \mathrm{L}$ for individual pesticides and $0.5 \mu \mathrm{~g} / \mathrm{L}$ for total pesticides.

Biochemical oxygen demand (BOD)

The BOD test gives an indication of the oxygen required to degrade biochemically any organic matter present in a water, as well as the oxygen needed to oxidize inorganic materials such as sulphides. The BOD test is conducted for wastewater (not for drinking water) as an indicator for organic pollution.

1.2 Microbiological parameters

The microbiological quality of drinking water has traditionally been assessed by monitoring for bacteria called faecal indicator organisms (coliforms, E. coli, and enterococci). The presence of these organisms is indicative of past faecal contamination and hence the possible presence of enteric pathogens. Although indicator organisms are generally adequate for monitoring purposes they cannot completely be relied on to indicate the absence of pathogens. This is especially true where a pathogen is environmentally more robust, or can survive treatment better than the indicators. In these circumstances the indicator may be absent even though low numbers of pathogens still remain.

Table (1.1) Water Quality Standards of Drinking Water

N	Hem	Standard Value	No	Item	Standard Value	
1	Standard Plate Count	100 in 1 mL or less	26	Total Trihalomethanes	$0.1 \mathrm{mg} / \mathrm{L}$ or less	
2	Coliform Group Bacterial	Not to be detected	27	Trichloroacetic Acid	$0.02 \mathrm{mg} / \mathrm{L}$ or less	
3	Cadmium	$0.01 \mathrm{mg} / \mathrm{L}$ or less	28	Bromodichloromethane	$0.03 \mathrm{mg} / \mathrm{L}$ or less	
4	Mercury	0.0005 mg / or less	29	Bromotorm	$0.09 \mathrm{mg} / \mathrm{L}$ or less	
5	Selenium	$0.01 \mathrm{mg} / \mathrm{l}$ or less	30	Formaldehyde	$0.08 \mathrm{mg} / \mathrm{L}$ or less	
6	Lead	$0.01 \mathrm{mg} / \mathrm{L}$ or less	31	Zinc	$1.0 \mathrm{mg} / \mathrm{L}$ or less	
7	Arsenic	$0.01 \mathrm{mg} / \mathrm{L}$ or less	32	Aluminium	$0.2 \mathrm{mg} / \mathrm{L}$ or less	
8	Chromium (VI)	$0.05 \mathrm{mg} / \mathrm{L}$ or less	33	Iron	$0.3 \mathrm{mg} / \mathrm{L}$ or less	
9	Cyanide	$0.01 \mathrm{mg} / \mathrm{L}$ or less	34	Copper	$1.0 \mathrm{mg} / \mathrm{L}$ or less	
10	Nitrates/Nitrites	$10 \mathrm{mg} / \mathrm{L}$ as nitrogen or loss	35	Sodium	$200 \mathrm{mg} / \mathrm{L}$ or less	
11	Fluoide	$0.8 \mathrm{mg} / \mathrm{L}$ or less	36	Manganese	$0.05 \mathrm{mg} / \mathrm{L}$ or less	
12	Boron	$1.0 \mathrm{mg} / \mathrm{L}$ or less	37	Chloride	$200 \mathrm{mg} / \mathrm{L}$ or less	
13	Carbon Tetrachloride	$0.002 \mathrm{mg} / \mathrm{L}$ or less	38	Calcium. Magnesium, etc. (Hardness)	$300 \mathrm{mg} / \mathrm{L}$ or less	
14.	1,4-dioxane	$0.05 \mathrm{mg} / \mathrm{L}$ or less	39	Total Residue	$500 \mathrm{mg} / \mathrm{L}$ or loss	
15	1.1-dichloroethylene	$0.02 \mathrm{mg} / \mathrm{L}$ or less	40	Metrylene Blue Acfivaled Substance	$0.2 \mathrm{mg} / \mathrm{L}$ or less	
16	cis-1,2-dichloroethylene	$0.04 \mathrm{mg} / \mathrm{L}$ or less	41	Geosmin	$0.00001 \mathrm{mg} / \mathrm{L}$ or less	1)
17	Dichloromethane	$0.02 \mathrm{mg} / \mathrm{L}$ or less	42	2-methylisoborneol (MIB)	$0.00001 \mathrm{mg} / \mathrm{L}$ or less	2)
18	Tetrachloroethylene	$0.01 \mathrm{mg} / \mathrm{L}$ or less	43	Nonionic Surfactant	$0.02 \mathrm{mg} / \mathrm{L}$ or less	
19	Trichloroethylene	$0.03 \mathrm{mg} / \mathrm{l}$ or less	44	Phonols	0.005 mgl as phenol or less	3)
20	Benzene	$0.01 \mathrm{mg} / \mathrm{L}$ or less	45	Orgat: Corrourd (3s concestationd TOC)	$5 \mathrm{mg} / \mathrm{l}$ or less	
21	Chloroacetic Acid	$0.02 \mathrm{mg} / \mathrm{L}$ or less	46	pH Value	5.8-8.6	
22	Chlorolorm	$0.06 \mathrm{mg} / \mathrm{L}$ or less	47	Taste	Not abnormal	
23	Dichloroacetic Acid	0.04 mg / or less	48	Odor	Not abnormal	
24	Dibromochloromethane	$0.1 \mathrm{mg} / \mathrm{L}$ or less	49	Color	5 degree or less	
25	Bromate	$0.01 \mathrm{mg} / \mathrm{l}$ or less	50	Turbidity	2 degree or less	

Note 1), Note 2) : The standard value is $0.00002 \mathrm{mg} / \mathrm{L}$ by 31 March 2007.
Note 3) : The standard value of organic compound etc.as the potassium permanganate consumption is $10 \mathrm{mg} / \mathrm{L}$ by 31 March 2005.

Type of sample: Hospital wastewater
Source: Ibn Al-Nafees Hospital, Baghdad city
Results of physical analysis:

Turbidity	516 NTU
TSS	1450 ppm
TDS	900 ppm
Electrical Conductivity, EC	$1780 \mu \mathrm{~S} / \mathrm{cm}$

Results of chemical analysis:

pH	8.12
BOD_{5}	325 ppm
COD	500 ppm
TOC	200 ppm
Alkalinity, as CaCO_{3}	552 ppm
Cations, ppm	0.02
Lead, Pb	0.26
Cadmium, Cd	0.73
Iron, Fe	0.01
Nickel, Ni	0.30
Mercury, Hg	0.62
Copper, Cu	0.20
Silver, Ag	0.02
Zinc, Zn	0.40
Chromium, Cr	0.06
Manganese, Mn	44
Calcium, Ca	19.7
Magnesium, Mg	150
Sodium, Na	60
Potassium, K	
Anions, ppm	10
Total phosphorus, PO_{4}	4.054
Nitrate, NO_{3}	0.214
Nitrite, NO_{2}	189.94
Chlorides, Cl	516
Sulfate, SO_{4}	

Results of microbiological analysis:

Bacteria		
Fecal coliform FC, CFU/100ml		
Total coliform count TC, CFU/100ml		
Total heterotrophic bacterial count TPC, CFU/ml	8.3×10^{12}	
Other microorganisms	+	
Viruses	+	
Parasites	+	
Worms		

Lecturetwo

Din Ahmed Hessoon Alil

Enyifonmental Eny

Thut stage

2.1 Design Periods

A water treatment plant is generally designed and constructed to serve the needs of a community for a number of years in the future. The initial year is the year when the construction is completed and the initial operation begins. The design or planning year is the year when the facility is expected to reach its full designed capacity. Period between initial and design year is known as the design period.

Design period is estimated based on the following:

- Useful life of the component.
- Expandability aspect.
- Anticipated rate of growth of population, including industrial, commercial developments \& migration-immigration.
- Available resources.
- Performance of the system during initial period.

The design periods usually adopted are as
following:

- Dams: 25-100 years
- Treatment plant: $10-25$ years
- Pumps: 10 years
- Distribution system: 35-45 years

2.2 Population Forecasting Methods

The various methods adopted for estimating future populations are given below. The particular method to be adopted for a particular case or for a particular city depends largely on the factors discussed in the methods, and the selection is left to the discretion and intelligence of the designer.

1. Arithmetic Method
2. Geometric or uniform percentage Method
3. Geometric increase method
4. Declining growth Method
5. Logistic Curve Method
6. Ratio Method
7. Curvilinear Method

2.2.1 Arithmetic Method

This method is based on the assumption that the population increases at a constant rate. This method is most applicable to large and established cities.
$\frac{d P}{d t}=K$
$P=$ Population
$t=$ time
$K=$ arithmetic growth constant $\quad K=\frac{\left(P_{2}-P_{1}\right)}{\left(t_{2}-t_{1}\right)}$
$P=P_{o}+K \Delta t$

Example 1

The population number of a city at 1990 was 6200 capital and became in 2000, 8000 capital. Estimate the population at 2010.

$$
\begin{aligned}
& K_{a}=\frac{8000-6200}{2000-1900}=180 \text { cap. } \\
& P_{2010}=8000+180(2000-1990)=9800 \text { cap. }
\end{aligned}
$$

2.2.2 Geometric or uniform percentage method

This method assumes that the rate of growth is proportional to the population.
$\frac{d P}{d t}=K P$
$\ln P=\ln P_{o}+K \Delta t$
$P=$ Population
$t=$ time
$K=$ rate constant $\quad K=\frac{\ln P-\ln P_{o}}{\Delta t}$

Example 2

The following table shows the number of the population as a function of time. Estimate the population number at 1970.

Year	1930	1940	1950	1960
Pop. number	62000	74000	85000	100000

Question: Can we apply Arithmetic method to solve the above question?

2.2.3 Geometric increase method

The average percentage of the last few decades/years is determined, and the forecasting is done on the basis that percentage increase per decade/year will be same. Thus, the population at the end of n years or decades is given as:
$P_{T}=P_{o}(1+A G R)^{n}$
Where, AGR = annual growth rate of the population

- $\mathrm{P}_{\mathrm{T}}=$ population at time n in the future
- $\mathrm{P}_{\mathrm{o}}=$ present population
- $\mathrm{n}=$ periods of projection

Notices

1. AGR is 3% for developing countries and 5% for advanced countries.
2. This is the most common method in establishing population required in designing of water treatment and networks.

Example 3

The Annual Growth Rate of a town in Ethiopia is 3.5\%. Assuming the present population of the town (in 2010) is 4500 , what would be the population in 2025 ?

Solution

AGR $=3.5 \% ; \mathrm{P}_{\mathrm{o}}=4500$
$\mathrm{n}=2025-2010=15$
$\mathrm{P}_{\mathrm{n}}=\mathrm{P}_{\mathrm{o}}(1+\mathrm{AGR} / 100)^{\mathrm{n}}$
$\mathrm{P}_{15}=4500(1+3.5 / 100)^{15}=\mathbf{7 5 4 0}$

2.2.4 Declining growth method (Decreasing rate of increase)

Population is assumed to reach some limiting value or saturation point.

$$
\frac{d P}{d t}=K_{d}\left(P_{s a t .}-P\right)
$$

$K_{d}=-\frac{1}{\left(T_{2}-T_{1}\right)} \ln \left(\frac{P_{\text {sat. }}-P_{2}}{\text { Psat. }-P_{1}}\right)$
$P_{\text {sat. }}=\frac{2 P_{0} P_{1} P_{2}-P_{1}^{2}\left(P_{0}+P_{2}\right)}{P_{0} P_{2}-P_{1}^{2}}$
$P_{T}=P_{2}+\left(P_{\text {sat. }}+P_{2}\right)\left(1-e^{-K_{d}(T-T 2)}\right)$

2.2.5 Logistic Curve Method (Mathematical method)

The three factors responsible for changes in population are :
(i) Births, (ii) Deaths and (iii) Migrations. Logistic curve method is based on the hypothesis that when these varying influences do not produce extraordinary changes, the population would probably follow the growth curve characteristics of living things within limited space and with limited economic opportunity. The curve is S -shaped and is known as logistic curve.
$P_{T}=\frac{P_{\text {sat. }}}{1+a e^{b\left(T-T_{0}\right)}}$
$a=\frac{P_{\text {sat. }}-P_{0}}{P_{0}}$
$b=\frac{1}{n}\left(\frac{P_{0}\left(P_{\text {sat. }}-P_{1}\right)}{P_{1}\left(P_{\text {sat. }}-P_{0}\right)}\right)$
$\mathrm{P}_{\mathrm{o}}, \mathrm{P}_{1}$ and $\mathrm{P}_{2}=$ population at time $\mathrm{T}_{0}, \mathrm{~T}_{1}$ and $\mathrm{T}_{2}, \mathrm{P}_{\mathrm{T}=}$ estimated population at the year of the interest, $\mathrm{P}_{\text {sat. }}=$ saturation population, a and b are constants and n is the constant interval between $\mathrm{T}_{0}, \mathrm{~T}_{1}$ and T_{2} (generally 10 yrs).

Example 4

Estimate the population at 2000 using the following data by Declining growth and Curve fitting methods.

Year	$\mathbf{1 9 7 0}$	$\mathbf{1 9 8 0}$	$\mathbf{1 9 9 0}$	$\mathbf{2 0 0 0}$
Pop. number	10,000	15,000	18,000	$? ?, ? ? ?$

2.2.6 Ratio Method (Ratio and Correlation)

In this method, the local population and the country's population for the last four to five decades is obtained from the census records. The ratios of the local population to national population are then worked out for these decades. A graph is then plotted between time and these ratios, and extended up to the design period to extrapolate the ratio corresponding to future design year. This ratio is then multiplied by the expected national population at the end of the design period, so as to obtain the required city's future population.

Example 5

Estimate the population of a city using the ratio method. The design year is 2010 . The estimated population in the year 2010 is $988,000$.

Year		Population in $\mathbf{1 0 0 0}_{\text {s }}$	Ratio
	City	Region or State or Country	
1960	50	455	0.11
1970	61	623	0.098
1980	72	766	0.094
1990	77	850	0.091

Solution

2.2.7 Curvilinear Method (Graphical method)

The procedures involves the graphical projection of the past population data for city being studied. The population data of other similar but large cities are also plotted in a such manner that all the curves are coincident at the present population value of the city being studied. These curves are used as a guides in future projection.

Example 6

Estimate the population of city A by using graphical comparison with cities B and C. The design year is 2020 .

Year	Population in 1000			
	City A	City B	City C	
1960	8	18	16	
1970	11	20.3	20	
1980	14	22	25	
1990	18	23.2	25.6	

2.3 Water Consumption Rate

It is very difficult to precisely assess the quantity of water demanded by the public, since there are many variable factors affecting water consumption. The various types of water demands, which a city may have, may be broken into following classes:

Table (2.1) Water Consumption for Various Purposes:

	Types of Consumption	Normal Range (lit/capita/day)	Average	\% of total
1	Domestic Consumption	$65-300$	160	35
2	Industrial and Commercial Demand	$45-450$	135	30
3	Public Uses including Fire Demand	$20-90$	45	10
4	Losses and Waste	$45-150$	62	25

Factors affecting per capita demand:

1) Size of the city: Per capita demand for big cities is generally large as compared to that for smaller towns as big cities have sewered houses.
2) Presence of industries.
3) Climatic conditions.
4) Habits of people and their economic status.
5) Quality of water: If water is aesthetically $\$$ medically safe, the consumption will increase as people will not resort to private wells, etc.
6) Pressure in the distribution system.
7) Efficiency of water works administration: Leaks in water mains and services; and unauthorized use of water can be kept to a minimum by surveys.
8) Cost of water.

2.3.1 Fluctuations in Rate of Demand

Average Daily Per Capita Demand = Quantity Required in 12 Months/ (365 x Population).

If this average demand is supplied at all the times, it will not be sufficient to meet the fluctuations.

- Seasonal variation: The demand peaks during summer. Fire breakouts are generally more in summer, increasing demand. So, there is seasonal variation .
- Daily variation: depends on the activity. People draw out more water on Sundays and Festival days, thus increasing demand on these days.
- Hourly variations: are very important as they have a wide range. During active household working hours i.e. from six to ten in the morning and four to eight in the evening, the bulk of the daily requirement is taken. During other hours the requirement is negligible. Moreover, if a fire breaks out, a huge quantity of water is required to be supplied during short duration, necessitating the need for a maximum rate of hourly supply.

Seasonal Variations

Hourly Variations

To estimate the ratios of maximum month, week, day and hour demand it can be used the following equation:
$\mathrm{P}=180 \mathrm{t}^{-0.1} \ldots \ldots . \ldots \ldots1$
Where $\mathrm{P}=$ percent of the annual average demand for time, t .
t $=$ time, day. From 2 hr to 365 day.
Maximum daily demand $=1.8 \mathrm{x}$ average daily demand
Maximum hourly demand of maximum day i.e. Peak demand
$=1.5 \times$ Maximum daily demand $/ 24$
$=1.5 \times(1.8 \mathrm{x}$ average daily demand $) / 24$
$=2.7 x$ average daily demand $/ 24$
$=2.7 \mathrm{x}$ annual average hourly demand

Example 7

Population of a city after 10 years is 35000 cap, and now is 28000 cap. The rate of consumption now is $1.6^{*} 10^{6} 1 /$ day and the design capacity of the treatment plant is $5 * 10^{6} \mathrm{l} /$ day. If the rate of growth of the population is Arithmetic increase, find the year which the treatment plant reaches to the designed capacity?

2.3.2 Fire Fighting Demand

The fire demand per capita is very less on an average basis but the rate at which the water is required is very large. The rate of fire demand is sometimes treated as a function of population and is worked out from following empirical formula:

$$
F=320 C \sqrt{A}
$$

	Authority	Formulae (P in thousand)	Q for 1 lakh Population
1	American Insurance Association	Q (L/min) $=4637 \sqrt{ } \mathrm{P}(1-0.01 \sqrt{ } \mathrm{P})$	41760
2	Kuchling's Formula	Q (L/min) $=3182 \sqrt{ } \mathrm{P}$	31800
3	Freeman's Formula	Q (L/min) $=1136.5(\mathrm{P} / 5+10)$	35050
	Ministry of Urban	Q (kilo liters $/ \mathrm{d})=100 \sqrt{ } \mathrm{P}$ for $\mathrm{P}>50000$	31623
4	Development Manual Formula		

Where
$\mathrm{F}=$ fire flow required $\mathrm{m}^{3} /$ day
$\mathrm{A}=$ total area m^{2}
$\mathrm{C}=$ coefficient related to the type of construction:
1.5 for wood frame construction

1 for ordinary construction
0.8 for noncombustible construction
0.6 for fire resistive construction

Note

If a building consists from many materials, for example 2 materials. In this case we must calculate the total area $\mathrm{A}=\mathrm{A} 1+\mathrm{A} 2$, and we consider that all building consist from the first material and we find F1. In the next step we consider that all building consist from the second material and we find F2. Finally, fire flow required equal:
$\mathrm{F}=\mathrm{F} 1 *(\mathrm{~A} 1 / \mathrm{A})+\mathrm{F} 2 *(\mathrm{~A} 2 / \mathrm{A}) \ldots2 .3$

The following table shows the duration for fire flow:

Table (2.2) Fire flow duration

Flow rate $\mathbf{m}^{\mathbf{3}} / \mathbf{m i n}$	Duration, \mathbf{h}
7.6	2
11.3	3
15.1	4
18.9	5
22.7	6
26.5	7
30.2	8
34	9
37.8	10

Example

8

Building with normal material consists of 2 stories each one with are $100 \mathrm{~m}^{2}$. Find the flow rate fire demand and his period (duration)?

Example

$\underline{9}$
A 4 stories wooden frame building has each floor of area $509 \mathrm{~m}^{2}$. This building is adjacent to 5 story building of ordinary construction with $900 \mathrm{~m}^{2}$ per floor. Determine the fire flow and duration for each building and that for both building (assuming that they are connected).

Lecturethree

Rew water intake moll creesing

 Envifonmential Eny

3.1 Process selection and the treatment process train

Water treatment plant utilize a number of treatment processes to achieve the desired degree of treatment. Each stage of this processes has a function to remove a contaminant. Then the design engineer must evaluate numerous important factors in the selection of the treatment processes. These factors include finished water quality standards, state design criteria, constituents treated, topography and geology, hydraulic requirement, energy requirement and plant economics.
The collective arrangement of various treatment processes is called flow schema, processes diagram, or processes train.
In the most water treatment plant, the processes include:

1) Water intake
2) Coarse and fine screen
3) Pumps and pumping station
4) Coagulation and flocculation tanks
5) Sedimentation tanks
6) Filtration
7) Disinfection

Figure 3.1 shows the typical water treatment processes train. Also, table 3.1 indicates the capability of the various treatment techniques for removing contaminants.

Fig (3.1) processes train of the water treatment plant

Table (3.1) The capability of the various treatment techniques for removing contaminants

3.2 Intake Structure

The basic function of the intake structure is to help in safely withdrawing water from the source over predetermined pool levels and then to discharge this water into the withdrawal conduit (normally called intake conduit), through which it flows up to water treatment plant. Some types of intakes structure are shown in Figs. (3.2-3.7).

Fig. 3.2 Floating intakes

Fig. 3.3 Submerged intakes

Fig. 3.4 Exposed or Tower intakes

Fig. 3.5 Shore-intake structure

Fig. 3.6 Pier structure

3.2.1 Factors Governing Location of Intake

1) The site should be near the treatment plant so that the cost of conveying water to the city is less.
2) The intake must be located in the purer zone of the source to draw best quality water from the source, thereby reducing load on the treatment plant.
3) The intake must never be located at the downstream or in the vicinity of the point of disposal of wastewater.
4) The site should be such as to permit greater withdrawal of water, if required at a future date.
5) The intake must be located at a place from where it can draw water even during the driest period of the year.
6) The intake site should remain easily accessible during floods and should noy get flooded. Moreover, the flood waters should not be concentrated in the vicinity of the intake.

3.2.2 Design Considerations

1) sufficient factor of safety against external forces such as heavy currents, floating materials, submerged bodies, ice pressure, etc.
2) should have sufficient self-weight so that it does not float by up thrust of water.
3) Intake velocity plays an important role if the intake is a gate. High intake velocity increase head losses, and low intake velocity require the intake port to be larger and so add to the cost of the structure.

3.2.3 Design of intakes

The hydraulic consideration in intake structure is energy losses due to the acceleration. The losses through the intake port can be calculated by using the orifice equation:

$$
h_{L}=\frac{1}{2 g}\left(\frac{Q}{C A}\right)^{2} \ldots \ldots \ldots .3 .1
$$

where,
$\mathrm{h}_{\mathrm{L}}=$ head loss, m
$\mathrm{Q}=$ discharge, $\mathrm{m}^{3} / \mathrm{s}$
$\mathrm{C}=$ coefficient of discharge (0.6-0.9)
$\mathrm{A}=$ effective submerged open area, m^{2}

3.3 Screening

A screen is a device with openings for removing bigger suspended or floating matter in water which would otherwise damage equipment or interfere with satisfactory operation of treatment units.

3.3.1 Types of Screens

Coarse Screens: Coarse screens also called racks, are usually bar screens, composed of vertical or inclined bars spaced at equal intervals across a channel through which raw water flows. Clear space between bars ranges from 20 to 50 mm . Bar screens are usually hand cleaned and sometimes provided with mechanical devices. These cleaning devices are rakes which periodically sweep the entire screen removing the solids for further processing or disposal. Hand cleaned racks are set usually at an angle of 45° to the horizontal to increase the effective cleaning surface and also facilitate the raking operations. Mechanical cleaned racks are generally erected almost vertically. The angle of inclination of rack with horizontal is between 30° and 60°.

Fine screen: Fine screen ($<2 \mathrm{~cm}$) is used to remove smaller objects such as leaves, twigs and fish. that may damage pumps or other equipment. They may be located either at the intake structure or at the raw water pump station.

Figure 3.2 shows types of screen.

a) Coarse screen

c) Manual cleaning screen

b) Fine screen

d) Automatically cleaning screen

Fig (3.2) Types of screen

3.3.2 Design of screen

The design velocity should be such as to permit 100% removal of material of certain size without undue depositions. Velocities of 0.6 to $1.2 \mathrm{~m} / \mathrm{s}$ through the open area for the peak flows have been used satisfactorily. Further, the velocity at low flows in the approach channel should not be less than $0.3 \mathrm{~m} / \mathrm{s}$ to avoid deposition of solids. Head loss varies with the nature of screenings (open area, blocked area, shape of the screen) and with hydraulic parameters at the upstream of the screen. The head loss through a vertical bar screens is calculated from the following formula:
$h_{L}=\frac{V_{b}^{2}-V_{a}^{2}}{2 g} \times \frac{1}{0.7} \ldots \ldots \ldots 3.2$
where, $\mathrm{h}_{\mathrm{L}}=$ head loss $v_{b}=$ velocity through bar opening in $\mathrm{m} / \mathrm{s}, v_{a}=$ in m , approach velocity in m / s velocity in channel.

Another formula often used to determine the head loss through an inclined bar rack is Kirschmer's equation:
$\mathrm{h}_{\mathrm{L}}=\beta(\mathrm{W} / \mathrm{b})^{4 / 3}\left(\mathrm{v}^{2} / 2 \mathrm{~g}\right) \sin \theta \quad \ldots \ldots \ldots \ldots \ldots . .3$
where $h_{L}=$ head loss, m
$\beta=$ bar shape factor (1.79 for circular bar, 2.42 for sharp edge rectangular bar, 1.83 for rectangular bar with semicircle upstream, and 1.67 for rectangular bar with both u / s and d / s face as semicircular).
$\mathrm{W}=$ maximum width of bar u / s of flow, m
$\mathrm{b}=$ minimum clear spacing between bars, m
$\mathrm{v}=$ approach velocity, m / s
$\theta=$ angle of inclination of rack with horizontal (30-60)

orifice equation (3.1). Orifice formula can be used when the screen is located at the pumping station.

Intake design example

Design an intake tower with gates meet the following requirement:

- Minimum reservoir elevation $=70 \mathrm{~m} \mathrm{msl}$
- Maximum reservoir elevation $=90 \mathrm{~m} \mathrm{msl}$
- Normal water surface elevation $=85 \mathrm{mmsl}$
- Bottom elevation $=60 \mathrm{~m} \mathrm{msl}$
- Flow rate $=113500 \mathrm{~m}^{3} /$ day
- Velocity $=0.08 \mathrm{~m} / \mathrm{s}$

Solution

$\mathrm{Q}=113500 \mathrm{~m}^{3} / \mathrm{day}=1.31 \mathrm{~m}^{3} / \mathrm{s}$
$\mathrm{A}=1.32 / 0.08=16.38 \mathrm{~m}^{2}$
This is too large for a single gate, so select two equal size square gates
Width $=(16.38 / 2)^{0.5}=2.86 \mathrm{~m}$, then use width and height $=3 \mathrm{~m}$
Set the highest gate with its top two meters below the normal water surface elevation of 85 m , then a centerline elevation $=81.5 \mathrm{~m}(85-2-1.5)$. Now, set the lowest gate at a centerline elevation $=65 \mathrm{~m}$. Provide additional gates at two levels equally spaced over 16.5 m range (81.5-65).

Spacing $=16.5 / 3$ space $=5.5 \mathrm{~m} /$ space
Gates will be provided at centerline elevations of $81.5,76,70.5$ and 65 m , as shown in the figure (1).
The head loss through the intake can be calculated from the orifice formula (eq 3.1). Two gates is used and others are standby. Therefore the flow rate $=1.31$ / $2=0.66 \mathrm{~m}^{3} / \mathrm{s}$

$$
h_{l}=\frac{1}{2 \times 9.81}\left(\frac{0.66}{0.6 \times 3 \times 3}\right)^{2}
$$

Fig (1) Intake structure
Now, to calculate the stability of the structure we must compare the weight of water displaced at the maximum elevation with the weight of tower when it is empty (worst condition).

Volume of water displaced by tower and base slab $=10 \mathrm{~m} * 10 \mathrm{~m} * 30 \mathrm{~m}+$ $15 \mathrm{~m} * 15 \mathrm{~m} * 2.5 \mathrm{~m}=3563 \mathrm{~m}^{3}$
The weight of water displaced $=3563 \mathrm{~m}^{3} / 1000 \mathrm{~kg} / \mathrm{m}^{3}=3.56 * 10^{6} \mathrm{~kg}$
The weight of structure equal the weight of side walls plus the weight of the foundation slab.
Weight of side walls $=\left(10 m^{*} 10 \mathrm{~m} * 35 \mathrm{~m}-8 \mathrm{~m}^{*} 8 \mathrm{~m} * 35 \mathrm{~m}\right) * 2308 \mathrm{~kg} / \mathrm{m}^{3}=$ $2.91 * 10^{6} \mathrm{~kg}$
Weight of the foundation slab $=15 \mathrm{~m} * 15 \mathrm{~m} * 2.5 \mathrm{~m}^{*} 2308 \mathrm{~kg} / \mathrm{m}^{3}=$ $1.3 * 10^{6} \mathrm{~kg}$
Total weight of structure $=2.91 * 10^{6} \mathrm{~kg}+1.3 * 10^{6} \mathrm{~kg}=4.21 * 10^{6} \mathrm{~kg}>3.56 * 10^{6}$ kg OK
Safty factor $=4.21 * 10^{6} / 3.56 * 10^{6}=1.2$ Very GOOD

Design example

A mechanical bar screen is to be used in an approach channel with a maximum velocity of $1 \mathrm{~m} / \mathrm{s}$. The bars are 15 mm thick, and the opening are 25 mm wide.
Determine the velocity between bars and the head losses.
Solution
Assume the channel has a width (W) and depth (D)
Net area of screen $=W D[25 /(25+15)=(5 / 8) W D$
Area of channel $=W D$

Use continuity equation

- $V_{a} A_{a}=V_{b} A_{b}$ OR $\quad V_{b}=\frac{V_{a} A_{a}}{A_{b}}$

$$
V_{b}=\frac{1 \times W D}{(5 / 8) W D}=1.6 \mathrm{~m} / \mathrm{s}
$$

$$
h_{L}=\frac{\left(V_{b}^{2}-V_{a}^{2}\right)}{2 g} \times \frac{1}{0.7}
$$

$$
h_{L}=\frac{(1.6)^{2}-1^{2}}{2 g} \times \frac{1}{0.7}=0.114 \mathrm{~m}
$$

Example

A bar screen measuring 2 m by 5 m of surface flow area is used to protect the pump in a shoreline intake of a water treatment plant. The plant is drawing raw water from the river at a rate of $8 \mathrm{~m}^{3} / \mathrm{sec}$. The bar width is 20 mm and the bar spacing is 70 mm . If the screen is 30% clogged, calculate the head loss through the screen. Assume $\mathrm{Cd}=0.60$

Solution

For screens used in shoreline intakes, the velocity of approach is practically zero. Thus, from the previous figure, the number of spacings is equal to one more than the number of bars. Let x number of bars,
$20 \mathrm{x}+70(\mathrm{x}+1)=5000$
Then $\mathrm{x}=54.7=55$
Area of clear opening $=70(55+1) * 2000=7.48 \mathrm{~m}^{2}$
$h_{l}=\frac{1}{2 g}\left(\frac{Q}{C A}\right)^{2}$
$h_{l}=\frac{(8)^{2}}{2 \times 9.8(0.6 \times 7.48 \times 0.7)^{2}}=0.33 \mathrm{~m}$
In this example we choose the orifice equation as a result to the exit of pump in a shoreline intake.

Design examples

Use Kirschmer's equation to find the head loss through a rectangular bar screen used in treatment plant, if the bar width is 15 mm and spacing is 25 mm . Assume that the width of channel (w) equal two times of water depth. Use $\mathrm{Q}=$ $0.6 \mathrm{~m}^{3} / \mathrm{s}$, approach velocity $=0.6 \mathrm{~m} / \mathrm{s}$ and theta $=60^{\circ}$.

Lecturefour

20152016

Dr. Ahmed Hassoon Ali

4.1 Types of pumps

Pump is needed to rise the water from a place to other one or more points in the system. For public water supply, pumps may be divided into three types:
1)Reciprocating pumps: Consists of a piston or plunger which alternatively draws water into a cylinder on the intake struck and then forces it out on the discharge struck. (Fig. 4.1)

Fig. (4.1): Reciprocating Pump
2)Rotary pumps: Contains two rotary piston or gears which interlock and draw water into the chamber and force it continuously into the discharge pipe. (Fig. 4.2)

Fig. (4.2): Rotary Pump
3) Centrifugal pumps: It has an impeller with radial vanes rotating swiftly to draws water into the center and discharge it by centrifugal force. The are most commonly used pumps in water supply system. (Fig. 4.3)

Fig. (4.3): Centrifugal Pump

4.2 Power and efficiency

The water power required is the net output of the pump and equal to:

$$
P_{w}=K \times Q \times T D H
$$

Where
P_{w} : Power output of the pump, Kw
K : Constant, $\mathrm{K}=0.163\left(\mathrm{Kw}, \mathrm{m}^{3} / \mathrm{min}, \mathrm{m}\right)$
TDH: Total dynamic head, m
Q : The flow rate, $\mathrm{m}^{3} / \mathrm{min}$

Power input to the pump equal to:

$$
P_{P}=\frac{P_{w}}{E_{p}}
$$

Where E_{p} is the Pump efficiency

4.3 Total dynamic head (TDH)

Total dynamic head can be calculated by:
$T D H=h_{t s h}+h_{l}+h_{m}+h_{v}$

4.3.1 Total Static head ($h_{\text {tsh }}$)

It is a difference in elevations of free water surface at discharge and suction reservoirs of the pumps. Total static head ($\mathrm{h}_{\text {tsh }}$) equal to:
$h_{t s h}=h_{d}+h_{s}$ (for lift suction head, Fig. (4.4 a)
$h_{t s h}=h_{d}-h_{s}($ for flooded suction head, Fig. (4.4 b)

Fig. (4.4) Determine of pump total static head
a) Lift suction head
b) Flooded suction head

Where
h_{d} : Static discharge head (difference in elevation between discharge liquid level and the centerline of the pump impeller).
h_{s} : Static suction head (difference in elevation between the suction liquid level and the centerline of the pump impeller).

4.3.2 Head losses in pipes $\left(h_{l}\right)$

Head losses equal to the summation of friction head loss in discharge and suction pipes. It can be calculated from Darcy-Weisbach formula:
$h_{L}=f \times \frac{v^{2}}{2 g} \times \frac{L}{D}$
Where
f : Friction factor, it can be found by moody diagram (Fig. 4.5) by using k/D and Reynolds number. k is a constant depends on the pipe type.
v : Velocity in the pipe, m / s
D : Pipe diameter, m.
L : Pipe length, m.

Fig.(4.5): Moody diagram for establishing the friction factor f. The value of f is obtained using Reynolds number and the relative roughness number k / D as parameters, where D is pipe internal diameter in mm and k equivalent surface roughness in mm . Completely turbulent flow can be assumed in wastewater application.

Table (4.1): Surface roughness values (mm).

Plpe materlal	\mathbf{k} new	k old
Plastic	0,01	0,25
Drawn steel	0,05	1,0
Welded steel	0,10	1,0
Drawn stainless steel	0,05	0,25
Welded stainless steel	0,1	0,25
Cast iron	0,25	1,0
Bituminized cast iron	0,12	
Asbestos cement	0,025	0,25
Concrete	$0,3 \ldots 2,0$	

Note: The surface of an old pipe material becomes rougher from erosion. Corrosion and sediment layers forming on the pipe surface may decrease the pipe diameter, also leading to higher flow losses.

The kinematic viscosity for water is dependent on temperature:

$t^{\circ} \mathrm{C}$	0	20	40	60	100
$v 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$	1,78	1,00	0,66	0,48	0,30

4.3.3 Minor losses (h_{m})

Due to the entrance, exit, change in direction of discharge and suction pipes.

$$
2
$$

$$
h_{m}=k \times \frac{v^{2}}{2 g}
$$

Where
k : Constant depends on valves, fitting, etc.

4.3.4 Velocity head (h_{y})

Can be calculated from the following equation:

$$
h_{v}=\frac{v^{2}}{2 g}
$$

4.4 Characteristic curves for centrifugal pump

4.4.1 Pump head-discharge curve

The head developed by a particular pump at various rates of discharge at a constant impeller speed is established by pump tests conducted by the manufacturer. The head gives the discharge pressure with the inlet static water level at the elevation of the pump centerline and excluding losses in suction and discharge pipes. Consider the test arrangement illustrated schematically in Fig. (4.6) where the discharge is controlled by a valve.

Fig. (4.6) Schematic of a pump head discharge curve
The discharge pressure is measured by a gauge and the rate of discharge is recorded by flow meter. The power input is measured and efficiency determine. With the valve in the discharge pipe is closed, the rotating impeller simply churns in the water causing the pressure at the outlet of the pump to rise to a value referred to the shut off head. As the valve is gradually
opened allowing increasing water flow, the pump head decreases as drown in Fig. (4.7). The pump efficiency rises with increasing rate of discharge to an optimum value and then decreases. The flow rate at peak efficiency is determined by pump design and the rotational speed of the impeller.

Fig (4.7) Characteristic curves for centrifugal pump

4.4.2 System head curve

When a pump lifts water from a reservoir into a piping system, the resistance to flow at various rates of discharge is described by a system head curve, fig (4.8). The two components of discharge resistance are the static head and the friction head loss that increases with pumping rate.

Fig (4.8) System head curve

4.5 Net positive suction head (NPSH)

It is the force available to drive the flow into the pump. Two values of NPSH are important in pump selection, these are NPSH available ($\mathrm{NPSH}_{\mathrm{av}}$) and NPSH required (NPSH req). $\mathrm{NPSH}_{\mathrm{av}}$ is the absolute pressure at the suction port (inlet) of the pump. NPSHav is a function of the system. $\mathrm{NPSH}_{\mathrm{av}}$ is a function of everything in the system on the suction side of the pump up to the suction nozzle of the pump. This includes the pressure on the surface of the liquid in the supply tank ($\mathrm{habs}_{\mathrm{abs}}$), the difference between the liquid level and the centerline of the pump suction nozzle $\left(h_{s}\right)$, the line losses, velocity head $\left(h_{1}\right)$, and vapor pressure $\left(h_{\mathrm{vp}}\right) . \mathrm{NPSH}_{\mathrm{req}}$ is the minimum pressure required at the suction port (inlet) of the pump to keep the pump from cavitating. $\mathrm{NPSH}_{\text {req }}$ is based on everything from the pump suction nozzle to the point in the pump where the pressure starts to increase. This includes the entrance losses and the friction losses or pressure drops getting into the pumping elements. NPSHreq is a function of the pump design and varies with flow, speed and pump details. $\mathrm{NPSH}_{\mathrm{av}}$. Is calculated from:

$$
\text { NPSH }_{a v}=h_{a b s} \pm h_{s}-h_{l}-h_{v p} \ldots \ldots \ldots \ldots7
$$

$h_{a b s}$: Absolute pressure on the surface of the water in the suction reservoir (usually atmospheric pressure), m or Kpa
h_{s} : Suction head at the pump suction. It is positive under flooded suction condition and negative under suction lift condition. m or Kpa
h_{l} : Head loss due to friction, entrance, valve, etc, m or Kpa
$h_{v p}$: Vapor pressure of fluid at the operating temperature, m or Kpa. Vapor pressure is the pressure required to boil a liquid at a given temperature.

Absolute (atmospheric) pressure can be calculated from the following equations:

$$
\begin{aligned}
& h_{a b s}=h_{b}-3.5(\mathrm{Kpa}) \\
& h_{a b s}=h_{b}-0.357(\mathrm{~m})
\end{aligned}
$$

The barometric pressure $\left(h_{b}\right)$ is a function to the altitude of the pump. It can be calculated from the following table:

Table (4.2) Standard barometric pressure

Elevation (ft)	Elevation (m)	Barometric Pressure (ft)	Barometric Pressure (m)
0	0	33.9	10.3
1,000	305	32.7	9.97
2,000	610	31.6	9.63
3,000	914	30.5	9.30
4,000	1,220	29.3	8.93
5,000	1,524	28.2	8.59
6,000	1,829	27.1	8.26
7,000	2,134	26.1	7.95
8,000	2,440	25.1	7.65

And the following table used to calculate the vapor pressure. Table (4.3) Standard vapor pressure of water

Temperature $\left({ }^{\circ} \mathrm{F}\right)$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Vapor Pressure (ft)	Vapor Pressure (m)
32	0	0.20	0.061
40	4.4	0.28	0.085
50	10.0	0.41	0.12
60	15.6	0.59	0.18
70	21.1	0.84	0.26
80	26.7	1.17	0.36
90	32.2	1.61	0.49
100	37.8	2.19	0.67

4.6 Cavitation

Since $\mathrm{NPSH}_{\mathrm{av}}$. is the absolute pressure available less the vapor pressure of the liquid, the $\mathrm{NPSH}_{\text {av }}$. should always be greater than the $\mathrm{NPSH}_{\text {req }}$. If this were not the case, the pressure at some point in the pump suction area will be less than the vapor pressure of the liquid, and cavitation will occur. Cavitation is the formation of pockets of vapor, or bubbles, at a point inside the pump where the liquid pressure drops below its vapor pressure. These vapor bubbles are carried along to the higher pressure area of the pump, where they collapse. It is the violent collapse of the bubbles that cause the damaging effects of cavitation; noise, erosion, and short service life. Cavitation also reduces capacity and efficiency, as well as causes pulsations in the discharge pressure. If the $\mathrm{NPSH}_{\mathrm{av}}$ drops below that of required by the pumps design (i.e., $\mathrm{NPSH}_{\mathrm{av} .}<\mathrm{NPSH}_{\text {req }}$), the pressure within the impeller may be reduced to the vapor pressure of the fluid, Fig (4.9). If this occurs, the water will vaporize and a mixture of vapor and
water will enter the pump.

Fig (4.9) Understanding of the cavitation
Cavitation can be corrected by:

1) Increase the diameter of the pump suction pipe.
2) Decrease the pump speed.
3) Increase the static head on suction side.
4) Decrease of flow rate.

4.7 Effects of speed and diameter of impeller on centrifugal pump

The rotational speed of an impeller affects the operating characteristics of the pump. Equations 4.8-4.10 give the relationship of pump discharge, head and power output with rotational speed:

$$
\begin{align*}
& \frac{Q_{1}}{Q_{2}}=\frac{N_{1}}{N_{2}} \ldots . \\
& \frac{T D H_{1}}{T D H_{2}}=\frac{N_{1}^{2}}{N_{2}^{2}} \\
& \frac{P_{\mathrm{w} 1}}{P_{\mathrm{w} 2}}=\frac{N_{1}^{3}}{N_{2}^{3}} \ldots
\end{align*}
$$

Where
$\mathrm{N}_{1}, \mathrm{~N}_{2}$: rotational speed of the pump conditions, rpm
$\mathrm{Q}_{1}, \mathrm{Q}_{2}$: discharge corresponding $\mathrm{N}_{1}, \mathrm{~N}_{2}$
$\mathrm{TDH}_{1}, \mathrm{TDH}_{2}$: total dynamic head corresponding $\mathrm{N}_{1}, \mathrm{~N}_{2}$
Equations $4.11-4.13$ give the relationship of pump discharge, head and power output with impeller diameter:

$$
\begin{align*}
& \frac{Q_{1}}{Q_{2}}=\frac{D_{1}}{D_{2}} \cdots \\
& \frac{T D H_{1}}{T D H_{2}}=\frac{D_{1}^{2}}{D_{2}^{2}} \\
& \frac{P_{w 1}}{P_{w 2}}=\frac{D_{1}^{3}}{D_{2}^{3}}
\end{align*}
$$

4.8 Pumping stations

In general, pumping station can be classified as wet-pit or dry-pit. These classifications are based on the location of the pumps relative to the wet well or dry pit:
Wet-Pit Stations - In the wet-pit station, the pumps are submerged in a wet well involving the use of submersible pumps. The submersible pumps handle storm water very well and they allow for convenient maintenance in wet-pit stations because of easy pump removal. Submersible pumps are available in large sizes and should be considered for use in all station designs. Fig. (4.10 a)

Dry-Pit Stations - Dry pit stations consist of two separate elements: the storage box or wet well and the dry well. Storm water is stored in the wet well, which is connected to the dry well by horizontal suction piping. Dry-pit stations are more expensive than the wet-pit stations. At dry-pit stations, centrifugal pumps are usually used. The main advantage of the dry-pit station is the availability of a dry area for personnel to perform routine and emergency pump and pipe maintenance. Fig. (4.10 b).

(a)

(b)

Fig (4.10) Types of pumping stations.

Exampl1

Determine the water power, pump power, and motor laod for a pump system designed to deliver $1.89 \mathrm{~m}^{3} / \mathrm{min}$ against a total system head of 50 m . Assume the efficiency of both pump and motor is 80 percent.

$$
\begin{aligned}
& P_{W}=0.163 \times 1.89 \times 50=15.4 \mathrm{Kw} \\
& P_{P}=\frac{15.4}{0.8}=19.25 \mathrm{Kw} \\
& P_{m}=\frac{19.25}{0.8}=24.06 \mathrm{Kw}
\end{aligned}
$$

Example 2

A centrifugal pump works with two rotational speed. Draw the head discharge curves and connect between the (bep). Determine the values of head-discharge for a velocity of 1450 rpm and draw the curve. Finally, draw the working space between 60 and 120% of (bep).
$\left.\begin{array}{cccccc}\hline & \text { 1150 rpm } & & \mathbf{1 7 5 0} \mathbf{~ r p m ~}\end{array}\right]$

Solution:

$$
\begin{aligned}
& Q_{2}=Q_{1}\left(\frac{N_{2}}{N 1}\right)=1500\left(\frac{1450}{1750}\right)=1240 \mathrm{gpm} \\
& H_{2}=H_{1}\left(\frac{N_{2}}{N_{1}}\right)^{2}=216\left(\frac{1450}{1750}\right)=148 \mathrm{ft}
\end{aligned}
$$

The other values are determined as above and listed in table below:

	$\mathbf{1 4 5 0} \mathbf{~ r p m}$
Discharge $(\mathbf{g p m})$	Head (ft)
$\mathbf{1 2 4 0}$	148
$\mathbf{2 0 4 0}$	140
$\mathbf{2 4 5 0}$	132
$\mathbf{2 7 3 0}$	125
$\mathbf{2 8 6 0}$	121
$\mathbf{3 7 3 0}$	82

Determine the working enclosure at 1750 rpm as 60 to 120% at bep (i.e., 3300 rpm .
$0.6 \times 3300=2000 \mathrm{gpm}$
$1.20 \times 3300=4000 \mathrm{gpm}$
And at 1150 rpm , the (bep) is at 2200 gpm :
$0.6 \times 2200=1300 \mathrm{gpm}$
$1.2 \times 2200=2600 \mathrm{gpm}$

Example3

Assume that a water pumping station at 500 m elevation uses pumps which require 30 kpa positive suction head (NPSH) when delivering water at $30^{\circ} \mathrm{C}$. What is the allowable suction lift of these pumps if the entrance and friction losses are 15 kpa ?

Solution:

The barometric pressure from the table is 9.72 m
$P_{\text {atm. }}=9.72-0.357=9.363 \mathrm{~m}$
The vapor pressure of water at $30^{\circ} \mathrm{C}$ is 0.43 m
$\mathrm{NPSH}_{\text {ava. }}=9.363-1.53-0.43-\mathrm{Hs}=7.403-\mathrm{H}_{\mathrm{s}}$
$\mathrm{NPSH}=3=7.403-\mathrm{H}_{\mathrm{s}}$
$\mathrm{Hs}=42.6 \mathrm{Kpa}$

Example4

A centrifugal pump is used to raise the water from the river to the reservoir, find:

1) total dynamic head.
2) water power, pump power and motor power.
3) monthly cost pump operation, if power cost is 4 cents and pump operates 20 hr/day.

Unit Five

2015-2016

Rucenlation

nsst. Prof. Dr. Ahmed Hassoon A/,
Environmental liny

5.1 Suspended solids

Suspended solids in water include sand, soil, organic materials, bacteria, viruses and other. Typical size variations of particulates found in surface water are listed in Table (5.1). A suspension of particles that will not settled is known as a stable suspension. The particles that make up these suspension are known as colloids.

Table (5.1): Particle size found in water treatment

Material	Particle diameter (Micrometer)
Viruses	$0.005-0.01$
Bacteria	$0.3-3$
Small colloids	$0.001-0.1$
Large colloids	$0.1-1$
Soil	$1-100$
Sand	500
Floc particle	$100-2000$

The colloidal suspension may contain:

- organic materials
- metal oxides
- insoluble toxic compounds
- stable emulsions
- material producing turbidity

Colloids are commonly classified as:

- hydrophilic : Hydrophilic colloids are typically formed by large organic molecules that become hydrated (solvated) when they are present in water (e.g., proteins)
- hydrophobic : Hydrophobic colloids are made of small colloidal particles having little or no affinity for water (the solvent) (e.g., clays, metal oxides).

5.2 Characteristics of Colloids

The principal phenomena that control the behavior of the colloids are zeta potential (electrostatic force), Vander Walls forces and Brownian motion. The amount of coagulant to be added to the water will depend on the zeta potential, a measurement of the magnitude of electrical charge surrounding the colloidal particles. The zeta potential is the amount of repulsive force or electric charge, which keeps the particles in the water. If the zeta potential is large, then more coagulants will be needed. Vander Wall's forces refer to the tendency of particles in nature to attract each other weakly if they have no charge. Once the particles in water are not repelling each other, vander Wall' s forces make the particles drift toward each other and join together into a group. Colloids have a sufficiently small mass that collusions with molecular size particles in water will cause constant movement of the colloids. The phenomenon of constant random movement of colloids is known as Brownian
motion. The combination of positive and negative charge, results in a neutral, or lack of charge. As a result, the particles no longer repel each other. When enough particles have joined together, they become floc and will settle out of the water.

5.3 Theory of coagulation

Coagulation is a water treatment process that causes very small suspended particles to attract to one another and form larger particles. Then the coagulation process transfers the stable colloids particles to destabilized colloids particles by adding coagulants, as shown in Fig. (5.1).

Fig (5.1) Schematic representation of destabilization of colloids

5.4 Effects of Coagulation Treatment on Wastewater

Primary Effect:

- Agglomeration and eventual removal of colloids (primarily responsible for wastewater turbidity and color)

Secondary Effects:

- Precipitation of some chemical species in solution such as phosphates, that can be present in the wastewater.

5.5 Chemicals Used for Coaqulation

Coagulant reactions are carried out by the addition of coagulant, usually a metal salt to water. Commonly used coagulants are aluminum sulfate (alum), ferric sulfate $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right) 3$ and ferric chloride FeCl_{3}.

5.5.1 Use of Aluminum Sulfate (Alum)

Aluminum Sulfate is obtainable either as liquid alum or in the form of lumps. Also, it is the most widely used in drinking water. It is easily handled and not expensive.
When aluminum sulfate is added to water that contains calcium bicarbonate, the following reaction takes place:

$$
\underset{666}{\mathrm{Al}_{2}(\mathrm{SO} 4)_{3} \cdot 18 \mathrm{H}_{2} \mathrm{O}}+\underset{\substack{3 \\ \\(\mathrm{as} \mathrm{CaCO} \\ 3 \\ \hline}}{3 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}} \rightleftarrows \underset{3 * 136}{3 \mathrm{CaSO}_{4}}+\underset{2 * 78}{2 \mathrm{Al}(\mathrm{OH})_{3}}+\underset{6 * 44}{6 \mathrm{CO}_{2}}+\underset{18 * 18}{18 \mathrm{H}_{2} \mathrm{O}}
$$

1 mg alum will produce 0.23 mg of insoluble $2 \mathrm{Al}(\mathrm{OH}) 3$ precipitates and will consume 0.45 mg of alkalinity as CaCO_{3}.

5.5.2 Use of Ferric Sulfate

Ferric sulfate is applied with relative ease, and it produces a good flocs over a rather wide range of pH values. It has a particular advantage where manganese is present in sufficient amounts to require removal. When ferric sulfate is used, the following reaction occurs:

1 mg of ferric sulfate will produce 0.54 mg of insoluble $\mathrm{Fe}(\mathrm{OH})_{3}$ precipitates and will consume 0.75 mg of alkalinity as CaCO_{3}

5.5.3 Use of Ferric Chloride

$\underset{2 * 162.5}{2 \mathrm{FeCl}_{3}}+\underset{\substack{3 * 100 \\\left(\text { as } \mathrm{CaCO}_{3}\right)}}{3 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}} \rightleftarrows \underset{2 * 107}{2 \mathrm{Fe}(\mathrm{OH})_{3}}+\underset{3 * 111}{ }+3 \mathrm{CaCl}_{2}+6 \mathrm{CO}_{2}$

1 mg of ferric chloride will produce 0.66 mg of insoluble $\mathrm{Fe}(\mathrm{OH})_{3}$ precipitates and will consume 0.92 mg of alkalinity as CaCO_{3}

5.5.4 Use of Polvelectrolytes

The term polyelectrolytes refers to all water-soluble organic polymers used for clarification, whether they function as coagulants or flocculants.
Water-soluble polymers may be classified as follows:

- anionic-ionize in water solution to form negatively charged sites along the polymer chain
- cationic-ionize in water solution to form positively charged sites along the polymer chain
- nonionic-ionize in water solution to form very slight negatively charged sites along the polymer chain

There are many coagulant aid as lime, soda ash, activated silica. Other chemical used in coagulation as sulfuric Acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$, is used infrequently to acidify waters prior to treatment. Sodium Hydroxide, NaOH , which is also known as caustic soda, is an effective alkali. Also, when used to produce alkalinity, it does not increase the hardness of the water.

Sodium silicates, consisting of sodium oxide, $\mathrm{Na}_{2} \mathrm{O}$, and silica, SiO_{2}, in various proportions, are use in conjunction with aluminum sulfate to produce large floc particles. In the so-called high-rate upward-flow clarifiers, such large particles are especially desirable after being compacted and agglomerated by slow agitation.

5.6 Coagulant dosage

The selection of a coagulant requires the use of laboratory or pilot plant coagulation studies. Usually laboratory studies using the jar test are adequate for selecting a coagulant for a water treatment plant. A jar test is usually used to determine the proper coagulant and coagulant aid, if needed, and the chemical dosages required for the coagulation of a particular water. Samples of the water are poured into a series of containers. Various dosages of the coagulant and coagulant aid are added. The contents are rapidly stirred to simulate rapid mixing. Then the contents are gently stirred to simulate flocculation. After a given time, the stirring is ceased and the floc formed is allowed to settle.
The most important aspects to note are:
-The time for floc formation,
-The floc size,
-Its settling characteristics,
-The percent turbidity and color removed, and
-The final pH of the coagulated and settled water.
-The chemical dosage determined from the procedure gives an estimate of the dosage required for the treatment plant.
The jar test simulate the coagulation/flocculation process in a batch mode.A series of batch tests are run in which pH , coagulant type and dosage and coagulant aid are varied to get the optimal dosage (lowest residual turbidity). An economic analysis is performed to select these parameters. Jar tests generally are performed using 6 oneliter samples of the water to be treated. To these samples a range of coagulant (and possibly coagulant aid) dose is added (one sample is usually a blank). Immediately after the coagulant is added the samples are "flash mixed" for approximately one minute. The stirrer speed is then reduced to simulate a flocculation basin. Flocculation mode is generally maintained for about 20 minutes. At the end of the flocculation period the stirrers are turned off and the floc is allowed to settle for one-half hour. After this settling period supernatant samples are drawn off from each sample and analyzed for turbidity and sometimes alkalinity and pH .
The jar test apparatus and typical results from a jar test series might look like as shown in Figs. (5.2 a and b):

Fig.(5.2a): Jar test apparatus

Fig.(5.2 b): Typical results from a jar test

5.6 Rapid mix

Rapid mixers should provide sufficient agitation to disperse the coagulant in raw water. Rapid mixing units can be classified according to the method of agitation mechanical or static. A mechanically agitated rapid mixer utilizes a mechanical mixer with an impeller or propeller to create turbulence in the mixing chamber. Examples of impellers and propellers used in water treatment are shown in fig (5.3). Fig (5.4) shows the mechanical radial flow.

Straight blade turbine

Pitched Blade Turbine (axial)

Disc turbine

Propeller (axial)

Fig (5.3) Types of impeller

Normally, the ratio between turbine diameter and the width of mixing tank range from $1 / 2$ to $1 / 3$, also the ratio between turbine diameter and the distance between the radial impeller and the bottom of the mixing tank equal to 1 .

For static rapid mixing, arrangements are used such as channels or chambers with baffles producing turbulent flow conditions, overflow weirs, and hydraulic jumps (fig 5.5, 5.6, 5.7).

Fig (5.4) Mechanical rapid mixer

Fig (5.5) Baffled channel for rapid mixing (not very effective)

Fig (5.6) Overflow weir

Fig (5.7) Hydraulic jump

5.7 Rapid Mix Tank Design

Traditionally, in water treatment plants, the degree of agitation in a mixing unit is measured by velocity gradient. The value of velocity gradient is given by:

$$
\mathbf{G}=\sqrt{\frac{\mathrm{P}}{\mu \mathrm{~V}}}
$$

Where
$\mathrm{G}=$ velocity gradient, s^{-1}
$P=$ power input, Watt. $V=$ volume of water in mixing tank, $m^{3} \cdot \mu=$ dynamic viscosity, Pa.s.
Some design criteria for rapid mix shown below:
G:700<G<1000 s ${ }^{-1}$
D.T: 60 to 120 s

GT (Camp number): 30000 to 60000 (D.T = GT / G)
The power imparted to the water by a mixer is calculated from:

$$
p=2 \pi n T .
$$

Where n : impeller speed, rps $\quad T$: impeller shaft torque, N.m
Other expressions for the power imparted to the water are given by:

$$
\begin{align*}
& p=N_{p} \mu n^{2} d^{3} \\
& p=N_{p} \rho n^{3} d^{5}
\end{align*}
$$

Where
N_{p} : power number of the impeller d : impeller diameter, m
Radial flow
Straight blade turbine
4 blade $(\mathrm{w} / \mathrm{d}=0.15) \rightarrow \mathrm{N}_{\mathrm{p}}=2.6 \quad \mathrm{w} / \mathrm{d}$: blade width to diameter ratio
4 blade $(\mathrm{w} / \mathrm{d}=0.2) \rightarrow \mathrm{N}_{\mathrm{p}}=3.3$
Disc turbine
4 blade $(\mathrm{w} / \mathrm{d}=0.25) \rightarrow \mathrm{N}_{\mathrm{p}}=5.1$
6 blade $(w / d=0.25) \rightarrow N_{p}=6.2$
Axial flow
Propeller 1:1 pitch $\rightarrow \mathrm{N}_{\mathrm{p}}=0.3$
Propeller 1.5:1 pitch $\rightarrow \mathrm{N}_{\mathrm{p}}=0.7$
45° pitched blade

$$
4 \text { blade }(\mathrm{w} / \mathrm{d}=0.15) \rightarrow \mathrm{N}_{\mathrm{p}}=1.36 \quad 4 \text { blade }(\mathrm{w} / \mathrm{d}=0.25) \rightarrow \mathrm{N}_{\mathrm{p}}=1.94
$$

Equation 5.3 is used for the laminar flow and eq (5.4) is used for turbulent.
$R_{n}=\frac{d^{2} n \rho}{\mu}$

5.7.1 Rapid Mix Design Considerations

- Maximum Tank Volume $=8 \mathrm{~m}^{3}$ (due to mixing equipment and geometry constraints).
- Mixing Equipment: Electric Motor, gear-type speed reducer, turbine of axial shaft impeller.
- Usually the turbine impeller provides more turbulence and is preferred in rapid mix tanks.
- The tanks are usually, baffled horizontally into two or three compartments in-order to provide sufficient residence time.
- Tanks should also be vertically baffled to minimize vortexing.
- Chemicals should be added below the impeller, point of most mixing.
- Design Liquid depth $=0.5$ to 1.1 times the basin diameter or width.
- Impeller diameter is between 0.3 and 0.50 times the tank diameter or width.
- Vertical baffles extend into the tank about 10% of the tank diameter or width.
- Impellers typically do not exceed 1.0 meter in diameter.
- Liquid depth may be increased to between 1.1 and 1.6 times the tank diameter if dual impellers on the shaft are employed. When dual impellers are employed, they are spaced about two impeller diameters apart.
- Transfer efficiency of motor power to water power is about 0.8 for a single impeller.

EXAMPLE OF RAPID MIX TANK DESIGN

A city is planning for the installation of a water treatment plant to remove iron. A low-turbidity iron coagulation plant has been proposed with the following design parameters:
Q $=2 \mathrm{~m}^{3} / \mathrm{s}$
Rapid mix detention time, $t=10 \mathrm{~s}$
Rapid mix G $=1,000 \mathrm{~s}^{-1}$

Design a rapid-mix basin and size the mixing equipment.

Solution:

The volume of the rapid-mix tank by is:

$$
V=Q \times t=\left(2 \mathrm{~m}^{3} / \mathrm{s}\right)(10 \mathrm{~s})=20 \mathrm{~m}^{3}
$$

Since the minimum tank volume is $8 \mathrm{~m}^{3}$ is a guideline, tanks in parallel will have to be provided.

The design is also constrained by the availability of mixers and those limitations need to be evaluated.

Assume the following mixers are available:

Model	Rotational speeds, rpm	Power, kW	Model	Rotational speeds, rpm	Power, kW
JTQ25	30,45	0.18	JTQ300	110,175	2.24
JTQ50	30,45	0.37	JTQ500	110,175	3.74
JTQ75	45,70	0.56	JTQ750	110,175	5.59
JTQ100	45,110	0.75	JTQ1000	110,175	7.46
JTQ150	45,110	1.12	JTQ1500	110,175	11.19
JTQ200	70,110	1.5			

rpm = revolutions per minute
JTQ models have variable speeds from 1-45 rpm
The largest available mixer can achieve a water power of:

$$
(11.19 \mathrm{~kW})(0.8)=8.95 \mathrm{~kW}
$$

The 0.8 is the assumed efficiency of transfer of motor power to water power. Given a G of $1,000 \mathrm{~s}^{-1}$, and a viscosity at $18^{\circ} \mathrm{C}$ as $1.053 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}$, the required mixing can be calculated as:

$$
G=\sqrt{\frac{P}{\mu V}}
$$

$$
V=\frac{P}{\mathrm{G}^{2} \mu}=\frac{8.95 \times 10^{3} \mathrm{~W}}{\left(1,000 \mathrm{~s}^{-1}\right)^{2}\left(1.053 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}\right)}=8.50 \mathrm{~m}^{3}
$$

This means that using the largest available mixer from the manufacturer, to supply $20 \mathrm{~m}^{3}$ volume requirement the number of tanks needed are:

$$
\begin{aligned}
\left\{\begin{array}{c}
\text { Number } \\
\text { of } \\
\text { Tanks }
\end{array}\right\} & =\frac{\text { total tank volume required }}{\text { volume requirement per tank based on mixing }} \\
& =\frac{20 \mathrm{~m}^{3}}{8.50 \mathrm{~m}^{3} / \text { tank }}=2.35 \text { or } 3 \text { rapid mix tanks }
\end{aligned}
$$

The volume for each tank is $6.67 \mathrm{~m}^{3}$. For the JTQ1500 the rotational speed is 110 rpm (1.83 rps) and a turbine with six flat blades (vaned disc), the impeller diameter can be estimated as:

$$
\begin{aligned}
& P=K_{T}(n)^{3}\left(D_{i}\right)^{5} \rho \\
& D_{i}=\left(\frac{(P)}{\left(K_{T}\right)(n)^{3}(\rho)}\right)^{1 / 5}=\left(\frac{\left(8.95 \times 10^{3} \mathrm{~W}\right)}{(6.30)(1.83 \mathrm{rps})\left(1.053 \times 10^{-3} \mathrm{~Pa} \cdot \mathrm{~s}\right)}\right) \\
& \\
& =(0.23)^{1 / 5}=0.75 \mathrm{~m}
\end{aligned}
$$

Using a ratio of impeller diameter to tank diameter of 0.33 , the tank diameter would be equal to:

$$
\begin{aligned}
\left\{\begin{array}{l}
\text { Tank } \\
\text { diameter }
\end{array}\right\} & =\frac{\text { impeller diameter }}{\text { ratio of impeller diameter to tank diameter }} \\
& =\frac{0.75 \mathrm{~m}}{0.33}=2.27 \mathrm{~m}
\end{aligned}
$$

The surface area of the tank would be equal to:

$$
\left\{\begin{array}{l}
\text { Tank } \\
\text { surface } \\
\text { area }
\end{array}\right\}=\frac{\pi}{4}(2.27 \mathrm{~m})^{2}=4.05 \mathrm{~m}^{2}
$$

With three $6.67 \mathrm{~m}^{3}$ tanks, the depth of each tank would be:

$$
\left\{\begin{array}{l}
\text { Tank } \\
\text { depth }
\end{array}\right\}=\frac{\operatorname{tank} \text { volume }}{\operatorname{tank} \text { area }}=\frac{6.67 \mathrm{~m}^{3}}{4.05 \mathrm{~m}^{2}}=1.65 \mathrm{~m}
$$

Need to check the liquid-depth to tank ratio:

$$
\left\{\frac{\text { liquid depth }}{\text { tank diameter }}\right\}=\frac{1.65 \mathrm{~m}}{2.27 \mathrm{~m}}=0.73
$$

This is within the guideline of 0.5 to 1.1 .

Example:

A square rapid mixing basin with a depth of water equal to 1.25 times the width is to be designed for a flow of $7570 \mathrm{~m}^{3} / \mathrm{d}$. The velocity gradient is to be $790 \mathrm{~s}^{-1}$, the detention time is 40 s , the operating temperature is $10^{\circ} \mathrm{C}$ and the turbine shaft speed is 100 rpm . Determine:

1. The basin dimensions
2. Power required. Select the motor needed for the impeller if the efficiency of the motor and gearbox is 70%. Assume motors come in sizes of $1,2.5,5$ and 7.5 hp .

$$
1 \mathrm{hp}=745.7 \mathrm{~W} \text { or } \mathrm{J} / \mathrm{s} .
$$

3. Impeller diameter if a vane-disk impeller with six flat blades is employed and the tank has four vertical baffles (one on each tank)
4. Volume

$$
\begin{aligned}
& =7570 \mathrm{~m}^{3} / \mathrm{d} \times 1 /(60 \times 24)(\mathrm{d} / \mathrm{min})(\mathrm{min} / 60 \mathrm{~s}) \times 40 \mathrm{~s} \\
& =3.5 \mathrm{~m}^{3}
\end{aligned}
$$

Dimensions w x w x $1.25 \mathrm{w} \quad=3.5 \mathrm{~m}^{3}$
$\mathrm{w}=1.41 \mathrm{~m} \quad$ use $\mathrm{w}=1.45 \mathrm{~m}$
$\mathrm{H}=1.25 \times 1.45=1.81 \mathrm{~m} \quad$ use $\mathrm{H}=1.80 \mathrm{~m}$
Total Height $=1.8 \mathrm{~m}+$ free board $($ assume 0.6 m$)=2.4 \mathrm{~m}$
New volume $=1.45 \times 1.45 \times 1.8=3.785 \mathrm{~m} 3$
Detention time $=3.785 /(7570 \times 60 \times 60 \times 24)=43 \mathrm{~s} . \quad$ ok
2. Power required

$$
\begin{aligned}
\mathrm{P}=\mathrm{G}^{2} \mathrm{~V} \mu & =(790)^{2} \times 0.00131 \times 3.785 \quad(1 / \mathrm{s})^{2} \times\left(\mathrm{Ns} / \mathrm{m}^{2}\right) \times\left(\mathrm{m}^{3}\right) \\
& =3087 \mathrm{Nm} / \mathrm{s}(\mathrm{~W})
\end{aligned}
$$

$$
\text { Power of motor }=3087 /(746 \times 0.70)=5.91 \mathrm{hp}
$$

use a 7.5 hp motor

$$
\text { (} 1 \mathrm{hp}=746 \text { watts) }
$$

3. Impeller diameter

$$
\begin{aligned}
& \mathrm{P}=\phi \rho \mathrm{N}^{3} \mathrm{D}^{5} \\
& \mathrm{D}=\left(\frac{\mathrm{P}}{\phi \rho \mathrm{~N}^{3}}\right)^{1 / 5}
\end{aligned}
$$

$$
=\left(\frac{3087}{6.30 \times 999.7 \mathrm{x}(100 / 60)^{3}}\right)^{1 / 5}
$$

$$
=0.64 \mathrm{~m}
$$

$$
\mathrm{D} / \mathrm{w}=0.64 / 1.45=0.44 \text { or } 44 \% \quad \text { within } 30 \text { to } 50 \% \text { of the width (ok) }
$$

Head loss through influent pipe:

Let pipe diameter $=60 \mathrm{~cm}=0.6 \mathrm{~m}$
Velocity $=\mathrm{Q} / \mathrm{A}=0.087 /\left(\pi / 4 * 0.6^{2}\right)=0.087 / 0.282=0.310 \mathrm{~m} / \mathrm{s}$
Kentance $=0.5$, Kelbow $90=0.3$, Kexit $=1$
$\mathrm{h}_{\mathrm{m}}=\mathrm{K}^{*} \mathrm{~V}^{2} / 2 \mathrm{~g}=(0.5+0.3+0.1) * 0.096 / 19.62=0.004 \mathrm{~m}$
Head loss over effluent weir:
$Q=\frac{2}{3} C_{d} L \sqrt{2 g h^{3}}$
$0.087=(2 / 3) * 0.6 * 1.45^{*}(19.62 * \mathrm{~h} 3)^{\wedge} 0.5$
$\mathrm{h}=0.104 \mathrm{~m}$

5.7 Flocculation

Flocculation is the process of gentle and continuous stirring of coagulated water for the purpose of forming flocs through the aggregation of the minute particles present in the water. It is thus the conditioning of water to form flocs that can be readily removed by settling, dissolved air flotation or filtration, Fig (5.8). The efficiency of the flocculation process is largely determined by the number of collisions between the minute coagulated particles per unit of time.

Fig (5.8) Schematic representation of flocculation process
There are mechanical and hydraulic flocculators. In mechanical flocculators the stirring of the water is achieved with devices such as paddles, paddle reels or rakes, as shown in Fig. (5.9).

Fig (5.9) Mechanical flocculators

These devices can be fitted to a vertical or horizontal shaft. Vertical shaft flocculators are usually placed in a square tank with several chambers (four or more). With horizontal shaft flocculators having a traverse flow, one should provide at least four rows of shafts, with partitions of baffles, so as to avoid short-circuiting.
The hydraulic flocculators utilize horizontal or vertical hydraulic baffled channel as shown in fig (5.10). They are rarely used in large size of water treatment plant, because of their sensitivity to flow changes.

Horizontal Channel Hydraulic Flocculator (plan)

Vertical Channel Hydraulic Flocculator (profile)

Fig (5.10) Hydraulic flocculators

5.7.1 Agitation requirement

The detention time in the flocculation tank is higher than that in rapid mixing tank. Detention time from 20 to 30 min . Typical velocity gradient G for flocculators range from 25 to $65 \mathrm{~s}^{-1}$. The velocity gradient can be obtained by using eq (5.1). In the case of paddle wheel mixers (horizontal), the water power is given by:
$p=\frac{C_{d} A_{p} v_{\text {prel }}^{3}}{2} \ldots . .5 .2$

Where

p : power imparted to water, watt
C_{d} : drag coefficient, which varies with the length to width ratio of the paddle blades. ($\mathrm{L} / \mathrm{W}=5$) $\rightarrow \mathrm{C}_{\mathrm{d}}=1.2$

$$
(\mathrm{L} / \mathrm{W}=20) \rightarrow \mathrm{C}_{\mathrm{d}}=1.5
$$

A_{p} : area of the paddles, m^{2}
v_{p} : velocity of the paddle relative to the water, m / s
The velocity of the paddle relative to the water is 75% of the absolute peripheral velocity of the paddle.

$$
\begin{aligned}
& v_{\text {pabs }}=\pi n d \\
& v_{\text {prel }}=0.75 v_{\text {pabs }}
\end{aligned}
$$

> Notice: The paddles impart a velocity to the water, so the velocity of the paddle must exceed the the relative velocity. Experience has shown that the relative velocity of the water is 75% of the rotational velocity of blades.

Where

n : rotational speed of the blades, rps
d : diameter from center to center of each paddle blade, m

Design Criteria:

- The general design criteria for a basic rectangular flocculation tank are as follows:
- Energy input: $\mathrm{Gt}=10,000$ to $100,000, \mathrm{t}=5 \times 10^{4} \mathrm{~s}$ average, $\mathrm{G}=30 \mathrm{~s}^{-1}$ average, $10-70$ range
- DT: 20-30 minutes at Qmax.
- Depth: 10-15
- Stages: 3-4 common, 2-6 range
- Among the first considerations are the selection of the mode of mixing and the physical relationship between the flocculators and clarifiers. Subsequent decisions include: the number of tanks, number of mixing stages and their energy level and baffling type
- Design usually based on:
- DT
- mixing energy level (G).

Example: A water treatment plant is designed to process $100 \mathrm{ML} / \mathrm{d}$. The flocculator is 30 m long, 15 m wide, and 5 m deep. Revolving paddles are attached to four horizontal shafts that rotate at 1.5 rpm . Each shaft supports four paddles that are 200 mm wide, 15 m long and centered 2 m from the shaft. Assume the mean water velocity to be 70% less than paddle velocity and $C_{D}=1.8$. All paddles remain submerged all the time.

Find:
a) the difference in velocity between paddles and water
b) the value of G and
c) the Camp number.

Solution

a) Rotational speed, $\mathrm{V}_{\mathrm{p}}=\frac{2 \pi \rho v}{60}$
where $\quad V_{p}=$ velocity of paddle blades, m / s
$\mathrm{n}=\mathrm{rpm}$
r $\quad=$ distance from shaft to centre of paddle, m
$\mathrm{V}_{\mathrm{p}}=\frac{2 \pi \times 2 \times 1.5}{60}=0.31 \mathrm{~m} / \mathrm{s}$

Speed differential $=70 \% \times 0.31 \mathrm{~m} / \mathrm{s}=0.22 \mathrm{~m} / \mathrm{s}$
b) $\quad \mathrm{P}=\frac{C_{D} A \rho v^{3}}{2}$
where A, paddle area $=0.2 \times 15 \times 4 \times 4=48 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \mathrm{P}=\frac{1.8 \times 48 \times 1000 x(0.22)^{3}}{2}=460 \mathrm{~W}=460 \mathrm{~W} \\
& \text { (i.e. } \mathrm{m}^{2} \times \mathrm{kg} \mathrm{x} \mathrm{~m}^{-3} \mathrm{x} \mathrm{~m}^{3} \mathrm{~s}^{-3}=\mathrm{m}^{2} \mathrm{kgs}^{-3}=\mathrm{W}\left(\mathrm{~kg} \mathrm{~ms}^{-2} \mathrm{~ms}^{-1}\right) \\
& \mathrm{G} \quad=\left(\frac{P}{\forall \mu}\right)^{0.5} \\
& \forall \quad=\text { tank volume }=30 \times 15 \times 5=2250 \mathrm{~m}^{3} \\
& \mu \quad=\text { viscosity }=1 \mathrm{cP}=1 \times 10^{-3} \mathrm{kgm}^{-1} \mathrm{~s}^{-1} \\
& \mathrm{P} \quad=460 \mathrm{~W} \\
& \mathrm{G} \quad=\left(\frac{460}{2250 \times 10^{-3}}\right)^{0.5}=14.3 \mathrm{~s}^{-1} \\
& \text { (i.e. } \left.\left.\mathrm{m}^{2} \mathrm{kgs}^{-3} \mathrm{x} \mathrm{~m}^{-3} \mathrm{x} \mathrm{~kg}^{-1} \mathrm{~ms}\right]^{0.5}=\left[\mathrm{s}^{-2}\right]^{0.5}=\mathrm{s}^{-1}\right)
\end{aligned}
$$

c) The retention time of the flocculator is found by dividing the tank volume by the flow rate:

$$
\frac{2250 \mathrm{~m}^{3}}{100 \times 10^{3} \times(24 \times 60)^{-1}}=32.4 \mathrm{~min}
$$

$$
\text { Camp no. } \quad=\mathrm{Gt}=14.3 \times 32.4 \times 60=27800
$$

This value is within the normal range of 20,000 and 200,000.

Effluent structure (diffusion wall)

The diffusion wall separating flocculation and sedimentation tanks is of concrete, with circular ports. Diffusion wall is used to distribute the flow into the sedimentation tank and consequently to prevent floc breakup.

Let velocity through the port $=0.15 \mathrm{~m} / \mathrm{sec}$ (to prevent floc breakup)

$$
\therefore \mathrm{A}=\mathrm{Q} / \mathrm{v}=1.157 / 0.15=7.176 \mathrm{~m}^{2}
$$

If diameter of port $=12.5 \mathrm{~cm}$
\therefore area of each port $=\frac{\pi}{4}(0.125)^{2}=0.0123 \mathrm{~m}^{2}$
Number of ports $=7.176 / 0.0123=628$ provide in six rows

Example: A flocculation basin is to be designed and the design flow for the basin is 13.0 MGD. The basin is to be a cross-flow horizontal- shaft, paddle-wheel type with a mean velocity gradient of $26.7 \mathrm{sec}^{-1}$ (at 50 F), a detention time of 45 min , and a GT value from 50,000 to 100,000 . Tapered flocculation is to be provided in three compartments of equal depth. The G values are to be 50,20 , and $10 \mathrm{sec}^{-1}$. The basin is to have a width of 90 ft to adjoin an existing basin. The paddle wheels are to have blades with a 6 -in width and length of 10 ft . The outside blades should clear the floor by 1 ft and be 1 ft below the water surface. There are to be six blades per paddle wheel, and the blades should have a clear spacing of 12 in . Adjacent paddle wheels should have a clear spacing of 30 to 36 in . between blades. The wall clearance is 12-18 in. Determine:
a. The basin dimensions (1 in . increments).
b. The paddle-wheel design.
c. The power to be imparted to the water in each compartment.

Solution
a. The basin dimensions.
$\mathrm{V}=\frac{13000000 \mathrm{gal}}{1440 \mathrm{~min}} \times 45 \mathrm{~min} \times \frac{\mathrm{ft}^{3}}{7.48 \mathrm{gal}}=54,311 \mathrm{ft}^{3}$
Area of the profile section $=54311 \mathrm{ft}^{3} / 90 \mathrm{ft}=603.46 \mathrm{ft}^{2}$
Let $\mathrm{X}=$ Compartment width and depth
$(3 \mathrm{X}) * \mathrm{X}=603.46 \mathrm{ft}^{2}$
$\mathrm{X}=14.183 \mathrm{ft}=14 \mathrm{ft}-3 \mathrm{in}$
$3 \mathrm{X}=(3)(14 \mathrm{ft}-3 \mathrm{in})=42 \mathrm{ft}-9 \mathrm{in}$
$\mathrm{V}=(14.25)(42.75)(90.0)=54,827 \mathrm{ft}^{3}$
b. Assume 7 wheels with 6 in $\times 10 \mathrm{ft}$ blades.

Let the spacing between wheels be s and between wheels and wall be $1 / 2 \mathrm{~s}$
$7 \mathrm{~s}+7(10 \mathrm{ft})=90 \mathrm{ft}$
$\mathrm{s}=2.86 \mathrm{ft}$ or 34.3 in which is between 30 to 36 in .
Try 6 blades per wheel as shown in the drawing

$\mathrm{D} 1=14.25^{\prime}-(2)\left(1^{\prime}\right)-2\left(3 / 12^{\prime}\right)=\mathbf{1 1 . 7 5}^{\prime}$
$\mathrm{D} 2=11.75^{\prime}-(2)\left(1^{\prime}\right)-2\left(3 / 12^{\prime}\right)-2\left(3 / 12^{\prime}\right)=8.75^{\prime}$
$\mathrm{D} 3=8.75^{\prime}-(2)\left(1^{\prime}\right)-2\left(3 / 12^{\prime}\right)-2\left(3 / 12^{\prime}\right)=\mathbf{6 . 2 5}{ }^{\prime}$

Area of blades per shaft $=\left(0.5^{\prime *} 10^{\prime}\right)(6)(7)=\mathbf{2 1 0} \mathbf{f t}^{\mathbf{3}}$

Cross section of basin $=\left(14.25^{\prime}\right)\left(90^{\prime}\right)=\mathbf{1 2 8 2 . 5} \mathbf{f t}^{\mathbf{3}}$
$\%$ Area $=(210 / 1282.5) * 100 \%=\mathbf{1 6 . 4 \%}$ (between 15 to $20 \%)$
c. The power to be imparted to the water in each compartment

1st compartment

$\mathrm{P}=\mu \mathrm{VG}^{2}$

$$
\mathrm{P}=\left(2.73 * 10^{-5} \mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{2}\right) *(50 / \mathrm{sec})^{2} *\left(54827 \mathrm{ft}^{3} / 3\right)
$$

$$
=1.2473 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}=\underline{\mathbf{2 . 2 7} \mathbf{H P}}
$$

2nd compartment

$$
\begin{aligned}
\mathrm{P} & =\mu \mathrm{VG}^{2} \\
\mathrm{P} & =\left(2.73 * 10^{-5} \mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{2}\right) *(20 / \mathrm{sec})^{2} *\left(54827 \mathrm{ft}^{3} / 3\right) \\
& =199.57 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}=\underline{\mathbf{0 . 3 6 3} \mathbf{~ H P}}
\end{aligned}
$$

3rd compartment

$$
\mathrm{P}=\mu \mathrm{VG}^{2}
$$

$$
\mathrm{P}=\left(2.73 * 10^{-5} \mathrm{lb}-\mathrm{sec} / \mathrm{ft}^{2}\right) *(10 / \mathrm{sec})^{2} *\left(54827 \mathrm{ft}^{3} / 3\right)
$$

$$
=49.89 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}=\underline{\mathbf{0 . 0 9 1} \mathbf{~ H P}}
$$

Total HP = $\underline{\mathbf{2 . 7 2 ~ H P}}$

Example

Given: A flocculation basin. $\mathrm{Q}=12 \mathrm{MGD}$, horizontal shaft, paddle wheel. The mean $\mathrm{G}=$ $25 \mathrm{~s}^{-1} @ 50^{\circ} \mathrm{F} . \mathrm{t}=45 \mathrm{~min}$. The Gt must be between $50,000-100,000$. Use 3 stages of equal depth in which the G's decrease: 45,20 , and $10 . \mathrm{L}=0.5 \mathrm{~W}, \mathrm{~L}=3 \mathrm{H}$. The paddles are to be made of redwood, $10^{\prime} \times 6^{\prime \prime}$. The outside blade is to be 1.5^{\prime} from the floor of the tank as well as from the top of the water surface. Use 6 blades/wheel and maintain a clear spacing of 12 " between blades. Adjacent wheels are to maintain a clear spacing of 24-36" between blades. The wall clearance is to be between $12-18 \prime{ }^{\prime} \mathrm{C}_{\mathrm{D}}=1.50$ for the paddles. Use the power equations $\mathrm{P}=.97 \mathrm{C}_{\mathrm{D}} \mathrm{Av}^{3}$ and $\mathrm{P}=\mu \forall \mathrm{G}^{2}$.

Example

Treatment plant with capacity $50 * 10^{6} 1 /$ day. This treatment plant required 20 mg / l alum. If the water alkalinity as CaCO_{3} is $6 \mathrm{mg} / \mathrm{l}$. Find the yearly alum quantity and the quantity of CaO which is used as coagulant aid? Atomic weights: $\mathrm{Al}=27, \mathrm{O}=16, \mathrm{H}=1, \mathrm{C}=12, \mathrm{Ca}=40$

Example

Design a coagulation tank if $\mathrm{Q}=3000 \mathrm{~m}^{3} /$ day, $\mathrm{G}=700 \mathrm{~s}^{-1}$, $\mathrm{D} . \mathrm{T}=60 \mathrm{~s}$, viscosity= $1.03 * 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$

Lecture Six

Environmental Engineering Department- Third Stage
2015-2016

6.1 Definition of Sedimentation:

It is the process of removing solid particles heavier than water by gravity force.

- Particles that will settle within a reasonable period of time can be removed using a sedimentation tank (also called clarifiers).
- Sedimentation is used in water treatment at the locations indicated in Figures 1 through 4.

6.2 Applications of sedimentation in water treatment:

1. Plain settling (or pre-sedimentation) of river surface water .
2. In filtration treatment plants treating surface water to removes flocculated solids. The sedimentation tank comes after the flocculation tank.
3. In Softening treatment plants treating hard water to removes flocculated solids. The sedimentation tank comes after the flocculation tank.
4. In aeration treatment plant removing iron and manganese from ground water.

Figure 1: Filtration Treatment Plant (River Water)

Figure 2 : Filtration Treatment Plant

Figure 3: Softening Treatment Plant Single stage softening

Figure 4 : Aeration Treatment Plant
(iron and manganese removal plant)

6.3 Geometry of sedimentation tanks:

Sedimentation tanks are either rectangular or circular tanks:

- Rectangular basins are the simplest design, allowing water to flow horizontally through a long tank. This type of basin is usually found in large-scale water treatment plants. Rectangular basins have a variety of advantages - predictability, cost-effectiveness, and low maintenance. In addition, rectangular basins are the least likely to short-circuit, especially if the length is at least twice the width. A disadvantage of rectangular basins is the large amount of land area required.
- Square or circular sedimentation basins with horizontal flow are often known as clarifiers. This type of basin is likely to have shortcircuiting problems.

Figure 2 : Filtration Treatment Plant

A circular sedimentation basin
(Taken from D.S. Sarai, 2006)

Figure 4 : Aeration Treatment Plant (iron and manganese removal plant)

6.4 Zones of sedimentationtank

All sedimentation basins have four zones - the inlet zone, the settling zone, the

Fig (9) Zones of sedimentation tank

6.4.1 Inlet zone

The two primary purposes of the inlet zone of a sedimentation basin are to distribute the water and to control the water velocity as it enters the tank. In addition, inlet devices act to prevent turbulence of the water. The incoming flow in a sedimentation basin must be evenly distributed across the width of the basin to prevent short-circuiting. Short-circuiting is a problematic circumstance in which water by passes the normal flow path through the tank and reaches the outlet in less than the normal detention time.

Two types of inlets are shown below, Fig (10). The stilling wall, also known as a perforated baffle wall or diffusion wall, spans the entire tank from top to bottom and from side to side. Water leaves the inlet and enters the settling zone of the sedimentation basin by flowing through the holes evenly spaced across the stilling wall.

Fig (10): Types of inlet zone

The second type of inlet allows water to enter the tank by first flowing through the holes evenly spaced across the bottom of the channel and then by flowing under the baffle in front of the channel. The combination of channel and baffle serves to evenly distribute the incoming water.

6.4.2 Settling zone

After passing through the inlet zone, water enters the settling zone where water velocity is greatly reduced. This is where the bulk of flock settling occurs and this zone will make up the largest volume of the sedimentation tank. For optimal performance, the settling zone requires a slow, even flow of water. The settling zone may be simply a large expanse of open water. But in some cases, tube settlers and lamella plates, such as those shown in Fig. (11), are included in the settling zone.

Fig (11) Tube settlers and lamella plates

6.4.3 Outlet zone

The outlet zone controls the water flow out of the sedimentation tank. Like the inlet zone, the outlet zone is designed to prevent short-circuiting of water in the basin. In addition, a good outlet will ensure that only well settled water leaves the tank. The outlet can also be used to control the water level in the basin. Outlets are designed to ensurethat the water flow out of the sedimentation tank has the minimum amount of flock suspended in it. The best quality water is usually found at the very top of the sedimentation basin, so outlets are usually designed to skim this water off the sedimentation tank. A typical outlet zone begins with a baffle in front of the effluent. This baffle prevents floating material from escaping the sedimentation tank. After the baffle comes the effluent structure, which usually consists of a launder, weirs, and effluent piping. A typical effluent structure is shown in Fig. (12)

Fig (12) typical effluent structure

The primary component of the effluent structure is the effluent launder, a trough which collects the water flowing out of the sedimentation tank and directs it to the effluent piping. The sides of a launder typically have weirs attached. Weirs are walls preventing water from flowing uncontrolled into the launder. Weirs serve to skim the water evenly off the tank. A weir usually has notches, holes, or slits along its length. These holes allow water to flow into the weir. The most common type of hole is the V-shaped notch shown on the figure above which allows only the top inch or so of water to flow out of the sedimentation basin. Conversely, the weir may have slits cut vertically along its length, an arrangement which allows for more variation of operational water level in the sedimentation basin. Water flows over or through the holes in the weirs and into the launder. Then the launder channels the water to the outlet, or effluent pipe. This pipe carries water away from the sedimentation tank and to the next step in the treatment process. The effluent structure may be located at the end of a rectangular sedimentation tank or around the edges of a circular clarifier. Alternatively, the effluent may consist of finger weirs, an arrangement of launders which extend out into the settling tank as shown in Fig. (13).

Finger Weirs

Fig. (13) Finger weirs

6.4.4 Sludge zone

The sludge zone is found across the bottom of the sedimentation basin where the sludge collects temporarily. Velocity in this zone should be very slow to prevent resuspension of sludge. A drain at the bottom of the tank allows the sludge to be easily removed from the tank. The tank bottom should slope toward the drains to further facilitate sludge removal. Slopes: Rectangular 1% towards inlet and circular 8%.

Long Rectangular Settling Basin

6.5 Types of Settling

With such heterogeneous wastewaters/water and variable flows during the settling process in a sedimentation tank it is possible that four types of settling may occur. In general, four types of settling phenomena have been defined. The four types of settling are described below, and shown graphically in Fig. 15.:

Type I: Discrete particle settling - Settling of particles in a suspension of low solids concentration, particles settle as individual entities, with little or no interaction with adjacent particles.

Type II: Flocculent Particles - Individual particles tend to coalesce, or flocculate, increasing their mass and settling rate.

Type III: Hindered or Zone settling - The particles tend to remain in fixed positions with respect to each other, a solids-liquid interface develops at the top of the settling mass, which settles as a unit. Occurs if biological floc develops.

Type VI: Compression settling- The concentration of particles is so high that sedimentation can only occur through compaction of the structure. Occurs in the lower sludge mass.

Type 1: (Discrete Particle) Particles settle as individual entities with little or no interaction with adjacent particles.

Type 2: (Flocculant) Individual particles tend to flocculate, increasing their mass and settling rate.

Type 3: (Hindered or Zoned) Particles tend to remain in fixed positions with respect to each other, a solids-liquids interface develops which settles as a unit.

Type 4: (Compression) Consolidation and compression of sediment take place from the weight of particles which are constantly being added.

Fig. (15): Types of settling.

6.6 Sedimentation of discrete particles

To show the steps of the solution concerning the sedimentation tank, we will take a rectangular tank, as shown in Fig. (16). From this figure it can be shown that we have two phases. The first is the top view (surface view) and his area equal to:

$$
A_{h}=L \times W
$$

The second phase is the side view and his area equal to:

$$
A_{1}=W \times h
$$

Fig (16) Rectangular sedimentation tank

6.7 Terminology of sedimentationtank

In this section we will discuss the important parameters control the design of a sedimentation tank.

6.7.1 Surface over flow rate (SOR)

When the water contained colloidal particles enters the tank, the tank will be closed from 2 to 4 hr and then the water start to move up. This velocity is called SOR:

$$
S O R=\frac{Q}{L \times W}
$$

6.7.2 Horizontal velocity

From Fig (6.8), we find that the side view is responsible to calculate the horizontal velocity:

$$
V_{h}=\frac{Q}{h \times W}
$$

6.7.3 Settling velocity

This velocity refers to the velocity of particles towards the bottom of the tank. Settling velocity can be calculated from Newton's law:

$$
V_{s}=\sqrt{\frac{4\left(\rho_{p}-\rho_{w}\right) g d_{p}}{3 \rho_{w} C_{D}}}
$$

In practice, it is found that C_{D} is a function of the Reynolds Number, R_{n}, and, for spherical particles, it can be represented by the following expressions

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{n}}<0.5 \text { (laminar flow), } C_{D}=\frac{24}{\mathrm{R}_{\mathrm{n}}} \\
& 0.5<\mathrm{R}_{\mathrm{n}}<10^{3}, C_{D}=\frac{24}{R_{n}}+\frac{3}{R_{n}}+0.34 \\
& 10^{3}<\mathrm{R}_{\mathrm{n}}, \mathrm{C}_{\mathrm{D}} \approx 0.44
\end{aligned}
$$

Where $R_{n}=\rho_{w} V_{s} d_{p} / \mu$
For laminar flow ($\mathrm{R}_{\mathrm{n}}<0.5$) Newton's law yields another equation which called Stoke's Law:

$$
V_{s}=\frac{g}{18} \frac{\left(\rho_{p}-\rho_{w}\right)}{\mu} d_{p}^{2}
$$

Where
ρ_{p} : Density of particle
ρ_{w} : Density of water
d_{p} : Particle diameter

6.7.4 Scour velocity

It is a horizontal velocity that will cause the resuspend of the settled particles.
The horizontal velocity just sufficient to cause scour has been defined as:

$$
V_{\text {scour }}=\frac{8 \beta(s-1) \mathrm{gd}_{\mathrm{p}}}{f}
$$

Where
$V_{\text {scour: }}$ Scour velocity
S : Specific gravity of the particles
d_{p} : Particle diameter
β : Constant ranges 0.04-0.06
f : Darcy-Weisbach friction factor, $0.02-0.03$

$$
\mathrm{V}_{\mathrm{h}}<\mathrm{V}_{\text {scour }}
$$

6.7.5 Detention time

It is the time required for the particle to settle. D.T is very important to find the volume of the tank. It is equal to:
$D . T=\frac{V}{Q}$ or $D . T=\frac{h}{V_{s}}$

6.7.6 Percentageremoval

As we know, SOR is the water velocity towards up (water surface in the tank), and the settling velocity is the velocity towards dawn (the bottom of the tank).
SOR ${ }^{\uparrow}$
$\mathbf{V}_{\mathrm{s}} \downarrow$
Now, if $\mathrm{SOR}>\mathrm{V}_{\mathrm{s}}$ the water will exit from the tank before arrival of all particles to the bottom of the tank (sludge zone), here the partial removal is occurred and his value is called percentage removal.

Percentage removal $=\left(\mathrm{V}_{s} / \mathrm{SOR}\right) \times 100$
If $\mathrm{V}_{\mathrm{s}} \geq$ SOR, all suspended particles will be removed before the water exits from the tank, here complete percentage removal is occurred (100\%).

When we want to design the sedimentation tank, we carried out that $\mathbf{V}_{\mathbf{s}}=$ SOR

6.7.7 Mass of sludge

Sludge is the particles collected in the bottom of the tank.
Sludge concentration $=$ influent Concentration \times percentage removal

$\mathrm{C}_{\mathrm{m}}=\mathrm{C}_{\mathrm{i}} \times$ percentage removal
$\mathrm{C}_{\mathrm{e}}=\mathrm{C}_{\mathrm{i}}-\mathrm{C}_{\mathrm{m}}$
Mass of dry sludge $=\mathrm{C}_{\mathrm{m}} \times$ flow rate (Q)
For example, if $\mathrm{Q}=480 \mathrm{~m}^{3} /$ day

$$
\mathrm{C}_{\mathrm{m}}=150 \mathrm{mg} / \mathrm{l}
$$

Then the mass dry sludge $=(150 \times 1000) \mathrm{mg} / \mathrm{m}^{3} \times 480 \mathrm{~m}^{3} /$ day $=72 \mathrm{~kg} /$ day
Mass of wet sludge $=$ Mass of dry sludge $/$ percentage of solid
Wet sludge volume $=\mathrm{W} \times \mathrm{L} \times \mathrm{h}_{\mathrm{s}}=$ Mass of wet sludge / sludge density
Where h_{s} is height of sludge

6.7.8 Efficiency of the tank

$\% \mathrm{E}=\frac{C_{i}-C_{e}}{C_{i}} \times 100$
$\% \mathrm{E}=\frac{C_{m}}{C_{i}} \times 100$
An ideal sedimentation tank exhibits the following characteristics which are commonly used to describe the settling behavior of discrete particles:

1) The flow through the tank is distributed across the cross section of the tank.
2) The particles are dispersed in water.
3) The settling of the particles is predominantly of type I
4) Sedimentation tank is divided into four distinct zones: inlet, settling, sludge and outlet zones. Table 6.1 lists typical values.

Table 6.1: Design parameters and operating standards

Parameter	Rectangular	Circular, Radial flow
Settling Velocity $(\mathrm{mm} / \mathrm{sec})$	$0.1-0.5$	-----
Horizontal velocity $(\mathrm{m} / \mathrm{hr})$	$14-15$	---
Surface loading $\left(\mathrm{m}^{3} / \mathrm{m}^{2}\right.$. day) Retention time (hrs)	$10-50$	$10-45$
Outflow weir loading $\left(\mathrm{m}^{3} / \mathrm{m}\right.$.	$1.5-4$	$1.5-4$
day)		$100-450$
Average depth (m)	$1.75-3.0$	$1.5-2.5$
Plan dimensions (m)	Up to 100 long; length: width from $4: 1$ to $5: 1$	$3.3-30$ diameter.
Base slope	$1: 25$ to $1: 100 ; 22.3$	$1: 6$ to $1: 8.7 .5$ deg to 10
	deg to 0.6 deg.	deg.

Example

Water contains particles with 0.5 mm diameter and specific density of 2650 $\mathrm{kg} / \mathrm{m}^{3}$. If water density $=998.2 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity $=1.002 * 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$. Find
the settling velocity and the diameter of the circular tank, if the flow rate $=0.5$ $\mathrm{m}^{3} / \mathrm{s}$, and D.T $=2 \mathrm{hr}$, use two tanks.

Example

Raw water ($\mathrm{Q}=5450 \mathrm{~m}^{3} / \mathrm{d}$) pass through the sedimentation rectangular tank with the width equal to 6 m . The particles density equal to $2000 \mathrm{~kg} / \mathrm{m}^{3}$ and kinetic viscosity of water equal to $1.14 * 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$. Drive the equation between the diameter of particles and the length of the tank required, and draw the curve?

Example

A rectangular sedimentation tank with $\mathrm{W}=25 \mathrm{~m}, \mathrm{~L}=50 \mathrm{~m}$ and $\mathrm{h}=3 \mathrm{~m}$. The flow rate $=1500 \mathrm{~m}^{3} / \mathrm{h}$, and the influent particles concentration $=2000 \mathrm{mg} / \mathrm{l}$. The following table shows the percentage of particles as a function of his diameter:

Volume of particle (mm)	$\%$
0.001	10
0.005	20
0.01	15
0.015	15
0.02	20
0.025	20

Find:

1) Settling velocity, if particles density $=2650 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity of water $=1.002 * 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
2) Percentage removal for each particle and total percentage removal
3) Sludge depth, if the tank is cleaned one time per month. If percentage of solide $=8 \%$ and sludge density $=1150 \mathrm{~kg} / \mathrm{m}^{3}$
4) Effluent concentration particles

Example

$\mathrm{Q}=1000 \mathrm{~m}^{3} / \mathrm{d}, \mathrm{D} . \mathrm{T}=2 \mathrm{hr}$
$\mathrm{D}_{\mathrm{p}}=0.06 \mathrm{~mm}$
$\rho_{\mathrm{p}}=1200 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1.027 \times 10^{-3} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$
$\mathrm{V}_{\text {scour }}=\mathrm{V}_{\mathrm{h}} / 70 \%$, find $\mathrm{L}, \mathrm{W}, \mathrm{h}$ if $\mathrm{L}=4 \mathrm{~W}$

6.8 Fraction of particles removal

The sedimentation tank is designed so that all particles having a settling velocity greater or equal SOR are fully removal. Particles having a settling velocity $\left(v_{i}\right)$ smaller than the SOR are partial removal, Fig. (17). The velocity v_{i} is expressed by:

Fig (17) Settling behavior of discrete particles

$$
\begin{aligned}
& V_{s}=\frac{H}{D . T} \\
& V_{i}=\frac{h}{D . T}
\end{aligned}
$$

In a typical river water suspension sample, a large gradation of particles size occurs. To determine the removal efficiency at a given settling time, it is necessary to consider the entire range of particle settling velocities and the fractions that are removed. Therefore the total removal efficiency of a settling tank can be determined by 1) a batch settling test or 2) a sieve analysis. The batch settling test employs a settling column, as shown in Fig. (18). The test sample is placed in the column and samples are taken at timed intervals, usually each 30 to 60 sec for 5 min and then every 1 to 2 min for the remainder of the test. The test is continue from 30 min to 2 hr . The weight of suspended solids is measured for each sample and expressed as a fraction of solids remaining.

Fig (18) Standard settling column used for discrete settling test
The sieve analysis technique requires a sample of dry solids that constitute the suspension to be removed in the tank. With either method, a settling velocity analysis curve is developed as shown in Fig (19). The total solids removal efficiency is then determined by graphically integrating the area under the curve. The fraction of all particles removed will be:

$$
\begin{aligned}
& f=\left(1-X_{s}\right)+\frac{1}{V_{s}} \int_{0}^{X_{s}} V_{i} \\
& f=\left(1-X_{s}\right)+\frac{1}{V_{s}} \Sigma \mathrm{~V} \Delta \mathrm{X}
\end{aligned}
$$

Where: f : fraction of particles removal X_{s} : fraction of particles with $\mathrm{V}<\mathrm{V}_{\mathrm{s}}$ $\left(1-X_{s}\right)$: fraction of particles with $\mathrm{V} \geq \mathrm{V}_{\mathrm{s}}$

Fig (19) Cumulative distribution of particle settling velocity

Example:

Given: A settling basin is designed to have a surface overflow rate of 32.6 $\mathrm{m} / \mathrm{day}=0.37 \mathrm{~mm} / \mathrm{s}\left(800 \mathrm{gpd} / \mathrm{ft}^{2}\right)$. Find the overall removal obtained for a suspension with the size distribution given below. The specific gravity of the particles is 1.2 and $\mathrm{T}=20^{\circ} \mathrm{C} . \mu=1.027, \rho=0.9997$

Particle size, mm	0.10	0.08	0.07	0.06	0.04	0.02	0.01
Weight fraction greater than size, percent	10	15		40	70	93	99

Sample calculations for the table below:
v, Stokes Law:
$V_{s}=\frac{g}{18} \frac{\left(\rho_{p}-\rho_{w}\right)}{\mu} d_{p}{ }^{2}=$
$\mathrm{v}=107.62 \mathrm{~d}^{2}$
for $\mathrm{d}=.10 \mathrm{~mm}$
$\mathrm{v}=107.62(.10)^{2}$
$\mathrm{v}=1.076$ say 1.08
for $\mathrm{d}=.04$
$\mathrm{v}=107.62(.04)^{2}$
$\mathrm{v}=0.172 \mathrm{~mm} / \mathrm{s}$
Reynolds number, if the $R_{e}<.5$, Stokes Law applies.
$\mathrm{R}_{\mathrm{e}}=\rho_{\mathrm{w}} \mathrm{V}_{\mathrm{s}} \mathrm{d}_{\mathrm{p}} / \mu,=(0.10 \mathrm{~mm} \times 1.08 \mathrm{~mm} / \mathrm{s}) / 1.011 \times 10^{-6} \mathrm{~m} / \mathrm{s} \times(1000 \mathrm{~mm} / \mathrm{m})^{2}$
$\mathrm{R}_{\mathrm{e}}=0.10$

Weight fraction, \%	10.0	15.0	40.0	70.0	93.0	99.0	100
$\mathbf{v , ~ \mathbf { m m } / \mathbf { s } ,}$ from above calc.	$\mathbf{1 . 0 8}$	$\mathbf{0 . 6 8 9}$	$\mathbf{0 . 5 2 7}$	$\mathbf{0 . 3 8 7}$	$\mathbf{0 . 1 7 2}$	$\mathbf{0 . 0 4 3}$	$\mathbf{0 . 0 1 1}$
$\mathbf{N r ,}$	0.1	0.05	0.04	0.02	0.01	0.001	0.0001
Weight fraction remaining $\%$	$\mathbf{9 0 . 0}$	$\mathbf{8 5 . 0}$	$\mathbf{6 0 . 0}$	$\mathbf{3 0 . 0}$	$\mathbf{7 . 0}$	$\mathbf{1 . 0}$	$\mathbf{0}$

Plot the above vs. weight fraction remaining, e.g. 1.08, 90.0; 0.689,85 etc.

All particles with a settling velocity greater than $.37 \mathrm{~mm} / \mathrm{s}$ will be 100% removed. From the graph, the fraction $\left(1-\mathrm{X}_{\mathrm{s}}\right)$ is equal to 0.73 or 73%; a portion of the remaining 27% will be removed, graphically this is the area above the settling curve, but below the Xs line. One way to obtain this desire area is to assume increments of Δx, say 0.04 , and pick off the corresponding v , velocity, from the graph. The resulting product $\Delta \mathrm{x}(\mathrm{v})$ is
the area for that increment. The increments are then summed to obtain the total area.

$\Delta \mathbf{x}$	0.04	0.04	0.04	0.04	0.04	0.04	.027
\mathbf{v}	0.06	0.16	0.22	0.26	0.30	0.34	0.37
$\Delta \mathbf{x}(\mathbf{v})$	0.0024	0.0064	0.0088	0.0104	0.0120	0.0136	.0099

Total $\Delta \mathrm{x}(\mathrm{v})=.0635$
The overall removal is:
fraction removed $=\left(1-\mathrm{X}_{s}\right)+\frac{1}{S O R} \int_{0}^{X_{s}} v d x$
fraction removed $=0.73+1 / .37(0.0635)$
fraction removed $=\mathbf{0 . 8 9 8}=\mathbf{8 9 . 9 \%}$

6.9 Flocculent Suspension

Settling initially starts as Type I (discrete), but the particles coalesce (flocculate) during settling.
Flocculation leads to a change in size, shape and weight as they settle \longrightarrow Vs changes with time.
Paths of the particles are curved (not linear as in discrete settling).
We can perform batch tests to obtain the data required to size primary sedimentation basins where flocculation is occurring.
Use a batch settling column with a height equal to the depth of the clarifier that is to be designed.

Fig (20) Flocculent column used for flocculent suspension

Example

Using the sample data provided, estimate the percentage removal of solids in an ideal basin with a depth of 1.8 m and a residence time of 50 min .

Percentage Removal \%			Settling Time
1.8 m	1.2 m	0.6 m	min
12	14	22	10
26	29	37	20
36	38	49	30
43	49	58	40
55	60	71	60
63	68	74	80

Solution

Step 1: Plot the data

Step 2: Draw the Constant Percent Removal Lines

- $\mathrm{Vo}=(1.8 \mathrm{~m}) /(50 \mathrm{~min})=0.036 \mathrm{~m} / \mathrm{min}$.
- From the curve, at to $=50 \mathrm{~min}, 50 \%$ of the particles have vs \geq vo and are totally removed.
- Need to determine the number of particles with vs \leq vo that are removed.
- Fraction is partially removed in a ratio of h / H.

Step 3: Calculate the Total Percent Removal
Particles with a settling velocity less than SOR will be removed in a ratio of $(\mathrm{h} / \mathrm{H})$. The total percent solids removal (R) for flocculating particles in a column of height H at a specified SOR.

$$
\% R=\sum_{h=1}^{\mathrm{n}}\left(\frac{\Delta \mathrm{~h}_{\mathrm{n}}}{H}\right)\left(\frac{\mathrm{R}_{\mathrm{n}}+\mathrm{R}_{\mathrm{n}+1}}{2}\right) \times 100 \%
$$

$\Delta h_{1}=\frac{(1.8-0.78) m}{1.8 m} \times \frac{(60+50) \%}{2}=31 \%$
$\Delta h_{2}=\frac{(0.78-0.42) m}{1.8 m} \times \frac{(70+60) \%}{2}=13 \%$
$\Delta h_{3}=\frac{(0.42-0) m}{1.8 m} \times \frac{(100+70) \%}{2}=19.8 \%$
Total removed $=31+13+19.8=64 \%$

6.10 Hindered or settling Zone

Hindered settling is a term used in sedimentation to describe settling of large numbers of particles that are settling as "a mass," often interfering with each others settling, rather than settling "unhindered" as individual, discrete particles. This phenomenon may also manifest itself when all of the settled particles come together at the bottom of the tank prior to being incorporated into the sludge zone (may also be called the compression zone). While this condition appears to be more prevalent in wastewater treatment secondary sedimentation, it is worthy to note in potable water treatment where large amounts of flocculated algae, etc., may be involved.

6.11 Design consideration

Surface loading rates are used to calculate surface area requirements of a sedimentation tank.
Detention time is used in conjunction with the surface loading rate to calculate the volume and side water depth of the sedimentation tank.
Inlet zone or influent structure the inlet zone distributes the flow across the sedimentation tank and dissipates incoming velocity. To achieve these two function perforated wall is provided as shown in Fig. (21). Rectangular tank is constructed to be integral with flocculation tank. A diffusion wall separates the two tanks and serves as the sedimentation tank inlet. The influent structure in circular tank is provided as a part of the sludge collection equipment and generally are designed by the equipment supplier.
Outlet zone or effluent structure traditionally overflow weirs and launder troughs have been used for outlet control in a sedimentation tank. Either Vnotch or submerged orifice weir plates are commonly used. The length of weir required is determined by the weir overflow rate or weir loading rate. Typical launder trough for rectangular, square and circular sedimentation tank are illustrated in Fig. (22).

Fig (21) Inlet and outlet structure

Fig (22) Typical launder trough

Sedimentation tank design

Exemple:

Number of tank $=4$
Maximum discharge $=113500 \mathrm{~m}^{3} /$ day
Length to width ratio $=2$ to 3
Surface loading rate $=35 \mathrm{~m}^{3} / \mathrm{m}^{2}$. day
Weir loading rate $=250 \mathrm{~m}^{3} / \mathrm{m}$. day D.T $=4 \mathrm{hr}$

Solution

1- Dimensions of the tank

$\mathrm{Q}=113500 / 4=28375 \mathrm{~m}^{3} / \mathrm{day}=0.328 \mathrm{~m}^{3} / \mathrm{s}$ for each tank
$\mathrm{A}=\mathrm{Q} / \mathrm{SOR}=28375 / 35=810 \mathrm{~m}^{2}$
If, $W=18.5 \mathrm{~m}$ then $\mathrm{L}=810 / 18.5=43.7=44 \mathrm{~m}$
L / W ration $=44 / 18.5=2.3$ this ratio within the range
Depth (h) $=$ SOR* D.T $=35 \mathrm{~m} /$ day* $1 / 24$ day $/ \mathrm{hr} * 4 \mathrm{hr}=5.8 \mathrm{~m}$
Then the sedimentation tank dimension is $44 * 18.5 * 5.8 \mathrm{~m}^{3}$
Fig (1) shows the sedimentation tank with effluent and settling zones

2- Influent structure design

The detail influent structure design is provided in lecture five as effluent flocculation tank. The head loss at the diffusion wall between the flocculation and sedimentation tanks is very small and can be neglected.

3-Effluent structure design

A) Weir length

Weir length required $=\mathrm{Q} /$ wier loading $=28375 / 250=113.5 \mathrm{~m}$
Take 8 launder troughs (width $=0.5 \mathrm{~m}$) with a center effluent collection channel.
Each trough is 8.5 m (depends on the width of the tank).
Actual weir length $=2$ troughs $* 8.5 \mathrm{~m} * 1$ side per trough +6 troughs $* 8.5 \mathrm{~m} * 2$ side per trough $=119 \mathrm{~m}>113.5 \mathrm{~m}$
Fig (2) shows the effluent collection system

$$
\begin{aligned}
& \text { يكون ذو أتجاه واحد لان الاتجاه ألأخر هو ماصق } \\
& \text { لحائط الخزان ولايحسب من ضمن طول weir }
\end{aligned}
$$

Fig (23) Sedimentation tank

Fig (24) Effluent collection system

B) Total number of V- notches

Use $90^{\circ} \mathrm{V}$-notches weirs.
Provide 9 notches per 2 m long weir plate and 4 plates on each side of each 8.5 m trough, as shown in fig (3).
Notch shall be 7.5 cm deep and spaced at 20 cm .

Fig (25) effluent launder with weir
Total number of notches in each tank $=2$ troughs $* 1$ side per trough $* 4$ plates pers ide $* 9$ notches per plate +6 troughs $* 2$ side per trough $* 4$ plates per side $*$ 9 notches per plate $=504$ notches
C) Head over the V- notch weirs

Flow rate per notch $(\mathrm{q})=0.328 \mathrm{~m}^{3} / \mathrm{s} / 504$ notch $=6.52 * 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$ per notch
The head over each notch can be calculated from the following formula:

$$
\mathrm{q}=\frac{8}{15} \mathrm{C}_{\mathrm{d}} \sqrt{2 \mathrm{~g}} \tan \frac{\theta}{2} H^{2.5}
$$

Where
C_{d} : coefficient of discharge $=0.6$
H : head over notch, m
θ : angle of V-notch $=90$
$6.52 * 10^{-4} \mathrm{~m}^{3} / \mathrm{s}=(8 / 15) * 0.6 *(2 * 9.81)^{0.5} \tan (90 / 2) * \mathrm{H}^{2.5}$
$\mathrm{H}=0.046 \mathrm{~m}$
Then the free board for V-notch $=7.5-4.6=2.9 \mathrm{~cm}$

D) Head loss through the effluent launder trough

Here we must calculate the water flow rate in each launder trough and calculate water depth at the downstream end of the launder trough and water depth at the upstream end of the launder trough.

The flow rate at the exit point of each effluent launder trough is calculated as: $\mathrm{Q}^{\prime}=\mathrm{q} * 2$ side per trough $* 4$ plates pers ide $* 9$ notches per plate $=6.52 * 10^{-4} *$ $2 * 4 * 9=0.047 \mathrm{~m}^{3} / \mathrm{s}$

- Water depth at the downstream end of the launder trough (y_{2})
$\mathrm{y}_{2}=\left(\frac{\left(\mathrm{Q}^{\prime}\right)^{2}}{g b^{2}}\right)^{1 / 3}, \mathrm{~b}:$ launder width
$\mathrm{y}_{2}=\left((0.047)^{2} / 9.81 *(0.5)^{2}\right)^{1 / 3}=0.096 \mathrm{~m}$
- Water depth at the upstream end of the launder trough (y_{1})

$$
y_{1}=\sqrt{y_{2}^{2}+\frac{2 \times\left(Q^{\prime}\right)^{2}}{g b^{2} y_{2}}+\frac{F \times L \times\left(Q^{\prime}\right)^{2}}{12 g b^{2} \times r \times d}}
$$

Where
F: Darcy friction factor (0.03-0.12)
r: mean hydraulic radius, m
d: mean depth of channel, m
L: length of launder trough, m
Assume the mean depth in the effluent launder trough $(\mathrm{d})=0.14 \mathrm{~m}$

$$
\mathrm{r}=\mathrm{b} * \mathrm{~d} /(2 \mathrm{~d}+\mathrm{b})=0.14 * 0.5 /(2 * 0.14+0.5)=0.09 \mathrm{~m}
$$

$$
y_{1}=\sqrt{(0.096)^{2}+\frac{2 \times(0.0469)^{2}}{9.81 \times(0.5)^{2} \times 0.096}+\frac{0.1 \times 8.5 \times(0.0469)^{2}}{12 \times 9.81 \times(0.5)^{2} \times 0.09 \times 0.14}}=0.18 \mathrm{~m}
$$

Then loss through the trough $=y_{1}-y_{2}=0.18-0.098=0.082 \mathrm{~m}$

4-Sludge quantity

The quantity of sludge is estimated by totaling (1) the suspended solids and other constituents removed, (2) the amount of metal hydroxide, (3) the calcium carbonate produced, (4) the amount of coagulant aid.
In this design example, we assume that the following data are applied in coagulation and flocculation processes. All coagulants used will be solid in the sedimentation tank and can be removed.

Max. turbidity	17 NTU
Max. seasonal iron concentration	$0.7 \mathrm{mg} / \mathrm{l}$
Max. seasonal manganese concentration	$0.4 \mathrm{mg} / \mathrm{l}$
Optimum coagulant, ferric sulfate	$25 \mathrm{mg} / \mathrm{l}$
Optimum coagulant aid, cationic polymer	$0.05 \mathrm{mg} / \mathrm{l}$
Hydrated lime $\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)$ for pH adjusment	$15 \mathrm{mg} / \mathrm{l}$
Seasonal potassium permanganate $\left(\mathrm{KMnO}_{4}\right)$	$4 \mathrm{mg} / \mathrm{l}$

Production of solids can be calculated as following:

1) Solids from raw water:

Quantity $=17 \mathrm{NTU} * 1 \mathrm{TSS} / \mathrm{NTU} * 10^{-6} \mathrm{~kg} / \mathrm{mg} * 10^{3} \mathrm{~L} / \mathrm{m}^{3} * 113500$ $\mathrm{m}^{3} / \mathrm{d}=1930 \mathrm{~kg} / \mathrm{d}$
2) Solids due to precipitation of iron content:

Quantity $=\left(106.9 \mathrm{~g} / \mathrm{mol} \mathrm{Fe}(\mathrm{OH})_{3} / 55.9 \mathrm{~g} / \mathrm{mol} \mathrm{Fe}\right) * 0.7 \mathrm{mg} \mathrm{Fe} / \mathrm{L} * 10^{-6}$ $\mathrm{kg} / \mathrm{mg} * 10^{3} \mathrm{~L} / \mathrm{m}^{3} * 113500 \mathrm{~m}^{3} / \mathrm{d}=152 \mathrm{~kg} / \mathrm{d}$
3) Solids due to precipitation of manganese content:

Quantity $=(86.9 \mathrm{~g} / \mathrm{mol} \mathrm{MnOO} / 54.9 \mathrm{~g} / \mathrm{mol} \mathrm{Mn}) * 0.4 \mathrm{mg} \mathrm{Mn} / \mathrm{L} * 10^{-6}$ $\mathrm{kg} / \mathrm{mg} * 10^{3} \mathrm{~L} / \mathrm{m}^{3} * 113500 \mathrm{~m}^{3} / \mathrm{d}=72 \mathrm{~kg} / \mathrm{d}$
4) Solids due to precipitation of ferric sulfate:

Quantity $=\left(0.54 \mathrm{~kg} \mathrm{Fe}(\mathrm{OH})_{3} / \mathrm{kg} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} * 25 \mathrm{~g} / \mathrm{m}^{3} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} * 10^{-3}\right.$ $\mathrm{kg} / \mathrm{g} * 113500 \mathrm{~m}^{3} / \mathrm{d}=1532 \mathrm{~kg} / \mathrm{d}$
5) Solids from the polymer:

Quantity $=1 * 0.05 \mathrm{mg}$ polymer $/ \mathrm{L} * 10^{-6} \mathrm{~kg} / \mathrm{mg} * 10^{3} \mathrm{~L} / \mathrm{m}^{3} * 113500$ $\mathrm{m}^{3} / \mathrm{d}=5.7 \mathrm{~kg} / \mathrm{d}$
6) Lime solids during pH adjustment (Assume 20% of $\mathrm{Ca}(\mathrm{OH})_{2}$ precipitates as CaCO_{3}) :

Quantity $=0.2 *\left(100 \mathrm{~g} / \mathrm{mol} \mathrm{CaCO}_{3} / 74 \mathrm{~g} / \mathrm{mol} \mathrm{Ca}(\mathrm{OH})_{2}\right) * 15 \mathrm{mg}$ $\mathrm{Ca}(\mathrm{OH})_{2} / \mathrm{L} * 10^{-6} \mathrm{~kg} / \mathrm{mg} * 10^{3} \mathrm{~L} / \mathrm{m}^{3} * 113500 \mathrm{~m}^{3} / \mathrm{d}=460 \mathrm{~kg} / \mathrm{d}$
7)Solids due to precipitation of potassium permanganate content:

Quantity $=\left(86.9 \mathrm{~g} / \mathrm{mol} \mathrm{MnOO}^{2} 158 \mathrm{~g} / \mathrm{mol} \mathrm{KMnO}_{4}\right) * 4 \mathrm{mg} \mathrm{KMnO} 4 / \mathrm{L} *$ $10^{-6} \mathrm{~kg} / \mathrm{mg} * 10^{3} \mathrm{~L} / \mathrm{m}^{3} * 113500 \mathrm{~m}^{3} / \mathrm{d}=250 \mathrm{~kg} / \mathrm{d}$

Now, we can calculate the total solids produced:
Total quantity of solids $=1930+152+72+1532+5.7+460+250=4402 \mathrm{~kg} / \mathrm{day}$ Note Because of many uncertainties associated with raw water quality, chemical dosages, this value is increased by $20-60 \%$.

Assume that 90% of solids produced are removal from sedimentation tank:
\therefore quantity of solids removal $=4402 * 0.9=3962 \mathrm{~kg} /$ day
Assume that the sludge with 2% solids (then 98% water):
\therefore Mass of wet sludge $=3962 / 0.02=198100 \mathrm{~kg} /$ day
Now, we can used the following equation to find the density of wet sludge:

$$
\frac{M_{w s}}{\rho_{w s}}=\frac{M_{d s}}{\rho_{d s}}+\frac{M_{w t}}{\rho_{w t}}
$$

Where
M_{ws} : Mass of wet sludge
M_{ds} : Mass of dry sludge
$\mathrm{M}_{\mathrm{w} t}$: Mass of water
Let density of solids $=2400 \mathrm{~kg} / \mathrm{m}^{3}$ and water density $=1000 \mathrm{~kg} / \mathrm{m}^{3}$, sub in the previous equation.

$$
\frac{198100}{\rho_{w s}} \equiv \frac{3962}{2400} \ddagger \frac{194138}{1000} \stackrel{ }{\rho_{\mathrm{ws}}=1012 \mathrm{~kg} / \mathrm{m}^{3}}
$$

Volume of sludge withdrawn $\left(\mathrm{V}_{\mathrm{ws}}\right)=3962 \mathrm{~kg} / \mathrm{d} / 0.02 \times 1012 \mathrm{~kg} / \mathrm{m}^{3}=195.7 \mathrm{~m}^{3} / \mathrm{d}$

Sludge pipe design:

Use 2 pipes $D=20 \mathrm{~cm}$, velocity $=0.6 \mathrm{~m} / \mathrm{s}$
$\mathrm{Q}=0.6 \times \pi / 4(0.2)^{2}=0.0188 \mathrm{~m}^{3} / \mathrm{s}=1628.6 \mathrm{~m}^{3} / \mathrm{d}$ (for each pipe)
Volume of sludge with drawn for each pipe $=196 \mathrm{~m}^{3} / \mathrm{d} / 2=98 \mathrm{~m}^{3} / \mathrm{d}$
Required opening time period $=98 \mathrm{~m} 3 / \mathrm{d} / 1628.6 \mathrm{~m} 3 / \mathrm{d}=6 \%$
$0.06 \times 24 \times 60=86.4 \mathrm{~min}$ per day $=3.6 \mathrm{~min}$ per hr

